Electronic supporting information

Nickel(II) complexes containing tridentate ONCi Ligands (\textit{i} = abnormal \textit{N}-heterocyclic carbene donors) and their catalytic application in Suzuki-Miyaura coupling reaction

Jhen-Yi Lee, Meng-Jun Hsieh, Tsai-En Ho, Bo-Hsin Wu and Hon Man Lee*

Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan.

leehm@cc.ncue.edu.tw

Table of contents

1. Schemes and additional discussion S2
2. Procedure for X-ray structural studies S3
3. Crystallographic data S4
4. Atom connectivity in 3c S5
5. Time-conversion profiles S5
6. 1H and 13C{1H} NMR spectra of ligand precursors and nickel complexes S6
7. 2D HMBC spectra of nickel complexes S14
8. 1H NMR data of catalytic products S17
9. 1H NMR spectra of catalytic products S20
10. Mass spectra S29
11. References S31
Scheme S1. Mechanistic pathway for the formation of 3c.

Scheme S2. A speculative catalytic cycle for the Suzuki-Miyaura coupling reaction catalyzed by
Generally, the reaction proceeds via a classical catalytic cycle of Suzuki-Miyaura coupling reaction involving the O,N,C-chelated Ni(0) active species. Then an oxidative addition of the aryl chloride substrate occurs, forming the Ar—Ni(II) intermediate. Transmetalation of the aryl group from the boron to the nickel center led to the diaryl intermediate. An aryl group bearing an electron-withdrawing group enhances its transfer on the nickel center, whereas an aryl group with an electron-donating group disfavors the process. The diaryl intermediate then undergoes a reductive elimination to give the couple product. The oxidative addition step is most probably the r.d.s of the catalytic cycle. However, a small amount of the O,N,C-chelated Ni(0) active species can also undergo a catalyst degradation to form off-loop homogeneous ligand-free Ni(0) or heterogeneous Ni(0) nanoparticles (See entry 8 in Table 3). The in situ formed IMes ligand from the IMes-HCl additive is able to capture these Ni(0) species to form Ni⁰(IMes), which can then catalyze the formation of the couple product in an auxiliary cycle. For activated aryl chloride substrate, the oxidative addition step is much faster than the degradation step (rate constant $k_1 \gg k_2$) and thus the product yield enhancement is low (CF₃ = 1.7). But in the case of de-activated substrates, the oxidative addition step becomes slower. Hence, more Ni(0) species enters the auxiliary cycle such that higher product enhancement ratios were observed (OMe = 3.7).

Single-crystal X-ray diffraction. Structural data of 3b 3c, and 3c″ were collected on a Bruker SMART APEX II equipped with a CCD area detector. Data collection were carried out at 150(2) K.
using MoKα radiation (λ = 0.71073 Å). The unit cell parameters were obtained by least-squares refinement. Data collection and reduction were performed using the Bruker APEX and SAINT software. Absorption corrections were performed using the SADABS program. All the structures were solved by direct methods and refined by full-matrix least squares methods against F² with the SHELXL software package. All non-hydrogen atoms were refined in anisotropic manners. All hydrogen atoms were positioned at calculated positions and riding refinements were then applied. The structure of 3b was refined as a non-merohedral twin. The structure of 3c contains disordered DMF solvent molecules and their structural factor contributions were removed by the SQUEEZE procedure. CCDC files numbers: 2100759 (3b), 2100760 (3c’’), and 2100761 (3c).

