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1. Convergence 

 
Figure S1. Convergence of the total electronic energy of CsSnI3, MgI2 and CaI2 with respect to the cut-off 

energy (top raw) and to the Monkhorst-Pack grid (lower raw). It was highlighted in red the computational 

conditions for each case. The cut-off energy employed for MgI2 and CaI2 as 600 Ry was employed for all-

three structures. 

 

A cut-off energy of 600 Ry was employed for all structures as the energy difference 

between a previous calculation and the one at issue (600 Ry) was 1.99 × 10-3 eV and 1.81 × 
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10-4 eV for CsSnI3 and CaI3, respectively. For MgI3 it was not necessary to perform more 

energy calculations as it was obtained no energy change between the calculation carried out 

at 440 and 480 Ry. 

A k-mesh of 7×5×7 was employed for CsSnI3 as there was an energy change between 

the last calculation of the total electronic energy with a k-mesh of 7×5×7 and the previous 

one with a k-mesh of 6×4×6 equal to 5.11 × 10-3 eV (Supplementary Information 2). For 

both, MgI2 and CaI2 a k-mesh of 7×7×4 was used as there was an energy change between 

the calculation at issue (7×7×4) and the previous one with a k-mesh of 6×6×3 equal to 1.24 

× 10-3 eV and 2.01 × 10-4 eV for MgI2 and CaI2, respectively. 

 

2. Optimization of CsSnI3 with dispersion corrections by means of 

Grimme’s approach 

 

Data from the work of Grimme [1] were considered to determine empirically both C6 

(the dispersion coefficient) and R0 (van der Waal radius) for Cs (see Ref. [1] for more details 

on these constants). Two functions were fitted from the data for H, Li, Na, K, and Rb to 

determine C6; these functions were 𝐴(𝐷 − 𝐵−𝑘𝑥𝑛
) and 𝐴 + 𝐵𝑥 + 𝐶𝑥2 + 𝐷𝑥3 + 𝐸𝑥4 

(Supplementary Information 2). For R0 a linear function, 𝐴 + 𝐵𝑥, was fitted to the data for 

Li, Na, K, and Rb. The optimized structures (with the same computational conditions of the 

manuscript’s Section 2) were named simply as Grimme1 (C6 = 466.12 eVÅ6), Grimme2 (C6 

= 476.20 eVÅ6), and Grimme3 (C6 = 486.28 eVÅ6), distinguished among them by their C6 

value as they all has R0 = 1.903 Å. Besides, as the Grimme’s work suggests s6 and d were 

taken as 0.75 and 20, respectively (both being dimensionless parameters). The structural 

parameters for the unit cell of CsSnI3 after optimization according to methods above 

described are shown in Table S1 (see at Supplementary Information 2 more structural 

parameters, such as Sn-I bond lengths or Sn-I-Sn angles). 

Table S1. UC parameters for CsSnI3 obtained by using different run conditions. It was indicated within 

parenthesis the relative error with respect to the experimental values taken from Ref. [2]. 

UC’s parameters 
revPBE (as in 

manuscript) 
Grimme1 Grimme2 Grimme3 

a (Å) 8.92 (2.71%) 9.20 (5.92%) 9.21 (6.00%) 9.20 (5.91%) 

b (Å) 12.55 (1.37%) 12.50 (1.01%) 12.51 (1.06%) 12.50 (1.00%) 

c (Å) 8.79 (1.77%) 8.01 (-7.28%) 8.00 (-7.44%) 8.01 (-7.26%) 

Volume (Å3) 984.34 (5.96%) 921.60 (-0.80%) 992.25 (-0.85%) 104.81 (-0.79%) 

𝛼 (º) 90.00 (0.00%) 90.00 (0.00%) 90.00 (0.00%) 90.00 (0.00%) 

𝛽 (º) 90.00 (0.00%) 90.00 (0.00%) 89.99 (-0.01%) 90.00 (0.00%) 

𝛾 (º) 90.00 (0.00%) 90.00 (0.00%) 90.01 (0.00%) 90.01 (0.01%) 

 

  



