Electronic Supplementary Information (ESI) for

Nanochannel-Based {BaZn}-Organic Framework for Catalytic Activity on Cycloaddition Reaction of Epoxides with CO₂ and Deacetalization-Knoevenagel Condensation

Hongxiao Lv,^a Liming Fan,^a Hongtai Chen,^a Xiutang Zhang,^{*a} and Yanpeng Gao^{*b}

^aDepartment of Chemistry, College of Science, North University of China, Taiyuan 030051, P.R.

China. E-mail: xiutangzhang@163.com.

^bCollege of Chemical Engineering, Ordos Institute of Technology, Ordos, Inner Mongolia, China 017000. E-mail: gaoyanpeng0000001@163.com.

Table of Contents

Experimental Section

Table S1. Crystallographic data and refinement parameters of NUC-51.

Table S2. Selected bond lengths and angles.

Table S3. The detailed structure comparisons among complexes NUC-27 and NUC-51.

Table S4. Published Zn or Ba-based MOFs' catalytic effect of cycloaddition reaction.

Table S5. The molecular sizes of epoxides and corresponding products of cycloaddition reaction.

 Table S6. The molecular sizes of reactants and corresponding products of deacetalization

 Knoevenagel condensation reaction.

Table S7. The cation exchange between tetrabutylammonium cations (TBA⁺) and dimethylamine cations (DMA⁺) in **NUC-51a**.

Fig. S1. The inner surface environment in NUC-51.

Fig. S2. The PXRD patterns of as-synthesized NUC-51 and simulation.

Fig. S3. The SEM imagine of NUC-51.

Fig. S4 The PXRD patterns of NUC-51 sample under water treatment.

Fig. S5. Energy dispersive spectroscopy (EDS) elemental mappings of **NUC-51** sample for C, N, O. Ba and Zn.

Fig. S6. The FT-IR spectrum of NUC-51 and NUC-51a'.

Fig. S7. The TGA curves of NUC-51 and NUC-51a.

Fig. S8. The PXRD patterns of NUC-51 at variable temperatures.

Fig. S9. The catalytic efficiency of NUC-51a and NUC-51a' for cycloaddition reaction.

Fig. S10. The PXRD patterns of NUC-51a and NUC-51a' after cycloaddition reaction and deacetalization-Knoevenagel condensation reaction.

Fig. S11. The PXRD patterns of NUC-51a and simulation.

Fig. S12. N₂ adsorption and desorption isotherms of NUC-51a at 77 K.

Fig. S13. CO₂ sorption isotherms of NUC-51a at 273 and 298 K.

Isosteric Heat Calculation.

Fig. S14. CO₂ adsorption heat calculated by the virial equation of NUC-51a.

Yield Calculation Based on the GC-MS Analysis.

Fig. S15. ¹H NMR spectrum of propylene carbonate.

Fig. S16. ¹H NMR spectrum of 4-fluoro-1,3-dioxolan-2-one.

Fig. S17. ¹H NMR spectrum of 4-chloro-1,3-dioxolane-2-one.

Fig. S18. ¹H NMR spectrum of 4-ethyl-1,3-dioxolan-2-one.

Fig. S19. ¹H NMR spectrum of 4-(trifluoro)-1,3-dioxolane-2-one.

Fig. S20. ¹H NMR spectrum of 4-vinyl-1,3-dioxolan-2-one.

Fig. S21. ¹H NMR spectrum of 4-phenyl-1,3-dioxolan-2-one.

Fig. S22. Recyclability study (five cycles) for catalytic activities of **NUC-51a** in cycloaddition reaction of styrene oxide with CO₂.

Fig. S23. The PXRD patterns of NUC-51a after recycled cycloaddition reaction.

Fig. S24. Evidence of heterogeneous nature of NUC-51a in the cycloaddition reaction.

Fig. S25. The catalytic mechanism of cycloaddition reaction of epoxides with CO₂.

Fig. S26. ¹H NMR spectrum of 2-[(4-nitrophenyl) methylidene] propanedinitrile.

Fig. S27. ¹H NMR spectrum of 2-[(4-fluorophenyl)methylidene] propanedinitrile.

