Supporting Information

Geminal C–Cl and Si–Cl Bond Activation of Chloromethanes and Chlorosilanes by Gallanediyl LGa

Christoph Helling, Chelladurai Ganesamoorthy, Christoph Wölper, and Stephan Schulz*

Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45117 Essen, Germany

<u>Contents</u>

- Figures S1 S3. 1 H, 13 C{ 1 H}, and IR spectra of 1.
- **Figures S4 S6**. ¹H, ¹³C{¹H}, and IR spectra of **2**.
- Figures S7 S9. ¹H, ¹³C{¹H}, and IR spectra of 3.
- **Figures S10 14**. ¹H, ¹³C{¹H}, ²⁹Si, ²⁹Si{¹H}, and IR spectra of 4.
- **Figures S15 S17**. ¹H, ¹³C{¹H}, and IR spectra of **5**.
- **Figures S18 S22**. ¹H, ¹³C{¹H}, ²⁹Si, ²⁹Si{¹H}, and IR spectra of **6**.
- **Figures 23 S25**. ¹H, ¹³C{¹H}, and IR spectra of **7**.
- Table S1. Crystallographic details of 1–3.
- Table S2. Crystallographic details of 4–7.
- Figure S26. Molecular structure of 4.
- Figure S27. Molecular structure of 7.

Figure S1. ¹H NMR spectrum (400.1 MHz, C_6D_6) of L(Cl)GaCH₂Cl (1).

Figure S2. ${}^{13}C{}^{1}H$ NMR spectrum (100.6 MHz, C₆D₆) of L(Cl)GaCH₂Cl (1).

Figure S3. IR spectrum of L(CI)GaCH₂CI (1).

Figure S4. ¹H NMR spectrum (400.1 MHz, C₆D₆) of L(Cl)GaCHCl₂ (2).

Figure S5. $^{13}C\{^{1}H\}$ NMR spectrum (100.6 MHz, $C_6D_6)$ of L(Cl)GaCHCl_2 (2).

Figure S6. IR spectrum of L(CI)GaCHCl₂ (2).

Figure S7. ¹H NMR spectrum (400.1 MHz, C_6D_6) of L(Cl)GaCCl₃ (3).

Figure S8. ${}^{13}C{}^{1}H$ NMR spectrum (100.6 MHz, C₆D₆) of L(Cl)GaCCl₃ (3).

Figure S9. IR spectrum of L(CI)GaCCI₃ (**3**).

Figure S10. ¹H NMR spectrum (300.1 MHz, C₆D₆) of L(Cl)GaSiHCl₂ (4).

Figure S11. ${}^{13}C{}^{1}H$ NMR spectrum (75.5 MHz, C₆D₆) of L(Cl)GaSiHCl₂ (4).

Figures S12. ²⁹Si NMR spectrum (119 MHz, C₆D₆) of (**4**).

Figures S13. $^{29}\text{Si}\{^1\text{H}\}$ NMR spectrum (119 MHz, $C_6D_6)$ of (4).

Figure S14. IR spectrum of L(CI)GaSiHCl₂ (4).

Figure S15. ¹H NMR spectrum (400.1 MHz, C_6D_6) of [L(Cl)Ga]₂CH₂ (**5**) ($\circ = n$ -hexane from crystal lattice).

Figure S16. ¹³C{¹H} NMR spectrum (100.6 MHz, C_6D_6) of [L(Cl)Ga]₂CH₂ (**5**) ($\circ = n$ -hexane from crystal lattice).

Figure S17. IR spectrum of [L(Cl)Ga]₂CH₂ (5).

Figure S18. ¹H NMR spectrum (300.1 MHz, C₆D₆) of [L(Cl)Ga]₂SiHCl (6).

Figure S19. ${}^{13}C{}^{1}H$ NMR spectrum (75.5 MHz, C₆D₆) of [L(Cl)Ga]₂SiHCl (6).

Figures S20. ²⁹Si NMR spectrum (119 MHz, C₆D₆) of (**6**).

Figures S21. ${}^{29}Si{}^{1}H$ NMR spectrum (119 MHz, C₆D₆) of (6).

Figure S22. IR spectrum of [L(Cl)Ga]₂SiHCl (6).

Figure S23. ¹H NMR spectrum (300.1 MHz, C₆D₆) of [L(Cl)Ga]₂SiCl₂ (**7**).

Figure S24. ${}^{13}C{}^{1}H$ NMR spectrum (75.5 MHz, C₆D₆) of [L(Cl)Ga]₂SiCl₂ (7).

Figure S25. IR spectrum of [L(Cl)Ga]₂SiCl₂ (7).

 Table S1. Crystallographic details of 1–3.