Table S1. Crystallographic data

<table>
<thead>
<tr>
<th></th>
<th>3b</th>
<th>3c’’</th>
<th>3c</th>
</tr>
</thead>
<tbody>
<tr>
<td>empirical formula</td>
<td>C₄₂H₃₇N₅NiO₄•CH₂Cl₂</td>
<td>C₂₉H₂₃FN₄NiO₂</td>
<td>C₄₀H₃₁F₂N₅NiO₂</td>
</tr>
<tr>
<td>formula weight</td>
<td>819.38</td>
<td>537.22</td>
<td>710.41</td>
</tr>
<tr>
<td>crystal system</td>
<td>monoclinic</td>
<td>monoclinic</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>space group</td>
<td>P2₁/c</td>
<td>P2₁/c</td>
<td>P2₁/n</td>
</tr>
<tr>
<td>a, Å</td>
<td>16.621(3)</td>
<td>10.403(6)</td>
<td>9.003(4)</td>
</tr>
<tr>
<td>b, Å</td>
<td>11.825(2)</td>
<td>27.246(14)</td>
<td>15.252(6)</td>
</tr>
<tr>
<td>c, Å</td>
<td>20.184(4)</td>
<td>8.775(5)</td>
<td>30.153(12)</td>
</tr>
<tr>
<td>α, deg</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β, deg</td>
<td>99.400(4)</td>
<td>102.236(15)</td>
<td>96.36(3)</td>
</tr>
<tr>
<td>γ, deg</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>V, Å³</td>
<td>3913.9(13)</td>
<td>2431(2)</td>
<td>4115(3)</td>
</tr>
<tr>
<td>T, K</td>
<td>150(2)</td>
<td>150(2)</td>
<td>150</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>F(000)</td>
<td>1704</td>
<td>1112</td>
<td>1472</td>
</tr>
<tr>
<td>no. of unique data</td>
<td>8523</td>
<td>5023</td>
<td>8526</td>
</tr>
<tr>
<td>no. of params refined</td>
<td>527</td>
<td>335</td>
<td>452</td>
</tr>
<tr>
<td>R₁[1 > 2σF]</td>
<td>0.0467</td>
<td>0.0623</td>
<td>0.1242</td>
</tr>
<tr>
<td>wR²(all data)</td>
<td>0.1393</td>
<td>0.1377</td>
<td>0.3032</td>
</tr>
</tbody>
</table>

\[R₁ = Σ||F₀|| - |F₁||/Σ|F₀|| \]
\[wR² = [Σ|F₀|² - |F₁|²]²/Σ(F₀)²]^{1/2} \]
Figure S1. Low-resolution structural data showing the atom connectivity in 3c.

Figure S2. The time-conversion profiles for the reaction between 4-chloroacetophenone and phenylboronic acid catalyzed by 3a-c.
Figure S3. 1H NMR spectrum of 2a

Figure S4. 13C{1H} NMR spectrum of 2a
Figure S5. 1H NMR spectrum of 2b

Figure S6. 13C{1H} NMR spectrum of 2b
Figure S7. 1H NMR spectrum of 2c

Figure S8. 13C-1H NMR spectrum of 2c
Figure S9. 1H NMR spectrum of 3a

Figure S10. 13C{1H} NMR spectrum of 3a
Figure S11. 1H NMR spectrum of 3b

Figure S12. 13C{1H} NMR spectrum of 3b
Figure S13. 1H NMR spectrum of 3c

Figure S14. 13C-[1H] NMR spectrum of 3c
Figure S15. The 1H NMR spectrum of a mixture of complexes 3c' and 3c''.

Figure S16. 1H NMR spectrum of 3c'}
Figure S17. 13C{1H} NMR spectrum of 3c'
Figure S18. HMBC spectrum of 3a
Figure S19. HMBC spectrum of 3b
Figure S20. HMBC spectrum of 3c
1-H NMR Data of Catalytic Products

4-Acetylbiphenyl\(^6\) (6): \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 2.63 (s, 3H, CH\(_3\)), 7.39-7.49 (m, 3H, Ar H), 7.61-7.69 (m, 4H, Ar H), 8.03 (d, \(J = 9.0\) Hz, 2H, Ar H).

3-Acetylbiphenyl\(^6\) (6'): \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 2.59 (s, 3H, CH\(_3\)), 7.33 (t, \(J = 6.0\) Hz, 1H, Ar H), 7.39-7.48 (m, 3H, Ar H), 7.57 (d, \(J = 9.0\) Hz, 2H, Ar H), 7.72 (d, \(J = 9.0\) Hz, 1H, Ar H), 7.88 (d, \(J = 9.0\) Hz, 1H, Ar H), 8.15 (s, 1H, Ar H).

4-(Trifluoromethyl)-1,1'-biphenyl\(^7\) (7): \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 7.39-7.48 (m, 3H, Ar H), 7.58 (d, \(J = 6.0\) Hz, 2H, Ar H), 7.68 (br s, 4H, Ar H).

4-Phenylbenzaldehyde\(^8\) (8): \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 7.40-7.49 (m, 3H, Ar H), 7.61 (d, \(J = 6.0\) Hz, 2H, Ar H), 7.72 (d, \(J = 6.0\) Hz, 2H, Ar H), 7.92 (d, \(J = 6.0\) Hz, 2H, Ar H), 10.02 (s, 1H, O=C\(_H\)).

