Electronic Supplementary Information

Defects engineered SnO₂ nanoparticles enable strong CO₂ chemisorption

toward efficient electroconversion to formate

Baoxing Ning, ^a Miaomiao Liu, ^a Yanjie Hu, ^a Hao Jiang, ^{a,*} Chunzhong Li ^{a,b,}

^a Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China

Email: jianghao@ecust.edu.cn

^b Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

Supporting Figures

Fig. S1. (a)The SEM imagine, (b) XRD pattern of the precursor.

Fig. S2. XRD pattern of the precursor after heating for 30 min.

Fig. S3. XPS overall survey spectra of the H-SnO₂, M-SnO₂ and L-SnO₂.

Fig. S4. (a) SEM image (inset showing the DigiPhoto image), (b) SAED pattern of the H-SnO₂.

Fig. S5. (a, d) SEM images (inset showing the DigiPhoto images), (b, e) low-magnification TEM images and the corresponding SAED pattern, (c, f) high-magnification TEM images of M-SnO₂ and L-SnO₂, respectively.

Fig. S6. TEM-EDS mapping of Sn, O of the H-SnO₂.

Fig. S7. ¹H NMR of liquid products.

Fig. S8. (a, b) Low-magnification and high-magnification TEM images of the H-SnO₂ after long-term stability at -0.9 V *vs.* RHE.

Fig. S9. O 1s XPS spectrum for the H-SnO₂ after long-term stability at -0.9 V vs. RHE.

Fig. S10. (a) XRD pattern and (b) Sn 3d XPS spectrum for the H-SnO₂ after long-term stability at -0.9 V *vs.* RHE.

Fig. S11. CV curves of (a) the H-SnO₂, (b) M-SnO₂ and (c) L-SnO₂, respectively, (d) electrochemical double-layer capacitance (C_{dl}) of the H-SnO₂, M-SnO₂ and L-SnO₂.

Fig. S12. I-V curves of the H-SnO₂, M-SnO₂, L-SnO₂.

Fig. S13. The schematic diagram of the self-designed flow cell.

Fig. S14. (a) FE of generating H_2 , (b) FE of generating CO on the H-SnO₂ at different applied currents in a flow cell filled with 1 M KOH or 1 M KHCO₃ electrolyte.

Fig. S15. Polarization curves of the H-SnO₂ in a flow cell filled with 1 M KOH or 1 M KHCO₃ electrolyte.

Fig. S16. (a)The SEM image of the Ni(Fe)O_xH_y nanosheets array on Ni foam, (b) OER polarization curve and overpotential (η) at 10, 100 and 200 mA cm⁻² of the Ni(Fe)O_xH_y sample in 1 M KOH.

Fig. S17. (a) j_{formate} , (b) the FE_{H2} and FE_{CO} at different applied currents using a two-electrode CO₂RR-OER full cell based on the H-SnO₂||Ni(Fe)O_xH_y pair filled with 1 M KOH electrolyte.

Supporting Tables

Catalyst	Electrolyte	Potential	\dot{j}_{formate}	$FE_{formate}$	Ref.
		(v)	(mA cm ²)	(%)	
SnO ₂ -CNT	0.5 M KHCO ₃	-0.92	10.9	76.3	1
SnO ₂	0.1 M KHCO ₃	-1.25	17.2	83.2	2
mSnO ₂ NTs	0.5 M KHCO ₃	-1.10	5.6	83.5	3
SnO ₂ QWs	0.1 M KHCO ₃	-0.95	7.2	79.0	4
V _o -N-SnO ₂ NS	0.1 M NaHCO ₃	-0.90	6.9	81.6	5
SnO ₂ /OC	0.1 M KHCO ₃	-0.90	5.0	0.1	6
SnO ₂ -V _o @N-C	0.1 M KHCO ₃	-0.95	5.6	70.2	7
H-SnO ₂	0.5 M KHCO ₃	-0.90	16.6	82.8	This work

Table S1. CO_2RR performance comparison of Sn-based electrocatalysts for formate productionby CO_2RR in an H-type cell.

Table S2 The fitting results of Nyquist plots of the three SnO_2 samples with different O_v concentrations at -0.9 V vs. RHE.

