Supporting Information

Three Isostructural Hexanuclear Lanthanide-Organic Frameworks for Sensitive

Luminescence Temperature Sensing Over a Wide Range

Tifeng Xia,*ab Wenqian Cao,b Lingling Guan, b Jun Zhang,*a Fudong Jiang, a Libing Yu, a and Yating Wan,*c

^a Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China. E-mail:

xiatifeng@caep.cn (T. Xia), j-zhang@caep.cn (J. Zhang)

^b State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.

^c Shanghai Institute of Laser Plasma, China Academy of Engineering Physics, Shanghai 201800, China. E-mail: ytwan@zju.edu.cn

ICP analyses.						
Samples	Tested Eu by ICP	Tested Tb by ICP	The Eu/Tb ratios calculated			
	analysis (ppm)	analysis (ppm)	by ICP analysis			
Eu _{0.001} Tb _{0.999} -0N	0.3233	124.1	0.0026:0.9974			
$Eu_{0.001}Tb_{0.999}$ -1N	0.0673	38.94	0.0017:0.9983			
Eu _{0.001} Tb _{0.999} -2N	0.1002	32.80	0.0030:0.9970			

 $\label{eq:table_state} \textbf{Table S1} \ \text{The molar ratio of the starting Eu/Tb salt and that in isomorphic Eu^{3+}/Tb^{3+} \ \text{co-doped MOFs calculated by} \\$

Table S2 Fitting parameters of isomorphic Eu³⁺/Tb³⁺ mixed MOFs with double exponential Mott-Seitz model.

Ln-MOFs	\varDelta_0	α_1	ΔE_1	α_2	ΔE_2	R ²
$Eu_{0.001}Tb_{0.999}$ - $0N^{a}$	1.14611	4.93616	121.858	196.053	630.975	0.9986
$Eu_{0.001}Tb_{0.999}0N^{b}$	14.9587	4.9435	121.988	196.558	631.520	0.9986
$Eu_{0.001}Tb_{0.999}$ -1N ^a	1.18613	45.3146	101.299	3032.19	573.568	0.9999
$Eu_{0.001}Tb_{0.999}1N^{b}$	299.108	45.1351	101.457	3021.64	573.990	0.9999
$Eu_{0.001}Tb_{0.999}$ -2N ^a	3.37050	9.48916	48.1217	2677.79	679.935	0.9996
$Eu_{0.001}Tb_{0.999}$ -2N ^b	136.870	9.1291	48.7506	2589.08	680.871	0.9996

^a Normalized to 50 K; ^b Normalized to 300 K.

Table 55 A summary of some reported fatiometric worf-based methometers.					
Luminescent MOF	Range	$S_{ m m}$	$T_{\rm m}$		
	(K)	$(\% \cdot K^{-1})$	(K)		
Eu _{0.001} Tb _{0.999} (BPDC-0N)	50-300	1.10	188		
Eu _{0.001} Tb _{0.999} (BPDC-1N)	50-300	4.11	50		
Eu _{0.001} Tb _{0.999} (BPDC-2N)	50-300	1.94	50		
9.1wt%Eu W_{10} @Tb-TATB ¹	200-320	2.68	300		
19.5wt%EuW ₁₀ @Tb-TATB ¹	200-320	2.37	300		
$Tb_{0.99}Eu_{0.01}(bdc)_{1.5}$ (in water) ²	290-320	0.31	318		
Tb _{0.99} Eu _{0.01} (bdc) _{1.5} (solid) ²	290-320	0.14	318		
Dycpia ³	298-473	0.42	473		
ZJU-88⊃perylene ⁴	293-353	1.28	293		
[Tb _{0.970} Eu _{0.030} (CH ₃ COO)(1,3-bdc)(H ₂ O)] ⁵	150-350	0.19	338		
[Tb _{0.950} Eu _{0.050} (CH ₃ COO)(1,3-bdc)(H ₂ O)] ⁵	150-350	0.20	333		
[Tb _{0.925} Eu _{0.075} (CH ₃ COO)(1,3-bdc)(H ₂ O)] ⁵	150-350	0.24	314		
[Tb _{0.900} Eu _{0.100} (CH ₃ COO)(1,3-bdc)(H ₂ O)] ⁵	150-350	0.31	284		
[Tb _{0.875} Eu _{0.125} (CH ₃ COO)(1,3-bdc)(H ₂ O)] ⁵	150-350	0.40	251		
[Tb _{0.850} Eu _{0.150} (CH ₃ COO)(1,3-bdc)(H ₂ O)] ⁵	150-350	0.44	236		
Cdots&RB@ZIF-82-MMM-16	293-353	0.74	293		
$Eu_{0.0025}Tb_{0.9975}\text{-}BABDC\text{-}PBMA^7$	90-240	3.61	240		

Table S3 A summary of some reported ratiometric MOF-based thermometers.