[1,1'-Biphenyl]-4-carbonitrile\(^6\) (9): \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 7.41-7.49 (m, 3H, Ar H), 7.57 (d, \(J = 6.0\) Hz, 2H, Ar H), 7.65-7.73 (m, 4H, Ar H).

4-Methoxy-1,1'-biphenyl\(^5\) (10): \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 3.84 (s, 3H, OCH\(_3\)), 6.97 (d, \(J = 9.0\) Hz, 2H, Ar H), 7.29 (t, \(J = 6.0\) Hz, 1H, Ar H), 7.40 (t, \(J = 9.0\) Hz, 2H, Ar H), 7.50-7.55 (m, 4H, Ar H).

1-(4'-Fluoro-[1,1'-biphenyl]-4-yl)ethanone\(^5\) (11): \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 2.60 (s, 3H, CH\(_3\)), 7.12 (t, \(J = 6.0\) Hz, 2H, Ar H), 7.53-7.60 (m, 4H, Ar H), 7.99 (d, \(J = 9.0\) Hz, 2H, Ar H).

4-Fluoro-4'-(trifluoromethyl)-1,1'-biphenyl\(^8\) (12): \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 7.08-7.18 (m, 2H, Ar H), 7.37-7.69 (m, 6H, Ar H).

4'-Fluoro-[1,1'-biphenyl]-4-carbaldehyde\(^5\) (13): \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 7.15 (t, \(J = 9.0\) Hz, 2H, Ar H),
7.57-7.61 (m, 2H, Ar H), 7.69 (d, J = 6.0 Hz, 2H, Ar H), 7.94 (d, J = 9.0 Hz, 2H, Ar H), 10.04 (s, 1H, O=CH2).

4'-Fluoro-[1,1'-biphenyl]-2-carbaldehyde9 (13'): 1H NMR (CDCl3): δ 7.13 (t, J = 9.0 Hz, 2H, Ar H), 7.29-7.39 (m, 3H, Ar H), 7.46 (t, J = 9.0 Hz, 1H, Ar H), 7.60 (t, J = 9.0 Hz, 1H, Ar H), 7.99 (d, J = 9.0 Hz, 1H, Ar H), 9.93 (s, 1H, O=CH2).

4-Fluoro-4'-methoxybiphenyl8 (14): 1H NMR (CDCl3): δ 3.83 (s, 3H, C6H3), 6.96 (d, J = 9.0 Hz, 2H, Ar H), 7.08 (t, J = 9.0 Hz, 2H, Ar H), 7.44-7.50 (m, 4H, Ar H).

1-(4'-Methoxy-[1,1'-biphenyl]-4-yl)ethanone5 (15): 1H NMR (CDCl3): δ 2.61 (s, 3H, O=C-C6H3), 3.85 (s, 3H, OC6H3), 6.99 (d, J = 9.0 Hz, 2H, Ar H), 7.57 (d, J = 9.0 Hz, 2H, Ar H), 7.63 (d, J = 6.0 Hz, 2H, Ar H), 8.00 (d, J = 9.0 Hz, 2H, Ar H).

4-Methoxy-4'-(trifluoromethyl)-1,1'-biphenyl16 (16): 1H NMR (CDCl3): δ 3.85 (s, 3H, OC6H3), 6.93-7.00 (m, 2H, Ar H), 7.45-7.54 (m, 2H, Ar H), 7.64 (br s, 4H, Ar H).

4'-Methoxy-[1,1'-biphenyl]-4-carbaldehyde5 (17): 1H NMR (CDCl3): δ 3.84 (s, 3H, OCH3), 6.99 (d, J = 9.0 Hz, 2H, Ar H), 7.57 (d, J = 9.0 Hz, 2H, Ar H), 7.68 (d, J = 6.0 Hz, 2H, Ar H), 7.89 (d, J = 6.0 Hz, 2H, Ar H), 10.00 (s, 1H, O=CH2).

4,4'-Dimethoxy-1,1'-biphenyl10 (18): 1H NMR (CDCl3): δ 3.83 (s, 6H, CH3), 6.95 (d, J = 9.0 Hz, 4H, Ar H), 7.46 (d, J = 9.0 Hz, 4H, Ar H).

