Supporting Information

Interfacially coupled thin sheet-like NiO/NiMoO₄ nanocomposites synthesized by simple reflux method for excellent electrochemical performance

Achal Singh Keshari and Prashant Dubey*

Centre of Material Sciences, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj-211002 (U.P.), INDIA Email: pdubey@allduniv.ac.in, pdubey.au@gmail.com

Fig. S1 FESEM micrographs of Ni-Mo hydroxide precursor synthesized during 10 h reflux time. Low-magnification (a) and corresponding high-magnification (b).

Fig. S2 Different magnification TEM images of NNMO-1 (a, b), NNMO-2 (c, d), and NNMO-4 (e, f) nanocomposites.

Fig. S3 GCD curves according to different specific currents of 1.0 to 10.0 Ag⁻¹ for different combinations of NNMO-3: C as 100: 0 (a), 70: 30 (b), 30: 70 (c), and 20: 80 (d). (Color)

Fig. S4 Low- and corresponding high-magnification SEM micrographs of fabricated working electrodes according to different combinations of NNMO-3: C as 100: 0 (**a**, **b**), 70: 30 (**c**, **d**), 50: 50 (**e**, **f**), 30: 70 (**g**, **h**), and 20: 80 (**i**, **j**).

Fig. S5 CV curves at different scan rates (2 to 100 mVs⁻¹) (**a**, **b**, **c**) and GCD curves at various specific currents (1.0 to 6.0 Ag⁻¹) (**d**, **e**, **f**) of NNMO-1, NNMO-2, and NNMO-4 electrodes, respectively. (Color)

Fig. S6 Linear fitted plot of peak potential difference (anodic and cathodic) as a function of square root of scan rates for NNMO-3 electrode.

Fig. S7 Linear fitted plots of scan rate $(v)^{1/2}$ as a function of $i_v v^{-1/2}$ for NNMO-3 electrode at different fixed potentials obtained from slow scan rate CV curves (0.2 to 1 mVs⁻¹) (**a**, **c**) and corresponding bar diagram of capacitive/ diffusive contributions (**b**). (Color)

Estimation of electrochemical active surface area (ECASA):

The ECASA of the fabricated nanocomposite electrodes (NNMO-1, NNMO-2, NNMO-3, and NNMO-4) is estimated from CV measurements within a potential window of 0 to 0.5 V (vs Ag/AgCl) at different scan rates (2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 mVs⁻¹). Plots of current response (mA) with respect to scan rate of all the tested electrodes for a particular potential of 0.0415 V (vs Ag/AgCl) are shown in Fig. S8, which follow linear relationships. The double-layer capacitance (C_{dl}) at non-Faradic region by adsorption of electrolytic ions is calculated from the slope of current response as a function of scan rate at a particular potential according to the following relationship [1, 2]:

$$i = C_{dl} \frac{dV}{dt}$$

dV

Where i (A) is the response current at a fixed potential, dt (mVs⁻¹) is the scan rate, and C_{dl} (F) is the double-layer capacitance.

Furthermore, C_{dl} can be correlated to ECASA as follows [1, 2].

$$ECASA = \frac{C_{dl}}{C_s}$$

where C_s is the generalized capacitance in KOH aqueous medium (20 μ Fcm⁻²).

Fig. S8 Linear fitted plots of response currents as a function of scan rates for all the tested nanocomposite electrodes. (Color)

Fig. S9 Nyquist plots of NNMO-3 electrode before and after cycling experiment (**a**) and corresponding FESEM micrograph after 2200 cycling test (**b**). (Color)

Fig. S10 CV curves at various scan rates of 2 to 70 mVs⁻¹ (**a**), GCD plots according to varying specific currents (**b**), specific capacity as a function of specific current (**c**), and Nyquist plot (**d**) of AC electrode material. (**Color**)

Materials	Phase content (%) corresponding to (220) plane		d spacing (nm) corresponding to (220) plane			Crystallite size, D _p (nm) corresponding to (220) plane			
	α-ΝΜΟ	β-ΝΜΟ	NiO	a-NMO	β-ΝΜΟ	NiO	a-NMO	β-ΝΜΟ	NiO
NNMO-1	40.6	18.2	41.2	0.310	0.334	0.15	21.3	25.4	6.6
NNMO-2	27.6	19.6	52.8				17.9	16.9	6.7
NNMO-3	23.7	18.7	57.6				22.6	20.7	7.7
NNMO-4	18.0	12.1	69.9				17.9	15.3	8.3

Table S1. Structural parameters of NNMO nanocomposites calculated from XRD profiles.