Sample	Eu(BPDC-2N)		
Chemical formula	$C_{72}H_{45}Eu_{6}F_{8}N_{12}O_{27.50}$		
Formula weight	2581.96		
Temperature (K)	173		
Wavelength (Å)	0.71073		
Crystal system	Cubic		
Space group	Fm-3m		
<i>a</i> (Å)	27.498(6)		
<i>b</i> (Å)	27.498(6)		
<i>c</i> (Å)	27.498(6)		
$V(Å^3)$	20792(15)		
Z	4		
Density (calculated $g \cdot cm^{-3}$)	0.825		
Absorbance coefficient (mm ⁻¹)	1.824		
<i>F</i> (000)	4924		
Crystal size (mm ³)	$0.12 \times 0.11 \times 0.10$		
R(int)	0.0464		
Goodness of fit on F_2	1.029		
$R_1, wR_2[I > 2\sigma(I)]^a$	0.0259, 0.0734		
R_1, wR_2 (all data) ^a	0.0276, 0.0744		
Largest difference peak and hole (e Å-3)	0.555, -0.660		
	$(r r ^2)$		

Table S4 Crystallographic Data Collection and Refinement Results for Eu(BPDC-2N).

$$R1 = \sum (|F_o| - |F_c|) / \sum |F_o|; wR2 = \left[\frac{\sum w(|F_o| - |F_c|^2)}{\sum wF_o^2}\right]^{1/2}$$

Figure S1. The PXRD patterns of simulated Eu(BPDC-2N) and as-synthesized Tb(BPDC-2N).

Figure S2. SEM and SEM-EDX of Eu(BPDC-2N).

Figure S3. SEM and SEM-EDX of $Eu_{0.001}Tb_{0.999}$ (BPDC-2N).

Figure S4. SEM and SEM-EDX of Tb(BPDC-2N).

Figure S5. Ortep representation of the asymmetric unit in Eu(BPDC-2N) (50% probability factor for the thermal ellipsoids).

Figure S6. TGA curves of Eu(BPDC-2N).

Figure S7. FT-IR spectra of organic ligand H₂BPDC-2N and Eu(BPDC-2N).

Figure S8. Excitation and emission spectra of Eu(BPDC-0N) at room temperature.

Figure S9. Excitation and emission spectra of Eu(BPDC-1N) at room temperature.

Figure S10. Excitation and emission spectra of Tb(BPDC-1N) at room temperature.

Figure S11. Excitation and emission spectra of Eu(BPDC-2N) at room temperature.

Figure S12. The calculated triplet levels of H_2BPDC -xN (x = 0, 1, 2) and energy levels of Eu (5D_0) and Tb (5D_4).

Figure S13. The optimized geometry of free ligands $H_2BPDC-xN$ (x = 0, 1, 2) at the B3LYP/6-31G* level.

Figure S14. Emission spectra of $Eu_{0.001}Tb_{0.999}(BPDC-xN)$ (x = 0, 1, 2) excited at 488 nm.

Figure S15. Fluorescence decay curves of ${}^{5}D_{0}$ (a) and ${}^{5}D_{4}$ (b) in Eu(BPDC-1N), Tb(BPDC-1N), and Eu_{0.001}Tb_{0.999}(BPDC-1N).

Figure S16. Temperature-dependent emission spectra of $Eu_{0.001}Tb_{0.999}$ (BPDC-2N) in the temperature range from 50 K to 300 K.

Figure S17. The shortest distance of two lanthanide ions in the adjacent SBUs and two possible distances between Tb^{3+} and Eu^{3+} in the same SBU.

Figure S18. Normalized luminescence intensity of ${}^{5}D_{4} - {}^{7}F_{5}$ transition and ${}^{5}D_{0} - {}^{7}F_{2}$ transition for (a) Eu_{0.001}Tb_{0.999}(BPDC-0N), (b) Eu_{0.001}Tb_{0.999}(BPDC-1N) and (c) Eu_{0.001}Tb_{0.999}(BPDC-2N), respectively.

Figure S19. The fitting curves (a) and temperature-dependent relative sensitivity (b) of $Eu_{0.001}Tb_{0.999}(BPDC-xN)$ (x = 0, 1, 2) when luminescence intensities were normalized to the intensity at 300 K.

Figure S20. CIE chromaticity diagram presenting the temperature-dependent color of (a) Eu_{0.001}Tb_{0.999}(BPDC-0N), (b) Eu_{0.001}Tb_{0.999}(BPDC-1N) and (c) Eu_{0.001}Tb_{0.999}(BPDC-2N) in the temperature range from 50 K to 300 K.

Figure S21. The reversible emission intensity ratio of Tb (544 nm) to Eu (614 nm) of Eu_{0.001}Tb_{0.999}(BPDC-2N) in cycles of heating and cooling.

References

- C. Viravaux, O. Oms, A. Dolbecq, E. Nassar, L. Busson, C. Mellot-Draznieks, R. Dessapt, H. Serier-Brault and P. Mialane, *Journal of Materials Chemistry C*, 2021, 9, 8323.
- 2 A. Cadiau, C. D. S. Brites, P. M. F. J. Costa, R. A. S. Ferreira, J. Rocha and L. D. Carlos, ACS Nano, 2013, 7, 7213.
- 3 T. Xia, Y. Cui, Y. Yang and G. Qian, Journal of Materials Chemistry C, 2017, 5, 5044.
- 4 Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen and G. Qian, *Advanced Materials*, 2015, **27**, 1420.
- 5 V. Trannoy, A. N. Carneiro Neto, C. D. S. Brites, L. D. Carlos and H. Serier-Brault, *Advanced Optical Materials*, 2021, **9**, 2001938.
- 6 Y. Ding, Y. Lu, K. Yu, S. Wang, D. Zhao and B. Chen, Advanced Optical Materials, 2021, 9, 2100945.
- 7 T. Feng, Y. Ye, X. Liu, H. Cui, Z. Li, Y. Zhang, B. Liang, H. Li and B. Chen, *Angewandte Chemie International Edition*, 2020, **59**, 21752.