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Through linear fitting, the relevant data of the kinetic pseodo-first-order and pseodo-
second-order models are obtained. As shown in the Table S1, when the initial
concentrations are 100 mg/L, 50 mg/L, and 25 mg/L, the correlation coefficients of the
pseodo-first-order kinetic models are 0.86, 0.80, and 0.74, respectively. However, the
correlation coefficients of the pseodo-second-order kinetic model are 0.99, 0.99 and

0.98, respectively.

Table S1 Pseodo-first-order kinetic model and quasi-second-order kinetic model constants for

Hg(1I) adsorption 2
Pseudo-first Pseudo-second
C0 pH qe,exp
(mg/L) (mg/g) Qm,cal I.<1 1 5 Jm,cal K, . R2
(mg/g) (min™') (mg/g) (g/(mg- min))
100 5 83.06 49.25 0.077 0.87 88.18 2.49*1073 0.99
50 5 43.08 28.22 0.157 0.80 45.16 7.09%103 0.99
25 5 20.06 15.64 0.237 0.74 22.42 5.87*1073 0.98

e, exp 18 the experimental maximum adsorption capacity, qm, ca is the calculated maximum

adsorption capacity

The Langmuir model and Freundlich model were fitted with the UiO-66-SH
adsorbing mercury. The expressions of the models are Eq. S1 and Eq S2
Langmuir model: q, =¢,K,C, /(1+K,C.) (Eq. S1)

Freundlich model: ¢, = K,.C,"" (Eq. S2)
The fittingparameters at temperatures of 293 K, 298 K and 303 K are summarized in Table S2. The
correlation coefficients of the Freundlich model at 293 K, 298 K, and 303 K are 0.91, 0.91, and
0.92, respectively, and the correlation coefficients of the Langmuir model are 0.97, 0.98, and 0.98,
respectively. Compared with the Freundlich model, the Langmuir model has a higher correlation
coefficient. Therefore, the adsorption of mercury ions by UiO-66-SH is more in line with the
Langmuir adsorption isotherm model. When the temperature increases from 293 K to 303 K, the
theoretical saturated adsorption capacity increases from 603 mg/g to 630 mg/g, and the adsorption
constant KL increases from 0.008 L/mg to 0.012 L/mg, which also shows that the adsorption process
of Ui0O-66-SH for mercury ions is an endothermic reaction.



Table S2 Model constants of Langmuir adsorption isotherm and Freundlich adsorption isotherm
for Hg(II) adsorption adsorption ?

Langmuir constants Freundlich constants
es exp
dm I<L
(mg/g) R? Kg n R?
(mg/g) (L/mg)

303 465.19 630.60 0.012 0.98 29.72 1.99 0.92
298 440.99 623.27 0.010 0.98 24.96 1.93 0.91
293 408.13 603.01 0.008 0.97 19.45 1.86 0.91

e, exp 18 the experimental maximum adsorption capacity, qm, ca is the calculated maximum

adsorption capacity

Table S3 lists some adsorbents for mercury removal from water, and their removal rate
and adsorption equilibrium time are shown. It can be seen that the UiO-66-SH material
prepared in this work has good performance in terms of the removal rate and the contact

time that are required for adsorption equilibrium.

Table S3 Comparison of the adsorption performance of different types adsorbents for mercury ions

sorbents Removal rate (%) Time (min) Ref.
MIL-101-Thymine 51.27 200 45
ZIF-90-SH 22.4 60 74
SH-ePMO 64 60 75
Ui0-66-SO;H 55 120 55
Ui0-66-SH 83.06 30 This work

Using UiO-66-SH+Hg to catalyze the reaction of benzoic acid and vinyl acetate, we
optimized the conditions for catalyst dosage, reaction temperature and reaction time.