3. Equivalency among the structures of AE-doped perovskites 

First, it was necessary to corroborate that the four structures describing AE-doped 

perovskites in the manuscript’s Figure 3, are equivalent among them as expected. Based upon 

the principles of DFT, for a certain spatial distribution of atoms there is a certain electronic 

density and, as a consequence, a particular electronic energy [3]. Nevertheless, the 

equivalency among the optimized structures was demonstrated by means of the calculation 

of the total electronic energy (EDFT). As Table S1 shows, all the energy differences (ΔEDFT) 

are in the same order of magnitude than kBT but for T = 1 K (i.e., kBT = 8.6 × 10-5 eV). 

Further, the energy differences computed during the convergence process of the 

computational parameters (such as k-mesh and cut-off energy, see manuscript’s Section 2) 

are one or two orders of magnitude above of all ΔEDFT obtained here. Hence, if one would 

like to reproduce these results based upon the DFT approach, any of the four structures may 

jumps up as the most stable one [4]. 

Table S2. Total electronic DFT energy (EDFT) of each of the four optimized structures for AE-doped 

perovskites. The energy difference (ΔEDFT) between the structure that obtained the lowest EDFT and each of 

the remaining ones is also shown. The structures with the lowest EDFT are the structure 3 for the 0.25-Mg 

perovskites, and structures 3 and 4 for the 0.25-Ca perovskites. 

Structure 
0.25-Mg perovskite 0.25-Ca perovskite 

EDFT (eV) ΔEDFT (eV) EDFT (eV) ΔEDFT (eV) 

1 -14868.298569 -5.7×10-5 -14903.637488 -0.5×10-5 

2 -14868.298597 -2.9×10-5 -14903.637485 -0.8×10-5 

3 -14868.298626 0.0 -14903.637493 0.0 

4 -14868.298596 -3.0×10-5 -14903.637493 0.0 

 

 

4. Energies involved in the determination of EF 
 

Table S3. EDFT of each of the four optimized unit cells of the reactants involved in the formability of the 

undoped and AE-doped perovskites, and EDFT of the perovskites employed for the calculation of EF. Z refers 

to the number of times the unit cell contains the chemical formula at issue. The energy of each reactant 

employed for the calculation of EF was the ratio EDFT/Z. 

Structures EDFT (eV) Z EDFT/Z (eV) 

SnI2 -14,741.247117 6 -2,456.874520 

MgI2 -2,440.095087 1 -2,440.095087 

CaI2 -2,475.159982 1 -2,475.159982 

CsI -1,264.159732 1 -1,264.159732 

CsSnI3 -14,885.67317 4 -3,721.418293 

0.25-Mg perovskite -14,868.298569 4 -3,717.074642 

0.25-Ca perovskite -14,903.637488 4 -3,725.909372 

 



 

5. Remaining optimized structures and magnified octahedral distortion 

for 0.25-AE perovskites 

 

 
Figure S2. As the main article mentioned, four structures were considered to calculate the averaged values 

presented in Figure 3, and Table 1 and 2. Here, it is shown the three additional optimized structures employed 

for the mentioned purpose for both, 0.25-Mg and 0.25-Ca perovskites.  

 

With respect to the angles θa, θb and θc (defined by the manuscript’s Equation 3), it is 

relevant to clarify briefly the relation between these angles and the Glazer notation. 

Assuming the same frame of reference as in Figure S3, the same 〈𝑙〉 and 〈Ф〉 in all the 

octahedrons, and the symmetry demanded by the octahedral tilting, in the Glazer tilt pattern 

𝑎0𝑎0𝑎0, for example, both 〈θa〉 and 〈θc〉 would be equal to 45°, and 〈θb〉 would be equal to 