Catalyst	$R_{s}\left(\Omega ight)$	$R_{ct}\left(\Omega ight)$	$C_{dl}(\mathbf{F})$
H-SnO ₂	3.62	11.80	0.88
M-SnO ₂	4.26	15.50	0.83
L-SnO ₂	3.88	18.80	0.88

Catalyst	Electrolyte	j_{formate} range (mA cm ⁻²) over 80% and the corresponding potential range	Max-j _{formate} (mA cm ⁻²)	Ref.
Bi nanosheet derived from BiOBr	2 M KHCO ₃	~90.0 and ~180.0 (-0.70 and -0.80 V)	~180.0	8
Atomically thin bismuthene	1 М КОН	99.8 to 198.4 (-0.57 to -0.75 V)	198.4	9
Bi oxide nanotubes	1.0 M KOH	~100.0 to 205.8 (-0.52 to -0.58 V)	205.8	10
Bi ₂ O ₃ @C	1.0 M KOH	~25.0 to 208.0 (-0.50 to -1.10)	208.0	11
Bi@Sn core- shell	2.0 M KHCO3	~22.5 to ~225.0 (-0.80 to -1.15)	250.0	12
Bismuthene nanosheets	1.0 M KHCO ₃	~10.0 to ~270.0 (-0.64 to -1.40)	280.0	13
Sn _{0.80} Bi _{0.20} @ Bi-SnO _x	0.5 M KHCO ₃	~5.0 to ~22.5 (-0.68 to -1.98)	75.0	14
Sn _{2.7} Cu	1.0 M KOH	~10.0 to ~375.5 (-0.32 to -0.7)	375.0	15
Sn	2.0 M KHCO ₃	~22.7 to ~226.3 (-0.32 to -0.7)	226.3	16

Table S3. CO_2RR performance comparison of metal-based electrocatalysts for formate production by CO_2RR in a flow cell.

H-SnO ₂	1 M KHCO ₃	40.4 to 466.2 (-1.06 to -2.17)	466.2	This work
H-SnO ₂	1 M KOH	82.5 to 447.6 (-0.58 to -1.17)	447.6	This work

Table S4. Comparison of the maximum full-cell energy efficiencies of electrocatalysts for CO_2RR in a flow cell type.

Cathode	Anode	Electrolyte	Max-EE	Product	Ref.
B-doped Sn	IrO ₂	1 M KOH	50.0	formate	17
Sn nanoparticles	Pt	1 М КОН	64.7	formate	18
Au nanoparticles	IrO ₂	Alkaline polymer	~62.0	СО	19
Ag nanoparticles	IrO ₂	3 M KOH	~54.0	СО	20
C-Bi RDs	IrO ₂	1 М КОН	69.5	formate	21
Pb nanoparticles	PtRu	0.5 M K2SO4	~49.0	СО	22
Ag nanoparticles	IrO ₂	1.5 M KHCO3	47.0	СО	23
H-SnO ₂	Ni(Fe)O _x H _y	1 М КОН	54.9	formate	This work

References

- [1] K. Pavithra, S. M. S. Kumar, Catal. Sci. Technol., 2020, 10, 1311-1322.
- [2] H. Liu, Y. Q. Su, S.Y. Kuang, E. Hensen, S. Zhang, X. B. Ma, J. Mater. Chem. A, 2019, 9, 7848-7856.

