The crystal and defect structure of polar KBiNb₂O₇

Subhadip Mallick, Weiguo Zhang, Maria Batuk, Alexandra S. Gibbs, Joke Hadermann, P. Shiv Halasyamani and Michael A. Hayward*

Supporting Information

Table of Contents

1. Structural characterisation of KBiNb₂O₇.

Figure S1. Selected regions of SXRD (top) and NPD (bottom) data collected from KBiNb₂O₇ at room temperature.

Table S1. Fitting parameters from the structural refinement of different A-centred, monoclinic structural models of KBiNb₂O₇ against NPD data collected at room temperature.

Figure S2. A section of the SXRD data collected from KBiNb₂O₇ which exhibits a strongly *hkl*-dependent peak width; indicative of stacking faults.

Table S2. Selected bond lengths from the refined structure of KBiNb₂O₇.

2. Microstructural characterisation of KBiNb₂O₇

Figure S3. Schematic diagram showing the stacking of A-layers and B-layers to yield 'perfect', unfaulted structures, and the combination of A-layers and B-layers to produce stacks with 'axis-switch' faults.

1. Structural characterisation of KBiNb₂O₇.

Figure S1. Selected regions of SXRD (top) and NPD (bottom) data collected from KBiNb₂O₇ at room temperature, indexed using the small a = 3.847 Å, b = 3.840 Å, c = 22.193 Å, $\gamma = 90.80^{\circ}$ unit cell. Arrows indicate the peaks which require the doubling of *a* lattice parameter.

Space group	no of parameters	R _p (%)	wRp (%)
A11a	126	7.69	8.50
A11 <i>m</i>	128	7.54	8.43
A112	102	8.72	10.24

Table S1. Fitting parameters from the structural refinement of different A-centred, monoclinic

 structural models of KBiNb₂O₇ against NPD data collected at room temperature.

Figure S2. A section of the SXRD data collected from KBiNb₂O₇ which exhibits a strongly *hkl*-dependent peak width; indicative of stacking faults.

Cation	Anion	Bond length (Å)	BVS
Nb(1)	O(1)	2.329(3)	Nb+5.22
	O(3)	1.960(11)	
	0(4)	1.945(11)	
	O(5)	1.779(7)	
	O(7)	1.941(6)	
	O(7)	2.009(6)	
Nb(2)	O(2)	2.331(3)	Nb+5.12
	O(3)	1.971(11)	
	O(4)	1.973(11)	
	O(5)	1.779(7)	
	O(8)	1.954(6)	
	O(8)	2.000(6)	
Bi(1)	O(1)	2.292(20)	Bi+2.58
	O(1)	2.574(20)	
	O(2)	2.853(18)	
	O(2)	3.252(19)	
	O(3) × 2	2.463(18)	
	O(3) × 2	3.020(21)	
	O(7) × 2	2.878(12)	
	O(8) × 2	2.655(11)	
Bi(2)	O(1)	2.804(18)	Bi+2.61
	O(1)	3.296(19)	
	O(2)	2.311(20)	
	O(2)	2.540(20)	
	O(4) × 2	2.453(18)	
	O(4) × 2	3.028(20)	
	O(7) × 2	2.657(11)	
	O(8) × 2	2.866(12)	
K(1)	O(3)	3.081(24)	K+1.27
	O(3)	3.105(24)	
	O(5)	2.763(26)	
	O(5)	2.941(26)	
	O(5)	3.379(19)	
	O(6)	2.487(26)	
	O(6)	2.755(26)	
	O(6)	3.186(18)	
	O(7)	3.248(19)	
	O(8)	2.890(18)	
K(2)	O(4)	2.936(20)	K+1.30
	O(4)	3.279(22)	
	O(5)	2.467(24)	
	O(5)	2.746(25)	
	O(5)	3.172(17)	
	O(6)	2.769(25)	
	O(6)	2.946(24)	
	O(6)	3.378(18)	
	O(7)	2.883(17)	
	O(8)	3.262(19)	

Table S2. Selected bor	d lengths from	the refined structure	of KBiNb ₂ O ₇ .
------------------------	----------------	-----------------------	--

2. Microstructural characterisation of KBiNb₂O₇

In order to account for the strongly *hkl*-dependent peak widths observed in the diffraction patterns collected from KBiNb₂O₇ and to quantify the frequency of the 'axis-switch' stacking faults, we have performed a series of Rietveld refinements that include a stacking fault model as implemented in the Topas (V6) software.

