Supporting Information

V₂CT_x Catalyzes Polysulfide Conversion to Enhance Redox Kinetics

of Li-S Batteries

Fengfeng Han, Qi Jin, Junpeng Xiao, Lili Wu*, Xitian Zhang*

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of

Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, people's

Republic of China.

^{*} Corresponding author: wll790107@hotmail.com; xtzhangzhang@hotmail.com

Fig. S1. Nitrogen adsorption/desorption isotherm curve of V_2CT_X nanobelts.

Fig. S2. HRTEM image of a V_2CT_X nanobelt.

Fig. S3. SEM images of (a) PP and (b) KB/V_2CT_X -PP separators. (c) Cross-sectional SEM

image of KB/V_2CT_X interlayer.

Fig. S4. Digital photographs of Li_2S_6 solution and after the addition of KB/V₂CT_X.

Fig. S5. (a, b) Magnified cathodic peaks and (c) anode peaks of the two cells.

Fig. S6. CV profiles of (a) PP and (b) KB/V_2CT_X -PP cells for consecutive cycles.

Fig. S7. CV curves of (a) PP and (b) KB/V_2CT_X -PP cells at different scan rates.

Fig. S8. LSV analyses of KB/V_2CT_X -CP and CP cells with Li_2S_6 catholyte.

Fig. S9. EIS curves of PP and KB/V_2CT_X -PP cells.

Fig. S10. GCD curves of PP cells at 0.2 C.

Fig. S11. GITT curves of cathodes with PP and KB/V₂CTx-PP separators during discharge process.

Fig. S12. Photographs for (a) PP and (b) KB/V_2CT_X -PP separators toward Li metal anode after 150 cycles at 0.2 C.

Fig. S13. Rate performance of KB/V₂CT_X-PP cells (1 C = 1675 mA g^{-1})

Fig. S14. GCD curves of a PP cells at different rates.

Materials	S loading (mg cm ⁻²)	Rate (C)	Initial capacity (mAh g ⁻¹)	Cycle Number	Capacity decay (% per cycle)	Ref.
d-Ti ₃ C ₂	0.7-1	0.5	899	50	0.64	[1]
Ti ₃ C ₂ T _x aerogel	1.2	1	980	1500	0.037	[2]
$CNTs/Ti_3C_2T_x$	0.8	1	987	600	0.063	[3]
$Ti_3C_2T_x$ @Nafion	2	1	920	1000	0.03	[4]
Nb ₂ O ₅ -CNT	1.3-1.5	0.2	1286	100	0.23	[5]
S@V2C-Li/C	3.0	0.1	1140	100	0.096	[6]
V ₂ C/V ₂ O ₅ /CNTs	2.0	1	1055.2	500	0.034	[7]
KB/V ₂ CT _X	1.2	1	1069	1000	0.049	This work

Table S1. Comparison of the cycle performance between this work and other previously reported

similar materials

Note 1. The detail calculation scheme of relative activation energy.

CV tests were performed under a scan rate (0.1 mV s⁻¹) at 298 K as shown in Figure 2a.

Correspondingly, the relationship between electrode potential and activation energy over the Catalyzed-free and In-based batteries could be calculated according to the equation (1):

$$E_a = E_a^0 + \alpha z F \varphi_{cathode}(Ox|Red)_{IR} \tag{1}$$

where E_a is the activation energy of reduction process, E_{a0} is the intrinsic activation energy, α is the symmetry coefficient, z is the number of charge transfer, F is the Faraday's constant, $\varphi_{cathode}(Ox | Red)_{IR}$ is the irreversible potential during cycling.

The Tafel curve calculation formula (2):

$$\eta_{\text{cathode}} = \frac{RT}{\alpha z F} \ln j_0 - \frac{RT}{\alpha z F} \ln j_{\text{cathode}}$$
(2)

where $\eta_{cathode}$ is the overpotential of the cathode, j_0 is the exchange current density, $j_{cathode}$ is the current of the cathode. The equation can be written in a more concise form:

$$\eta_{cathode} = a + b ln j_{cathode}$$
(3)
$$b = -\frac{RT}{\alpha z F}$$
(4)

where a is the intercept of Tafel curve, b is the slop of Tafel curve. Therefore, the equation (1) can be written in a more concise form:

$$E_a = E_a^0 - \frac{RT}{b} \varphi_{cathode}(Ox|Red)_{IR}$$
⁽⁵⁾

Based on the intercept and slop of the Tafel curve as shown in Figure. 3b, c the

activation energy during the discharge and charge process can be calculated.

The activation energy corresponding to the reduction of S_8 to the long-chain Li_2S_n :

PP cells: $Ea_1 = Ea_1^0 - 115.77 \text{ kJ mol}^{-1}$

 KB/V_2CT_X -PPcells: Ea₁' = Ea₁⁰-144.4 kJ mol⁻¹

The difference in activation energy could be calculated by subtracting the activation energy of In-free electrode from that of In-based electrode.

 Ea_1 '- $Ea_1 = (Ea_1^0 - 144.4)$ kJ mol-1- $(Ea_1^0 - 115.77)$ kJ mol⁻¹= -28.63 kJ mol⁻¹

The activation energy of long-chain Li_2S_n to Li_2S :

PP cells: $Ea_2 = Ea_2^0 - 112.32 \text{ kJ mol}^{-1}$

KB/V₂CT_X-PP cells: Ea2' = Ea_2^0 -137.14 kJ mol⁻¹

 $Ea_2' - Ea_2 = (Ea_2^0 - 137.14) \text{ kJ mol}^{-1} - (Ea_2^0 - 112.32) \text{ k J mol}^{-1} = -24.82 \text{ kJ mol}^{-1}$

1

References

- [1] Y.F. Dong, S.H.Zheng, J.Q. Qin, X.J. Zhao, H.D. Shi, X.H. Wang, J.Chen and Z.S.
 Wu, ACS Nano, 2018, 12, 2381-2388.
- [2] Q.H. Meng, Q. Jin, X.Y. Wang, W.B. Lv, X.Z. Ma, L. Li, L.L. Wu, H. Gao, C.C. Zhu and X.T. Zhang, J. Alloys Compd., 2020, 816, 153155.
- [3] N. Li, W.Y. Cao, Y.W. Liu, H.Q. Ye and K. Han, *Colloids Surf. A*, 2019, 573, 128-136.
- [4] J.T. Wang, P.F. Zhai, T.K. Zhao, M.J. Li, Z.H. Yang, H.Q. Zhang and J.J. Huang, *Electrochim. Acta*, 2019, 320, 134558.

- [5] Y.J. Liu, M.Q. Chen, Z. Su, Y.F. Gao, Y.Y. Zhang and D.H. Long, *Carbon*, 2021, 172, 260-271.
- [6] Z. Chen, X.B. Yang, X. Qiao, N. Zhang, C.F. Zhang, Z.L. Ma and H.Q Wang, J. Phys. Chem. Lett., 2020, 11, 885-890.
- [7] T. Wang, Y.Y. Liu, X.M. Zhang, J.Y. Wang, Y.G. Zhang, Y.B. Li, Y.J. Zhu, G.R. Li and X. Wang, ACS Appl. Mater. Inter., 2021, 13, 56085-56094.
- [8] W.X. Hua, H. Li, C. Pei, J.Y. Xia, Y.F. Sun, C. Zhang, W. Lv, Y. Tao, Y. Jiao,
 B.S. Zhang, S.Z. Qiao, Y. Wan and Q.H. Yang, *Adv. Mater*, 2021, 33, 2101006.