Table S2. Planes corresponding to different rings in the SAED pattern.

Rings	1/2r,	1/r	r (nm)/ d	d (Å)	(hkl)	Phase
	(1/nm)		spacing			
1	3.26	1.63	0.613497	6.134969	(110)	α-NMO
2	5.221	2.6105	0.383068	3.830684	(02-1)	β-ΝΜΟ
3	6.456	3.228	0.309789	3.097893	(220)	α-NMO
4	8.194	4.097	0.244081	2.44081	(111)	NiO
5	9.574	4.787	0.208899	2.088991	(200)	NiO
6	12.434	6.217	0.160849	1.608493	(024)	α-ΝΜΟ
7	13.558	6.779	0.147514	1.475144	(220)	NiO
8	16.607	8.3035	0.120431	1.204311	(222)	NiO
9	19.215	9.6075	0.104085	1.040853	(400)	NiO
10	21.39	10.695	0.093502	0.935016	(420)	NiO
11	23.49	11.745	0.085143	0.851426	(1022)	β-ΝΜΟ

Table S3. The calculated value of specific capacities from CV and GCD curves for different combinations of NNMO-3: C electrodes.

Electrode materials	Sp. capacity, Q1 (Cg ⁻¹) at 2.0 mVs ⁻¹	Sp. capacity, Q ₁ (Cg ⁻¹) at 30.0 mVs ⁻¹	Sp. capacity, Q ₂ (Cg ⁻¹) at 1.0 Ag ⁻¹	Sp. capacity, Q ₂ (Cg ⁻¹) at 10.0 Ag ⁻¹	Capacitive retention (%)
NNMO-3:C (100:0)	121.2	138.0	56.2	8.0	14.2
NNMO-3:C (70:30)	230.8	76.1	92.4	6.0	6.5
NNMO-3:C (50:50)	877.7	432.1	649.8	276.0	42.5
NNMO-3:C (30:70)	182.1	111.6	195.9	84.0	42.9
NNMO-3:C (20:80)	83.9	73.9	101.1	71.0	70.2

Electrode materials	Sp. capacity, Q ₁ (Cg ⁻¹) at 2.0 mVs ⁻¹	Sp. capacity, Q ₁ (Cg ⁻¹) at 30.0 mVs ⁻¹	Sp. capacity, Q ₂ (Cg ⁻¹) at 1.0 Ag ⁻¹
NNMO-1	548.6	270.1	430.1
NNMO-2	813.3	261.7	601.1
NNMO-3	877.7	432.1	649.8
NNMO-4	401.5	208.8	340.2

Table S4. The calculated value of specific capacities from CV and GCD curves for different

 NNMO nanocomposite electrodes.

Table S5. The capacitive and diffusive contributions of NNMO-3 electrode from slow scan rate CV curves (0.2 to 1.0 mVs⁻¹) at various fixed potentials.

Potential (V)	NN	MO-3
vs Ag/AgCl	Slope, k1 (%)	Intercept, k2 (%)
0.0415	-1.060 (72.9)	0.395 (27.1)
0.1001	-0.603 (67.7)	0.288 (32.3)
0.1514	-0.308 (60.1)	0.205 (39.9)
0.2002	-0.063 (30.4)	0.144 (69.6)
0.2515	-0.248 (14.9)	1.413 (85.1)
0.3003	2.081 (35.8)	3.726 (64.2)

Table S6. Comparison of electrochemical performance (in the three-electrode system) of the

 NNMO-3 electrode with reported NMO based binder-free nanocomposite/ hybrid electrode

 materials.