	1	2	3
Empirical formula	$C_{30}H_{43}Cl_2GaN_2$	$C_{30}H_{42}CI_3GaN_2$	$C_{30}H_{41}Cl_4GaN_2$
<i>M</i> [g mol ⁻¹]	572.28	606.72	641.17
Crystal size [mm]	0.261 x 0.211 x 0.051	0.251 x 0.214 x 0.134	0.404 x 0.199 x 0.070
Т [К]	102(2)	100(2)	100(2)
Crystal system	monoclinic	orthorhombic	Monoclinic
Space group	P21/n	Pnma	P21/m
<i>a</i> [Å]	14.9053(13)	14.7721(12)	9.0298(8)
<i>b</i> [Å]	10.0058(9)	21.3548(19)	20.455(2)
<i>c</i> [Å]	40.988(4)	9.6684(8)	9.5707(9)
α [°]	90	90	90
в [°]	96.581(3)	90	117.700(5)
γ [°]	90	90	90
<i>V</i> [ų]	6072.6(9)	3051.4(4)	1565.1(3)
Ζ	8	4	2
D_{calcd} [g cm ⁻³]	1.252	1.321	1.360
μ(K _α [mm ⁻¹])	2.996 (Cu)	1.186 (Mo)	1.242 (Mo)
Transmissions	0.75/0.58	0.75/0.61	0.75/0.64
F(000)	2416	1272	668
Index ranges	$-19 \le h \le 17$	$0 \le h \le 25$	$-13 \le h \le 13$
	-12 ≤ <i>k</i> ≤ 12	$0 \le k \le 37$	$-31 \le k \le 31$
	-52 ≤ <i>l</i> ≤ 52	0 ≤ <i>l</i> ≤ 16	-14 ≤ <i>l</i> ≤ 14
$artheta_{max}$ [°]	80.446	38.763	33.213
Reflections collected	238009	262220	57935
Independent reflections	13192	8677	6121
R _{int}	0.0561	0.0512	0.0429
Refined parameters	703	174	180
$R_1\left[l>2\sigma(l)\right]$	0.0449	0.0461	0.0305
wR ₂ [all data]	0.1258	0.1100	0.0795
GooF	1.017	1.080	1.046
Δho_{final} (max/min) [e·Å ⁻³]	1.552/-0.702	1.732/-0.790	1.169/-0.850

 Table S2. Crystallographic details of 4–7.

	4	5	6	7
Empirical formula	$C_{29}H_{42}CI_3GaN_2Si$	$C_{65}H_{98}Cl_2Ga_2N_4$	$C_{64}H_{89}Cl_3Ga_2N_4Si$	$C_{85}H_{109}Cl_4Ga_2N_4Si$
<i>M</i> [g mol ⁻¹]	622.80	1145.81	1188.27	1496.09
Crystal size [mm]	0.242 x 0.232 x 0.216	0.232 x 0.148 x 0.054	0.213 × 0.174 × 0.169	0.607 x 0.156 x 0.151
<i>T</i> [K]	100(2)	100(2)	100(2)	100(2)
Crystal system	orthorhombic	monoclinic	monoclinic	Triclinic
Space group	Pnma	C2/c	P21/c	<i>P</i> -1
<i>a</i> [Å]	15.7276(13)	21.398(3)	13.931(2)	12.8721(12)
<i>b</i> [Å]	21.0688(17)	12.3770(15)	24.762(4)	15.8286(15)
<i>c</i> [Å]	9.4846(8)	24.247(3)	18.434(3)	20.983(2)
α [°]	90	90	90	92.951(5)
в [°]	90	106.591(2)	92.869(7)	91.421(5)
γ [°]	90	90	90	109.252(4)
<i>V</i> [ų]	3142.8(4)	6154.1(13)	6350.8(16)	4026.9(7)
Ζ	4	4	4	2
D _{calcd} [g cm ⁻³]	1.316	1.237	1.243	1.234
μ(<i>K</i> _α [mm ⁻¹])	1.189	1.004 (Mo)	1.034 (Mo)	0.861 (Mo)
Transmissions	0.75/0.64	0.75/0.69	0.75/0.62	0.75/0.64
F(000)	1304	2448	2512	1582
Index ranges	-18 ≤ <i>h</i> ≤ 23	$-32 \le h \le 31$	$-21 \le h \le 21$	$-19 \le h \le 19$
	$-30 \le k \le 32$	$-19 \leq k \leq 19$	-38 ≤ <i>k</i> ≤ 38	$-23 \le k \le 24$
	-14 ≤ <i>l</i> ≤ 14	-37 ≤ <i>l</i> ≤ 37	-26 ≤ <i>l</i> ≤ 28	-31 ≤ <i>l</i> ≤ 32
$artheta_{max}$ [°]	33.221	33.318	33.249	33.345
Reflections collected	100125	121649	239951	199445
Independent reflections	6080	11793	24298	29948
R _{int}	0.0261	0.0644	0.0664	0.0305
Refined parameters	207	368	714	940
$R_1\left[l>2\sigma(l)\right]$	0.0309	0.0334	0.0371	0.0319
wR ₂ [all data]	0.0823	0.0812	0.0971	0.0892
GooF	1.089	1.055	1.017	1.069
Δρ _{final} (max/min) [e·Å ⁻³]	1.182/-1.015	0.704/-0.421	0.968/-0.600	1.022/-0.645

Figure S26. Molecular structure of **4** in the solid-state. Hydrogen atoms (except SiHCl₂) and the minor component of the disordered *i*-Pr group were omitted for clarity. Displacement ellipsoids are drawn at 50 % probability level, whereas hydrogen atoms are displayed as spheres of arbitrary radius. The symmetry generated parts is depicted with pale inner lines.

Figure S27. Molecular structure of **7** in the solid-state. Hydrogen atoms and the co-crystallized benzene molecules were omitted for clarity. Displacement ellipsoids are drawn at 50 % probability level.