We took the UiO-66-SH+Hg that was recovered in the adsorption, which was
performed at 25 °C with the adsorbent dosage of 1.0 g/L, pH = 5, the initial mercury
concentration of 100 mg/L, and the contact time of 30 min. The material was washed
three times and dried at 60 °C to obtain the catalyst. Subsequently, we optimized the
conditions with the catalyst dosage of 0.05 g, 0.1 g, 0.2 g, 0.4 g, and the reaction
temperature was explored at 25 °C, 40 °C, 60 °C, 80 °C, 120 °C, and the reaction time
was 0.5 h, 1 h, 2 h, 4 h, respectively. The reactions were carried out with mixing 2 mmol
benzoic acid and 8 mL vinyl acetate with the catalyst. The reactions were monitored

with gas chromatography, and the results are shown in Table S4.



Table S4 UiO-66-SH+Hg as a catalyst condition optimization table for vinyl transfer

Catalyst Dosage of Catalyst (g)  Temperature (°C) Time (h) Yield (%)
1 UiO-66-SH+Hg 0.2 25 4 24
2 UiO-66-SH+Hg 0.2 40 4 33
3 UiO-66-SH+Hg 0.2 60 4 54
4 UiO-66-SH+Hg 0.2 80 4 82
5 UiO-66-SH+Hg 0.2 120 4 —
6 UiO-66-SH+Hg 0.2 80 0.5 62
7 UiO-66-SH+Hg 0.2 80 1 69
8 UiO-66-SH+Hg 0.2 80 2 78
9 UiO-66-SH+Hg 0.05 80 4 56
10 UiO-66-SH+Hg 0.1 80 4 70
11 UiO-66-SH+Hg 0.4 80 4 84
12 Ui0-66 0.2 80 4 —

Fig. S1 EDS diagram of UiO-66-SH+Hg after reaction
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Fig. S2 XPS spectrum of UiO-66-S-Hg after 4 cycles of transfer vinylation of benzoic acid with

vinyl acetate



Characterization of vinylation products
Vinyl benzoate (Table 1, entry 1)

0
o

Colorless liquid (82%). '"H NMR (600 MHz, CHLOROFORM-D) & 8.14 (dt, J = 8.5, 1.5 Hz, 2H),
7.62 (ddd, J=7.2,2.6, 1.2 Hz, 1H), 7.55 (dd, J=13.9, 6.2 Hz, 1H), 7.52 — 7.47 (m, 2H), 5.11 (dd,
J=13.9, 1.7 Hz, 1H), 4.76 — 4.71 (m, 1H). 3*C NMR (151 MHz, CHLOROFORM-D) § 163.73 (s),
141.53 (s), 133.69 (s), 130.10 (s), 129.04 (s), 128.62 (s), 98.31 (s). Physical and spectral data were
consistent with those previously reported. !

Vinyl 4-(tert-butyl)benzoate (Table 1, entry 2)

0
o

Colorless liquid (89%). '"H NMR (400 MHz, CDCl;) § 8.02 — 7.87 (m, 2H), 7.40 (ddd, J=10.3, 8.7,
4.1 Hz, 3H), 4.96 (dd, /= 14.0, 1.6 Hz, 1H), 4.58 (dd, J = 6.3, 1.6 Hz, 1H), 1.24 (s, 9H). *C NMR
(101 MHz, CDCls) 6 163.64 (s), 157.39 (s), 141.51 (s), 129.93 (s), 126.15 (s), 125.53 (s), 97.91 (5s),
35.17 (s), 31.09 (s). Physical and spectral data were consistent with those previously reported.?
Vinyl 4-methylbenzoate (Table 1, entry 3)

0
o

Colorless liquid (80%) 'H NMR (600 MHz, CHLOROFORM-D) 8 7.99 (d, J = 8.2 Hz, 2H), 7.51
(dd, J=14.0, 6.2 Hz, 1H), 7.26 (d, J = 7.8 Hz, 2H), 5.05 (dd, J = 14.0, 1.6 Hz, 1H), 4.68 (dd, J =
6.3, 1.5 Hz, 1H), 2.41 (s, 3H). 3C NMR (151 MHz, CHLOROFORM-D) & 163.78 (s), 144.52 (s),
141.56 (s), 130.13 (s), 129.34 (s), 126.26 (s), 98.01 (s), 21.82 (s). Physical and spectral data were
consistent with those previously reported.>