Electrode materials	Synthetic method	Specific surface area (m ² g ⁻¹)	Sp. capacitance (Fg ⁻¹) @ Sp. current (Ag ⁻¹)	Capacitive retention (%) @ Number of cycles (Sp. current/ Ag ⁻¹)	Ref.
Co ₃ O ₄ /NiMoO ₄ core/shell nanowire arrays@NF	H, C		1230.0 @ 1.9	77.0 @ 3000 (9.6)	[3]
3D Co ₃ O ₄ /NiMoO ₄ nanocomposites@NF	H, C	_	2041.0 @ 0.5	72.0 @ 3000 (0.5)	[4]
CoMoO ₄ /NiMoO ₄ ·xH ₂ O core-shell	H, C	100.8	1582.0 @ 1.0	97.1 @ 3000 (1.0)	[5]
heterostructure@CF					
Ni _{0.75} Co _{0.25} MoO ₄ porous nanosheets@CC	Н, С	—	1321.1 @ 1.0	97.2 @ 3000 (5.0)	[6]
NiMoO ₄ /Ni-Co-S core-shell nanorods@NF	H, C	_	1892.0 @ 5.0*	91.7 @ 6000 (20.0*)	[7]
NiMoO ₄ /NiWO ₄ honeycomb@NF	H, C	_	1290.0 @ 2.0	93.1 @ 3000 (6.0)	[8]
NiO/NiCo ₂ O ₄ core-shell nanosheet arrays@NF	H, C	—	1623.6 @ 2.0	90.0 @ 10,000 (10.0)	[9]
NiCo ₂ S ₄ /NiMoO ₄ core-shell nanosheet arrays@NF	Н	_	1487.6 @ 1.0	89.7 @ 8000 (5.0)	[10]
MgCo ₂ O ₄ /NiMoO ₄ urchin-like core-shell nanomaterial@NF	Н, С	—	1775.0 @ 1.0	74.7 @ 5000 (5.0)	[11]

MnCo ₂ O ₄ /NiMoO ₄ core-shell nanowire array@NF	Н, С	119.2	1244.0 @ 1.0	81.0 @ 2500 (5.0)	[12]
NiCo2O4@NiMoO4/PANI holothurian@CC	Н, С, Р	_	1322.2 @ 0.6	92.36 @ 5000 (0.6)	[13]
NiCo ₂ O ₄ @NiMoO ₄ nanowires/nanosheets array@CC	Н, С	272.3	1576.0 @ 1.0	89.8 @ 5000 (3.3)	[14]
CuCo ₂ O ₄ /NiMoO ₄ nanoarchitecture@NF	Н, С	_	2215.0 @ 1.0	98.3 @ 8000 (5.0)	[15]
NiCo ₂ O ₄ /NiMoO ₄ nanostructure@NF	H, C	—	1371.4 @ 1.0	100 @ 10,000 (8.0)	[16]
NiCoMn–O@NiMoO4@C nanosheet arrays@CC	H, C	_	2189.5 @ 0.25	81.6 @ 1500 (6.0)	[17]
ZnCo ₂ O ₄ @NiMoO ₄ core-shell nanowire/nanosheets	H, C	_	1912.0 @ 1.0	_	[18]
nanoarrays@NF					
NiMoO ₄ /NiSe ₂ /MoSe ₂ nanowire@GCE	H, C, Se	55.6	955.0 @ 1.0	86.1 @ 5000 (10.0)	[19]
NNMO-3 sheet-like nanocomposite	Reflux, C	113.0	1624.5 @ 1.0	73.5 @ 2200 (1.0)	This
*			0		work

NF: Ni foam; CF: Carbon fabric; CC: Carbon cloth, GCE: Glassy carbon electrode; H: Hydrothermal; C: Calcination/ Annealing; P: Polymerization; Se: Selenylation; *: mAcm⁻².

Table S7. The calculated values of C_{dl} and ECASA for different nanocomposite electrodes.