Fig. S28. ¹H NMR spectrum of 2-[(4-bromophenyl)methylidene] propanedinitrile.

Fig. S29. ¹H NMR spectrum of 2-(phenylmethylidene)propanedinitrile.

Fig. S30. ¹H NMR spectrum of 2-[(3,4-dimethoxyphenyl)methylidene]propanedinitrile.

Fig. S31. ¹H NMR spectrum of 2-[(3,4,5-trimethoxyphenyl)methylidene]propanedinitrile.

Fig. S32. ¹H NMR spectrum of 2-[(4-methylphenyl)methylidene]propanedinitrile.

Fig. S33. ¹H NMR spectrum of 2-[(3,4-dimethylphenyl)methylidene]propanedinitrile.

Fig. S34. ¹H NMR spectrum of 2-[(anthracen-9-yl)methylidene]propanedinitrile.

Fig. S35. ¹H NMR spectrum of 2-{[4-(3,5-dimethylphenoxy)phenyl]methylidene} ropanedinitrile.

Fig. S36. Recyclability study for catalytic activities of NUC-51a in deacetalization-Knoevenagel reaction.

Fig. S37. The PXRD patterns of NUC-51a after recycled deacetalization-Knoevenagel reaction.

Fig. S38. Evidence of heterogeneous nature of NUC-51a in the deacetalization-Knoevenagel reaction.

Fig. 39. Plausible reaction mechanism of deacetalization-Knoevenagel reaction catalyzed by NUC-51a.

Fig. 40. Two dimensional molecular sizes of deacetalization-Knoevenagel reaction reactants and products.

Reference

Experimental Section

Materials and General Methods

Thermogravimetric analyses (TGA) from room temperature to 800 °C were carried out by a NETZSCH STA 449 F3 thermogravimetric analyzer under air flow at a 10 °C/min ramp rate. IR spectrum in the range of 500-4000 cm⁻¹ was collected on a Nicolet 740 FT-IR spectrometer. Element analysis (EA) for C, N, and H was monitored on the EA 1110 element analyzer of CE instrument. Powder X-ray diffraction (PXRD) was collected for 2θ values (5~30°) on X-Pert pro diffractometer with Cu-K α radiationin. The N₂ (77K) and CO₂ (273K and 298K) adsorption-desorption isotherms were performed on an ASAP 2020 Plus instrument. Inductively coupled plasma (ICP) measurements were analyzed on an IRIS Advantage spectrometer equipped with a CCD detector and Ar plasma covering 175-785 nm range. Gas chromatography mass spectrometry (GC-MS) analyses were performed on a time-of-flight Thermo Fisher Trace ISQ GC/MS instrument. ¹H NMR spectra were recorded on a JEOL-ECX 500 FT (400 MHz) instrument with *n*-dodecane as the internal standard.

X-ray crystallography

A summary of crystallographic data, refinement parameter and bond lengths and angles for NUC-51 were given in Table S1 and S2. The diffraction intensity data for NUC-51 was obtained at 296(2) K by using a Bruker Smart-APEX II CCD area detector (Mo-K α radiation, $\lambda = 0.071073$ nm) with graphite-monochromated radiation. The data integration and reduction were processed with SAINT software. The reflection data were consequently corrected for empirical absorption corrections and Lorentz and polarization effects. The structure was solved by direct methods and refined by full-matrix least-squares with the SHELXL package. All non-hydrogen atoms were refined anisotropically, until convergence was attained. Hydrogen atoms except those on water molecules were generated geometrically with fixed isotropic thermal parameters, and included in the structure factor calculations. The block of SQUEEZE in PLATON was employed to eliminate the highly disordered solvent molecular. Further details on the crystal structure investigations may be obtained from the Cambridge Crystallographic Data Centre, with the depository number CCDC-2072307 for NUC-51.