0°. Having the octahedral tilting 𝑎0𝑏+𝑎0 would bring about that both 〈θa〉 and 〈θc〉 would be 

distinct from 45°, in fact, one angle would be reduced and the other one would be increased 

by the same amount; meanwhile, 〈θb〉 will still be equal to 0°. Notwithstanding, when an 

octahedral tilting such as 𝑎+𝑏+𝑎+ is present in the perovskite, 〈θb〉 is different from 0°, and, 

the horizontal plane formed by the vectors 𝑣1⃗⃗⃗⃗  and 𝑣2⃗⃗⃗⃗  (𝑣1𝑣2-plane in Figure S3) is no longer 

parallel to the plane formed by the UC’s vectors 𝑎  and 𝑐  (𝑎𝑐-plane in Figure S3). Meanwhile, 

the difference between 𝑎+𝑏+𝑎+ and 𝑎−𝑏+𝑎− has to do with the vector 𝑣3⃗⃗⃗⃗ . If two octahedrons 

from the same horizontal plane are considered (Figure S3), one located at the 𝑎𝑏-plane with 

vector 𝑣3
𝑎𝑏⃗⃗ ⃗⃗ ⃗⃗   and the other one located in the 𝑏𝑐-plane with vector 𝑣3

𝑏𝑐⃗⃗ ⃗⃗ ⃗⃗   (Figure S3), the sum of 

𝑣3
𝑎𝑏⃗⃗ ⃗⃗ ⃗⃗   and 𝑣3

𝑏𝑐⃗⃗ ⃗⃗ ⃗⃗   will be a vector 𝑣  parallel to 𝑏⃗  when the octahedral tilting 𝑎−𝑏+𝑎− is present in 

the perovskite. By contrast, when having the Glazer tilt pattern 𝑎+𝑏+𝑎+, the resultant vector 

𝑣  will be unparallel to 𝑏⃗ . 



Please consider that the above explained is not fulfilled by the 0.25-AE perovskites 

since there is an inhomogeneity on the tilting and distortion of the octahedrons within these 

perovskite structures. 

 

 
Figure S3. Magnification of the octahedral tilting difference between the AE and Sn octahedrons. The 

structures are the same shown in Figure 3a of the manuscript, but the upper octahedrons are not shown for 

convenience in this figure. Both angles, αMg and αCa, were not calculated, there were picturized only to show 

that there are distinct rotations around the vertical axis for the AE and Sn octahedrons pointed out by the 

averaged values of 〈θa〉 and 〈θb〉, as it is mentioned in the manuscript. To understand further the utility of 

having defined the vectors 𝑣 1, 𝑣 2 and 𝑣 3, please see the text above. 

 

 

  



6. Chemical environment of I and Sn within CsSnI3 

 

 
Figure S4. Coordination of apical and equatorial I. Also, it was observed that each Sn atom is surrounded 

by practically the same conformational environment. 

 

 

  



7. Partial COHP curves for the CsSnI3, 0.25-Mg and 0.25-Ca 

perovskites 

 

 
Figure S5. COHP analysis for both Sn-5s and Sn-5p orbitals hybridized with both I-5s and I-5p. 
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Figure S6. COHP analysis for Mg-3s, Mg-3p, Ca-4s and Ca-4p orbitals hybridized with both I-5s and I-5p. 

 

 

  

0.25-Mg 

perovskite 

0.25-Ca 

perovskite 

C
O

H
P

  
((

N
O

S
⸱e

V
-1

) 
⸱e

V
) 

 

C
O

H
P

  
((

N
O

S
⸱e

V
-1

) 
⸱e

V
) 

 



8. PDOS of the CsSnI3, 0.25-Mg and 0.25-Ca perovskites 

 
Figure S7. Total density of states (DOS), partial DOS for Cs, and projected partial DOS for I-5s for all-three 

perovskites studied in this work. 
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9. VOC, VMP, FF and PCE of PSC based on AE-perovskites 

 

 

Figure S8. VOC, VMP and FF as a function of the external quantum efficiency (EQE) for electroluminescence. 

All perovskites are identified by the species occupying the M-site in the chemical formula CsSn0.75M0.25I3. 

The bandgap energy for CsSnI3 is the experimental one (1.3 eV). The data of the best Sn-b PSC was taken 

from Ref. [5]. 

 

Equations S1a, S1b, and S1c were used to calculate VOC, VMP and FF values. All of 

them were taken from the work of Nayak et al. [6]. 