Electrode material	Double-layer capacitance, C _{dl} (mF)	ECASA (cm ²)
NNMO-1	120.6	6031.3
NNMO-2	137.3	6863.2
NNMO-3	193.0	9650.1
NNMO-4	79.0	3949.0

Table S8. Various fitting parameters and values obtained from EIS measurements of all the tested nanocomposite electrodes.

Electrode	$R_{s}(\Omega)$	$R_{ct}(\Omega)$	CPE in low		Impedance	- Phase angle
materials			frequency	region	. (Ω)	(intercept of –
			$Y_0(\Omega^{-1})$	n		Z" axis at 0.1
						Hz)
NNMO-1	1.15	15.21	0.07	0.56	32.35	30.2
NNMO-2	0.34	8.53	0.08	0.74	23.21	48.6
NNMO-3	0.32	3.07	0.19	0.88	9.36	60.1
NNMO-4	1.06	24.0	0.08	0.37	36.67	15.9
NNMO-3 (after cycling)	0.76	7.61	0.14	0.73		

Table S9. The calculated values of specific capacity, specific energy and specific power of

NNMO-3//AC ASC device.

ASC device	Sp. capacity, Q ₁ (Cg ⁻¹) at 2.0 mVs ⁻¹	Sp. capacity, Q ₂ (Cg ⁻¹) at 1.0 Ag ⁻¹	Sp. capacity, Q ₂ (Cg ⁻¹) at 5.0 Ag ⁻¹	Capacitive retention (%) from 1.0 to 5.0 Ag ⁻¹	Sp. energy, E (Whkg ⁻¹)	Sp. power, P (Wkg ⁻¹)
NNMO-3// AC	222.9	216.2	126.5	58.5	45.0 @ 1.0 Ag ⁻¹	750.0 @ 1.0 Ag ⁻¹
					26.4 @ 5.0 Ag ⁻¹	3750.0 @ 5.0 Ag ⁻¹

Table S10. Fitting parameters like R_s, R_{ct}, n of the NNMO-3//AC ASC device obtained from Nyquist plots before and after cycling test.

Parameters→	$R_{s}(\Omega)$	$R_{ct}(\Omega)$	n
Before cycling	1.15	15.21	0.64
After cycling	8.75	19.68	0.50

References

- C. C. L. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters and T. F. Jaramillo, Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices, *J. Am. Chem. Soc.*, 2015, 137, 4347–4357.
- G. P. Sharma, P. K. Gupta, S. K. Sharma, R. G. S Pala and S. Sivakumar, Chalcogenide dopant-induced lattice expansion in cobalt vanadium oxide nanosheets for enhanced supercapacitor performance, *ACS Appl. Energy Mater.*, 2021, 4, 4758–4771.
- D. Cai, D. Wang, B. Liu, L. Wang, Y. Liu, H. Li, Y. Wang, Q. Li and T. Wang, Three dimensional Co₃O₄@NiMoO₄ core/shell nanowire arrays on Ni foam for electrochemical energy storage, ACS Appl. Mater. Interfaces, 2014, 6, 5050–5055.
- X. J. Ma, L. B. Kong, W. B. Zhang, M. C. Liu, Y. C. Luo and L. Kang, Design and synthesis of 3D Co₃O₄@MMoO₄ (M=Ni, Co) nanocomposites as high-performance supercapacitor electrodes, *Electrochim. Acta*, 2014, **130**, 660–669.
- J. Wang, L. Zhang, X. Liu, X. Zhang, Y. Tian, X. Liu, J. Zhao and Y. Li, Assembly of flexible CoMoO₄@NiMoO₄·xH₂O and Fe₂O₃ electrodes for solid-state asymmetric supercapacitors, *Scientific Reports*, 2017, 7, 41088.
- P. Sun, C. Wang, W. He, P. Hou and X. Xu, One-step synthesis of 3D network-like Ni_xCo_{1-x}MoO₄ porous nanosheets for high performance battery-type hybrid supercapacitors, *ACS Sustainable Chem. Eng.*, 2017, 5, 10139–10147.
- C. Chen, D. Yan, X. Luo, W. Gao, G. Huang, Z. Han, Y. Zeng and Z. Zhu, Construction of core-shell NiMoO₄@Ni-Co-S nanorods as advanced electrodes for high-performance asymmetric supercapacitors, *ACS Appl. Mater. Interfaces*, 2018, 10, 4662–4671.
- A. E. Reddy, T. Anitha, C. V. V. M. Gopi, S. S. Rao and H. J. Kim, NiMoO₄@NiWO₄ honeycombs as a high performance electrode material for supercapacitor applications, *Dalton Trans.*, 2018, 47, 9057–9063.