Vinyl 2-methylbenzoate (Table 1, entry 4)



0
o

Colorless liquid (68%). '"H NMR (400 MHz, CDCl;) 8 7.92 (dd, J= 8.1, 1.3 Hz, 1H), 7.47 — 7.31
(m, 2H), 7.20 (ddd, J=12.2, 8.6, 7.8 Hz, 2H), 4.95 (dd, /= 14.0, 1.6 Hz, 1H), 4.60 (dd, /=6.3, 1.6
Hz, 1H), 2.55 (s, 3H). 3C NMR (101 MHz, CDCl;) & 171.12, 164.23, 141.52, 132.74, 131.96,
131.02, 128.13, 125.90, 97.95, 21.02. Physical and spectral data were consistent with those
previously reported.?

Vinyl 3-methylbenzoate (Table 1, entry 5)

0
ox

Colorless liquid (60%). 'H NMR (400 MHz, CDCl;) 6 7.81 (d, J = 7.9 Hz, 2H), 7.42 (dd, J = 14.0,
6.3 Hz, 1H), 7.34 — 7.22 (m, 2H), 4.97 (dd, J = 14.0, 1.6 Hz, 1H), 4.60 (dd, J = 6.3, 1.6 Hz, 1H),
2.31 (s, 3H). 3C NMR (101 MHz, CDCI3) 8 163.79 (s), 141.49 (s), 138.35 (s), 134.38 (s), 130.50
(s), 128.86 (s), 128.42 (s), 127.17 (s), 98.07 (s), 77.39 (s), 77.08 (s), 76.76 (s), 21.25 (s). Physical
and spectral data were consistent with those previously reported.*

Vinyl 4-hydroxybenzoate (Table 1, entry 6)

0
o

HO

White solid (72%). '"H NMR (400 MHz, CDCl;) & 8.11 — 7.98 (m, 2H), 7.48 (dd, J = 14.0, 6.3 Hz,
1H), 6.98 — 6.85 (m, 2H), 6.08 (s, 1H), 5.05 (dd, J = 14.0, 1.6 Hz, 1H), 4.69 (dd, J = 6.3, 1.6 Hz,
1H). 3C NMR (101 MHz, CDCl;)  163.74 (s), 160.63 (s), 141.41 (s), 132.51 (s), 121.18 (s), 115.49
(s), 98.10 (s). Physical and spectral data were consistent with those previously reported.!

Vinyl 4-chlorobenzoate (Table 1, entry 7)
@)
o
Cl
Light yellow solid (75%). '"H NMR (600 MHz, CHLOROFORM-D) 4 8.09 — 7.98 (m, 2H), 7.50

(dd, J=13.9, 6.2 Hz, 1H), 7.48 — 7.41 (m, 2H), 5.08 (dd, /= 13.9, 1.8 Hz, 1H), 4.73 (dd, J = 6.2,



1.8 Hz, 1H). *C NMR (151 MHz, CHLOROFORM-D) 8 162.81 (s), 141.37 (s), 140.22 (s), 131.42
(s), 128.99 (s), 98.57 (s). Physical and spectral data were consistent with those previously reported.*

Vinyl 4-nitrobenzoate (Table 1, entry 8)
@)

o
O,N
Yellow solid (82%). 'H NMR (600 MHz, CHLOROFORM-D) § 8.32 (ddd, J=24.5, 7.0, 1.9 Hz,
4H), 7.52 (dd, J=13.9, 6.2 Hz, 1H), 5.17 (dd, J=13.9, 2.0 Hz, 1H), 4.83 (dd, J = 6.2, 2.0 Hz, 1H).
13C NMR (151 MHz, CHLOROFORM-D) § 161.92 (s), 151.01 (s), 141.23 (s), 134.46 (s), 131.23

(s), 123.81 (s), 99.63 (s). Physical and spectral data were consistent with those previously reported.’



Characterization Spectrum
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