 
𝑞VOC = 0.941𝐸g − (0.181 + 0.0257|ln(𝜂ext)|) (S1a) 

 𝑞VOC

𝑛𝑘𝑇
=

𝑞VMP

𝑛𝑘𝑇
+ ln (

𝑞VMP

𝑛𝑘𝑇
+ 1) (S1b) 

 

FF =

𝑞VOC

𝑛𝑘𝑇
− ln [

𝑞VOC

𝑛𝑘𝑇
− ln (

𝑞VOC

𝑛𝑘𝑇
+ 1) + 1]

𝑞VOC

𝑛𝑘𝑇

×

𝑞VOC

𝑛𝑘𝑇
− ln (

𝑞VOC

𝑛𝑘𝑇
+ 1)

𝑞VOC

𝑛𝑘𝑇 − ln (
𝑞VOC

𝑛𝑘𝑇 + 1) + 1
 (S1c) 

 

In Equation S1a, 𝐸g and 𝜂ext refer to the bandgap energy and the external quantum 

efficiency (EQE) for electroluminescence, respectively, and 𝑞 is the elementary charge. In 

Equations S1b and S1c, 𝑛, 𝑘, and 𝑇 are the diode ideality factor, Boltzmann constant, and 



the temperature of the solar cell. Originally, Nayak et al. [6] used the photovoltaic bandgap 

(𝐸g
PV) instead of the DFT-determined bandgap energy (𝐸g) of the absorber material, as in the 

present work; nevertheless, for practical purpose, it was assumed that 𝐸g = 𝐸g
PV. Besides, 

with respect to 𝜂ext, the interval 0.1% ≤ 𝜂ext ≤ 1.0% was considered since for 3D Sn-b 

perovskites it has been reported values of 0.16% and 0.72% for CsSnBr3 [7] and CH3NH3SnI3 

[8], respectively. In Equations S1b and S1c, it was considered 𝑛 = 2 as it could be the case 

for PSC devices [9], and 𝑇 = 298.15 K. All data shown in Figure S6 were computed in the 

Supplementary Information 2. 

On the other hand, the work of Chantana et al. [10] was used to calculate the PCE in-

rad-lim, referred in its work as the “detailed balance limit”. Besides, all three parameters, 

VOC, VMP and FF, which are required to calculate the PCE in-rad-lim, were plotted in Figure 

S4. Equations S2a to S2f below were considered for this purpose [10]. 

 

PCE(𝐸g) =
max[𝐽(𝐸g, 𝑉) ∙ 𝑉]

𝑃𝑖𝑛
 (S2a) 

 

FF(𝐸g) =
max[𝐽(𝐸g, 𝑉) ∙ 𝑉]

𝐽𝑆𝐶(𝐸g) ∙ VOC(𝐸g)
 (S2b) 

 
𝐽𝑆𝐶(𝐸g) = 𝑞 ∙ [𝑄𝑠(𝐸g)] (S2c) 

 
𝐽(𝐸g, 𝑉) = 𝑞 ∙ {𝑄𝑠(𝐸g) − 𝑄𝐶(𝐸g) [𝑒(

𝑞𝑉
𝑘𝑇

) − 1]} (S2d) 

 

𝑄𝑠(𝐸g) = ∫
𝜆𝑑𝐸

[𝐸(𝜆)]2

∞

𝐸g

∙ [ASTM G173(𝜆)] (S2e) 

 

𝑄𝐶(𝐸g) =
2𝜋

ℎ3𝑐2
∫

𝐸2

𝑒(
𝐸
𝑘𝑇

) − 1
𝑑𝐸

∞

𝐸g

 (S2f) 

 

𝑉 becomes 𝑉MP after the maximization of the product 𝐽(𝐸g, 𝑉) ∙ 𝑉, and 𝑞𝑉 = 𝜇, with 