- D. Yao, Y. Ouyang, X. Jiao, H. Ye, W. Lei, X. Xia, L. Lu and Q. Hao, Hierarchical NiO@NiCo₂O₄ core-shell nanosheet arrays on Ni foam for high-performance electrochemical supercapacitors, *Ind. Eng. Chem. Res.*, 2018, **57**, 6246–6256.
- S. Chen, Z. Zhang, W. Zeng, J. Chen and L. Deng, Construction of NiCo₂S₄@NiMoO₄ core-shell nanosheet arrays with superior electrochemical performance for asymmetric supercapacitors, *Chem. Electro. Chem.*, 2019, 6, 590–597.
- H. Gao, X. Wang, G. Wang, C. Hao, C. Huang and C. Jiang, Facile construction of a MgCo₂O₄@NiMoO₄/NF core–shell nanocomposite for high-performance asymmetric supercapacitors, *J. Mater. Chem. C*, 2019, **7**, 13267–13278.
- 12. J. A. A. Mehrez, K. A. Owusu, Q. Chen, L. Li, K. Hamwi, W. Luo and L. Mai, Hierarchical MnCo₂O₄@NiMoO₄ as free-standing core-shell nanowire arrays with synergistic effect for enhanced supercapacitor performance, *Inorg. Chem. Front.*, 2019, 6, 857–865.
- J. Shen, Q. Wang, K. Zhang, S. Wang, L. Li, S. Dong, S. Zhao, J. Chen, R. Sun, Y. Wang, Z. Jian and W. Zhang, Flexible carbon cloth based solid-state supercapacitor from hierarchical holothurian-morphological NiCo₂O₄@NiMoO₄/PANI, *Electrochim. Acta*, 2019, **320**, 134578.
- 14. H. Zhang, C. Lu, H. Hou, Y. Ma and S. Yuan, Tuning the electrochemical performance of NiCo₂O₄@NiMoO₄ core-shell heterostructure by controlling the thickness of the NiMoO₄ shell, *Chem. Eng. J.*, 2019, **370**, 400–408.
- G. Li, B. Song, X. Cui, H. Ouyang, K. Wang, Y. Sun and Y. Wang, Multidimensional and binary micro CuCo₂O₄/nano NiMoO₄ for high-performance supercapacitors, *ACS Sustainable Chem. Eng.*, 2020, 8, 1687–1694.
- D. Cui, R. Zhao, J. Dai, J. Xiang and F. Wu, Hybrid NiCo₂O₄@NiMoO₄ structure for overall water splitting and excellent hybrid energy storage, *Dalton Trans.*, 2020, 49, 9668–9679.
- 17. X. Tang, Y.H. Lui, B. Zhang and S. Hu, Venus flytrap-like hierarchical NiCoMn– O@NiMoO₄@C nanosheet arrays as free-standing core-shell electrode material for hybrid supercapacitor with high electrochemical performance, *J. Power Sources*, 2020, **477**, 228977.
- J. Wang, S. Wang, Y. Tian, X. Jin and J. Dong, 3D heterogeneous ZnCo₂O₄@NiMoO₄ nanoarrays grown on Ni foam as a binder-free electrode for highperformance energy storage, *J. Energy Storage*, 2020, **32**, 101899.

 C. Wang, D. Wu, Y. Qin and Y. Kong, Nanowired NiMoO₄/NiSe₂/MoSe₂ prepared through in situ selenylation as a high performance supercapacitor electrode, *Chem. Commun.*, 2021, 57, 4019–4022.