A model describing a K₂BiNb₂O₇ block (labelled layer A) was constructed based the atomic coordinates of the *A*11*m* model obtained from refinement against neutron diffraction data (Table 1). To facilitate the calculation, the area of the *ab*-plane of the model layer was half that of the refined *A*11*m* model, and described by lattice parameters a' = a/2, b' = b, with the alternating displacement of the Bi cations parallel to the *y*-axis (which leads to the original doubling the *a* lattice parameter) neglected in the model. Thus, the model block contains 1 bismuth, 2 niobium, 2 potassium and 7 oxygen atom sites, with the locations of the atoms described using the *P*1 space group (i.e. no symmetry). A second model K₂BiNb₂O₇ block (labelled layer B) was constructed by taking the model of layer A and switching the *x*- and *y*-coordinates (i.e. rotating the model by 90° around the *z*-axis).

Supercells were then constructed by stacking the model layers into large arrays. As shown in Figure S3, if layer A is stacked on itself repeatedly, such that there is a $(0, \frac{1}{2}, \frac{1}{2})$ shift in the origin of the blocks between adjacent layers, then a 'perfect' unfaulted structure for KBiNb₂O₇ is described. Likewise, if layer B is stacked on itself repeatedly, such that there is a $(\frac{1}{2}, 0, \frac{1}{2})$ shift in the origin of the blocks between adjacent layers, then a 'perfect' unfaulted structure for KBiNb₂O₇ is described, with the *x* and *y*-axes exchanged compared to the all-layer-A stack. However, if an A layer is followed by a B layer (Figure S3) such that there is a $(0, \frac{1}{2}, \frac{1}{2})$ shift in the origin of the blocks between adjacent layers, or a B layer is followed by an A layer with a $(\frac{1}{2}, 0, \frac{1}{2})$ shift in the origin of the blocks between adjacent layers, and *y*-axes of the stack with be switched. Thus by intermixing blocks of layer A and layer B, arrays containing 'axis-switch' faults can be constructed.

Stacking faults were introduced into models using the parameter "*P*" which takes values between 0 and 1. The value of *P* describes the probability that an A layer will be followed by another A layer stacked in a $(0, \frac{1}{2}, \frac{1}{2})$ manner, and 1-*P* describes the probability that an A layer will be followed by a B layer stacked in a $(0, \frac{1}{2}, \frac{1}{2})$ manner. Similarly *P* also describes the probability that an B layer will be followed by another B layer stacked in a $(\frac{1}{2}, 0, \frac{1}{2})$ manner, and 1-*P* describes the probability that an B layer will be followed by another B layer stacked in a $(\frac{1}{2}, 0, \frac{1}{2})$ manner, and 1-*P* describes the probability that an B layer will be followed by a A layer stacked in a $(0, \frac{1}{2}, \frac{1}{2})$ manner. Thus, it can be seen that concentration of axis-switch faults is equant to 1-*P*, a value which we more clearly described as *FF*, the fault frequency.

Stacking fault models with supercells of finite size were constructed by stacking $N_v = 1000$ KBiNb₂O₇ blocks. To more accurately represent the probabilistic nature of stacking faults, an average intensity from $N_{str} = 100$ crystals was calculated. The peak shape parameters for refinement were fixed after the first refinement with P = 1. A series of models with different values of P were refined against the SXRD data, whilst keeping the atomic coordinates of the model static, to find the value of *FF* which best fitted the data. The introduction of this fault description led to a great improvement in the fit to the data as shown in Figure 5. As shown in Figure 6, the best fit to the SXRD data was obtained with a value of *FF* = 0.09, which corresponds to a 9% chance of a stacking fault occurring between any particular pair of perovskite double sheets. This faulting probability appears to be in line with the number of faults observed in the HAADF-STEM images.

Figure S3. Schematic diagram showing the stacking of A-layers and B-layers to yield 'perfect', unfaulted structures, and the combination of A-layers and B-layers to produce stacks with 'axis-switch' faults. Black rectangles indicate the boundaries of a single block.