- [3] F. C. Wei, T. T. Wang, X. L. Jiang, Y. Ai, A. Y. Cui, J. Cui, J. W. Fu, J. G. Cheng, L. C. Lei, Y. Hou, S. H. Liu, Adv. Funct. Mater., 2020, 30, 2002092.
- [4] S. B. Liu, J. Xiao, X. F. Lu, J. Wang, X. Wang, X. W. Lou, Angew. Chem. Int. Ed., 2019, 58, 8499-8503.
- [5] Z. J. Li, A. Cao, Q. Zheng, Y. Y. Fu, T. T. Wang, K. T. Arul, J. L. Chen, B. Yang, N. D. Mohd Adli, L. C. Lei, C. L. Dong, J. P. Xiao, G. Wu, Y. Hou, *Adv. Mater.*, 2021, 33, 2005113.
- [6] Z. Y. Kuang, W. P. Zhao, C. L. Peng, Q. M. Zhang, Y. Xue, Z. X. Li, H. L. Yao, X. X. Zhou, H. R. Chen, *ChemSusChem*, 2020, 13, 5896-5900.
- [7] Y. S. Yuan, K. Sheng, G. L. Zhuang, Q. Y. Li, C. Dou, Q. J. Fang, W. W. Zhan, H. Gao, D. Sun, X. G. Han, *Chem. Commun.*, 2021, 57, 8636-8639.
- [8] F. P. Garcia de Arquer, O.S. Bushuyev, P. De Luna, C.T. Dinh, A. Seifitokaldani, M.I. Saidaminov, C.S. Tan, L.N. Quan, A. Proppe, M.G. Kibria, S.O. Kelley, D. Sinton, E.H. Sargent, *Adv. Mater.*, 2018, **30**, 1802858.
- [9] C. S. Cao, D. D. Ma, J. F. Gu, X. Y. Xie, G. Zeng, X. F. Li, S. G. Han, Q. L. Zhu, X. T. Wu, Q. Xu, Angew. Chem. Int. Ed., 2020, 59, 15014-15020.
- [10] Q. F. Gong, P. Ding, M. Q. Xu, X. R. Zhu, M. Y. Wang, J. Deng, Q. Ma, N. Han, Y. Zhu,
 J. Lu, Z. X. Feng, Y. f. Li. W. Zhou, Y. G. Li, *Nat. Commun.*, 2019, 10, 2807.
- [11] P. L. Deng, F. Yang, Z. T. Wang, S. H. Chen, Y. Z. Zhou, S. H. Zaman, B. Y. Xia, Angew. Chem. Int. Ed., 2020, 59, 10807-10813.
- [12] Y. L. Xing, X. D. Kong, X. Guo, Y. Liu, Q. Y. Li, Y. Z. Zhang, Y. L. Sheng, X. P. Yang,
 Z. G. Geng, J. Zeng, *Adv. Sci.*, 2020, 7, 1902989.
- [13] W. X. Ma, J. Bu, Z. P. Liu, C. Yan, Y. Yao, N. H. Chang, H. P. Zhang, T. Wang, J. Zhang, *Adv. Funct. Mater.*, 2020, **31**, 2006704.
- [14] Q. Yang, Q. L. Wu, Y. Liu, S. P. Luo, X. T. Wu, X. X. Zhao, H. Y. Zou, B. H. Long, W. Chen, Y. J. Liao, L. X. Li, P. K. Shen, L. L. Duan, Z. W. Quan, *Adv. Mater.*, 2020, 32, 2002822.

- [15] K. Ye, Z. W. Zhou, J. Q. Shao, L. Lin, D. F. Gao, N. Ta, R. Si, G. X. Wang, X. H. Bao, Angew. Chem. Int. Ed., 2020, 59, 4814-4821.
- [16] Y. L. Xing, X. D. Kong, X. Guo, Y. Liu, Q. Y. Li, Y. Z. Zhang, Y. L. Sheng, X. P. Yang,
 Z. G. Geng, J. Zeng, *Adv. Sci.*, 2020, 7, 1902989.
- [17] Z. Y. Li, T. Y. Zhang, R.M. Yadav, J. F. Zhang, J. J. Wu, J. Electrochem. Soc., 2020, 167, 114508.
- [18] W. Lee, Y.E. Kim, M.H. Youn, S.K. Jeong, K.T. Park, Angew. Chem. Int. Ed., 2018, 57, 6883-6887.
- [19] Z. L. Yin, H. Q. Peng, X. Wei, H. Zhou, J. Gong, M. M. Huai, L. Xiao, G. W. Wang, J. T. Lu, L. Zhuang, *Energy Environ. Sci.*, 2019, **12**, 2455.
- [20] S. Verma, X. Lu, S. Ma, R.I. Masel, P.J.A. Kenis, Phys. Chem. Chem. Phys., 2016, 18, 7075.
- [21] H. Xie, T. Zhang, R. K. Xie, Z. F. Hou, X. C. Ji, Y. Y. Pang, S. Q. Chen, M. Titirici, H. M. Weng, G. L. Chai, *Adv. Mater.*, 2021, **33**, 2008373.
- [22] X. X. Lu, D. Leung, H. Z. Wang, J. Xuan, Appl. Energy, 2017, 194, 549-559.
- [23] T. Haas, R. Krause, R. Weber, M. Demler, G. Schmid, Nat. Catal., 2018, 1, 32-39.