𝑞 and 𝜇 being the elementary charge and the quasi-Fermi level splitting, respectively; 

besides, 𝐽(𝐸g, 𝑉) is the current density of the solar cell. 𝑘, ℎ, 𝑐 and 𝑇 are the Boltzmann 

constant, Planck constant, speed of light in vacuum, and the temperature of the solar cell, 

respectively. For the latter, it was considered 𝑇 = 298.15 K. 𝐽𝑆𝐶(𝐸g) and 𝑄𝑠(𝐸g) are the short-

circuit density current and the incident spectral photon flux. [ASTM G173(𝜆)] is the spectral 

irradiance according to the American Society for Testing and Materials, with a global tilt of 

37° as provided by the National Renewable Energy Laboratory (URL: 

https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html). 𝑄𝐶(𝐸g) is the photon flux of 

the spectral irradiance of a blackbody at 298.15 K. All integrals were evaluated from 𝐸g up 

to 4.43 eV (280 nm), and 𝑃𝑖𝑛 is the integration over all the spectrum; thus, 𝑃𝑖𝑛 = 100.03707 



mW/cm2. All values shown in Figure S6 were computed in the Supplementary Information 

2. 

 

10. Effective mass 

 

 
Figure S9. BCB of CsSnI3 perovskite with two different pseudopotentials: the local scalar relativistic one 

developed by Delley [11] and the non-relativistic norm-conserving Troullier–Martins pseudopotentials [12]. 

 

 

Table S4. Effective masses for holes and electrons within CsSnI3 along three different directions within the first 

Brillouin zone. “nR” and “SR” refer to non-relativistic and scalar-relativistic corrections, respectively. 

Charge 

-X -Y -Z 

revPBE 

(nR) 

HCTH/407 

(SR) 

revPBE 

(nR) 

HCTH/407 

(SR) 

revPBE 

(nR) 

HCTH/407 

(SR) 

𝑚e 1.00 1.02 58.14 31.51 3.09 3.31 

𝑚h 0.50 0.88 4.22 4.52 5.14 4.49 

 

  



 

Figure S10. Parabola fit to the k-points at the BCB and TVB for CsSnI3 along the directions mentioned in the work. Fits at (a) and (d) were used to calculate the effective masses 

of the electron and hole, respectively, along the [100] direction. Fits at (b) and (e) were used to calculate the effective masses of the electron and hole, respectively, along the [010] 

direction. Fits at (c) and (f) were used to calculate the effective masses of the electron and hole, respectively, along the [001] direction. Based on the quadratic approximation and 

the results presented herein, all effective masses were calculated by means of 𝑚∗ = (ℏ2 2C⁄ ) 𝑚𝑒⁄  where C is the coefficient of the quadratic term, obtained from the inset of each 

graph, and 𝑚𝑒 is the electron rest mass. 

 

 

  



 

Figure S11. Parabola fit to the k-points at the BCB and TVB for the 0.25-Mg perovskite along the directions mentioned in the work. Fits at (a) and (d) were used to calculate the 

effective masses of the electron and hole, respectively, parallel to the [100] direction. Fits at (b) and (e) were used to calculate the effective masses of the electron and hole, 

respectively, parallel the [010] direction. Fits at (c) and (f) were used to calculate the effective masses of the electron and hole, respectively, parallel to the [001] direction. Based 

on the quadratic approximation and the results presented herein, all effective masses were calculated by means of 𝑚∗ =  (ℏ2 2C⁄ ) 𝑚𝑒⁄  where C is the coefficient of the quadratic 

term, obtained from the inset of each graph, and 𝑚𝑒 is the electron rest mass. 

 

 

  



 

Figure S12. Parabola fit to the k-points at the BCB and TVB for the 0.25-Ca perovskite along the directions mentioned in the work. Fits at (a) and (d) were used to calculate the 

effective masses of the electron and hole, respectively, along the [100] direction. Fits at (b) and (e) were used to calculate the effective masses of the electron and hole, respectively, 

along the [010] direction. Fits at (c) and (f) were used to calculate the effective masses of the electron and hole, respectively, along the [001] direction. Based on the quadratic 

approximation and the results presented here, all effective masses were calculated by means of 𝑚∗ = (ℏ2 2C⁄ ) 𝑚𝑒⁄  where C is the coefficient of the quadratic term, obtained from 

the inset of each graph, and 𝑚𝑒 is the electron rest mass. 
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