1-(4-(Naphthalen-1-yl)phenyl)ethanone11 (19): 1H NMR (CDCl3): δ 2.66 (s, 3H, CH3), 7.40-7.59 (m, 6H, Ar H), 7.88-7.93 (m, 3H, Ar H), 8.08 (d, J = 9.0 Hz, 2H, Ar H).

1-(4-(Trifluoromethyl)phenyl)naphthalene8 (20): 1H NMR (CDCl3): δ 7.47-7.68 (m, 5H, Ar H),
7.85 (d, J = 9.0 Hz, 2H, Ar H), 7.92-8.03 (m, 4H, Ar H).

4-(Naphthalen-1-yl)benzaldehyde12 (21): 1H NMR (CDCl\textsubscript{3}): \(\delta\) 7.41-7.57 (m, 4H, Ar H), 7.66 (d, J = 6.0 Hz, 2H, Ar H), 7.84 (d, J = 9.0 Hz, 1H, Ar H), 7.91 (t, J = 9.0 Hz, 2H, Ar H), 8.00 (d, J = 9.0 Hz, 2H, Ar H), 10.10 (s, 1H, O=C-H).

1-(4-(Benzofuran-2-yl)phenyl)ethan-1-one13 (23): 1H NMR (CDCl\textsubscript{3}): \(\delta\) 2.61 (s, 3H, CH\textsubscript{3}), 7.14 (s, 1H, Ar-H)), 7.24 (t, J = 6.0 Hz, 1H, Ar H), 7.32 (t, J = 6.0 Hz, 1H, Ar H), 7.53 (d, J = 9.0 Hz, 1H, Ar H), 7.60 (d, J = 9.0 Hz, 1H, Ar H), 7.92 (d, J = 9.0 Hz, 2H, Ar H), 8.02 (d, J = 9.0 Hz, 2H, Ar H).
Figure S21. 1H NMR spectrum of 4-acetylbiphenyl (6)

Figure S22. 1H NMR spectrum of 1-([1,1'-biphenyl]-3-yl)ethanone (6')
Figure S23. 1H NMR spectrum of 4-(trifluoromethyl)-1,1'-biphenyl (7)

Figure S24. 1H NMR spectrum of [1,1'-biphenyl]-4-carbaldehyde (8)
Figure S25. 1H NMR spectrum of [1,1'-biphenyl]-4-carbonitrile (9)

Figure S26. 1H NMR spectrum of 4-methoxy-1,1'-biphenyl (10)
Figure S27. 1H NMR spectrum of 1-(4'-fluoro-[1,1'-biphenyl]-4-yl)ethanone (11)

Figure S28. 1H NMR spectrum of 4-fluoro-4'-(trifluoromethyl)-1,1'-biphenyl (12)
Figure S29. 1H NMR spectrum of 4'-fluoro-[1,1'-biphenyl]-4-carbaldehyde (13)

Figure S30. 1H NMR spectrum of 4'-fluoro-[1,1'-biphenyl]-2-carbaldehyde (13')
Figure S31. 1H NMR spectrum of 4-Fluoro-4'-methoxybiphenyl (14)

Figure S32. 1H NMR spectrum of 1-(4'-methoxy-[1,1'-biphenyl]-4-yl)ethanone (15)
Figure S33. 1H NMR spectrum of 4-methoxy-4'(trifluoromethyl)-1,1'-biphenyl (16)

Figure S34. 1H NMR spectrum of 4'-methoxy-[1,1'-biphenyl]-4-carbaldehyde (17)
Figure S35. 1H NMR spectrum of 4,4'-dimethoxy-1,1'-biphenyl (18)

Figure S36. 1H NMR spectrum of 1-(4-(naphthalen-1-yl)phenyl)ethanone (19)
Figure S37. 1H NMR spectrum of 1-(4-(trifluoromethyl)phenyl)naphthalene (20)

Figure S38. 1H NMR spectrum of 4-(naphthalen-1-yl)benzaldehyde (21)
Figure S39. 1H NMR spectrum of 1-[4-(1-benzofuran-2-yl)phenyl]ethanone (23)

Figure S40. Mass spectrum of complex 3a.
Figure S41. Mass spectrum of complex 3c'.

Figure S42. Mass spectrum of complex 5.
References