Complex	NUC-51
Formula	C ₂₉ H ₁₁ BaNO ₁₃ Zn
Mr	784.10
Crystal system	trigonal
Space group	R-3m
a (Å)	48.046(10)
b (Å)	48.046(10)
c (Å)	13.469(3)
α (°)	90
β (°)	90
γ (°)	120
V(Å ³)	26926(13)
Ζ	18
Dcalcd(g·cm ⁻³)	0.870
μ(mm ⁻¹)	5.885
GOF	1.033
$R_1[I \ge 2\sigma(I)]^a$	0.0541
$wR_2[I{>}2\sigma(I)]^b$	0.1484
$R_1^{\rm a}$ (all data)	0.0664
w R_2^{b} (all data)	0.1566
$R_{\rm int}$	0.1318
$aR_1 = \sum F_o - F_c / \sum F_o $. $bwR_2 =$	$\frac{\left \sum w(\mathbf{F}_{o} ^{2} - \mathbf{F}_{c} ^{2})\right }{\sum w(\mathbf{F}_{o}^{2})^{2} ^{1/2}}$

 Table S1. Crystallographic data and refinement parameters of NUC-51.

Selected bond lengths/Å						
Ba1-O5 ¹	2.338(5)	Ba1-O2 ²	2.307(4)	Ba1-O2	2.307(4)	
Ba1-O4 ³	2.422(4)	Ba1-O4 ⁴	2.422(4)	Ba1-O3 ³	2.473(4)	
Ba1-O3 ⁴	2.473(4)	Ba1-O1W	2.419(6)	Zn1-O7 ⁵	1.928(5)	
Zn1-O1 ²	1.962(5)	Zn1-O1	1.962(5)	Zn1-O6 ¹	1.923(5)	
		Selected ar	ngles/°			
O51-Ba1-O42	75.54(1)	O51-Ba1-O43	75.53(1)	O51-Ba1-O32	125.75(1)	
O51-Ba1-33	125.7(1)	O5 ¹ -Ba1-O1W	148.9(2)	O2-Ba1-O51	79.54(2)	
O2 ⁴ -Ba1-O5 ¹	79.53(2)	O2 ⁴ -Ba1-O2	87.5(2)	O24-Ba1-O4 ³	91.80(2)	
O2 ⁴ -Ba1-O4 ²	154.7(2)	O2-Ba1-O4 ²	91.81(2)	O2-Ba1-O4 ³	154.76(2)	
O2-Ba1-O3 ²	88.82(2)	O2 ⁴ -Ba1-O3 ²	153.20(2)	O2-Ba1-O3 ³	153.20(2)	
O2 ⁴ -Ba1-O3 ³	88.81(2)	O2-Ba1-O1W	78.11(2)	O2 ⁴ -Ba1-O1W	78.10(2)	
O4 ² -Ba1-O4 ³	78.3(3)	O4 ² -Ba1-O3 ³	102.53(2)	O4 ² -Ba1-O3 ²	51.87(2)	
O4 ³ -Ba1-O3 ³	102.5(2)	O3 ² -Ba1-O3 ³	82.7(3)	O1W-Ba1-O4 ³	126.39(2)	
O1W-Ba1-O4 ²	126.4(2)	O1W-Ba1-O3 ²	75.16(2)	O1W-Ba1-O3 ³	75.16(2)	
O2 ⁴ -Ba1-O4 ³	91.80(2)	O7 ⁵ -Zn1-O1	103.97(1)	O1 ⁴ -Zn1-O1	113.9(3)	
O6 ¹ -Zn1-O7 ⁵	101.3(2)	O6 ¹ -Zn1-O1 ⁴	115.61(1)	O6 ¹ -Zn1-O1	115.61(1)	
O7 ⁵ -Zn1-O1 ⁴	103.9(1)					

 Table S2. Selected bond lengths and angles.

Complex	NUC-27	NUC-51
Unit cell system	monoclinic system	trigonal system
Space group	P21/n	R-3m
Molecular formula	$\{[Ba_{3}Zn_{4}(TDP)_{2}(HCO_{2})_{2}(OH_{2})_{2}]\cdot 7DMF\cdot 4H_{2}O\}_{n}$	$\{[(CH_3)_2NH_2]_2[BaZn(TDP)(H_2O)]\cdot DMF\cdot 5H_2O\}_n$
Void volume occupancy	58.8%	62.1%
Carboxyl coordination mode	μ_2 - η^1 : η^1	$\mu_I - \eta^0: \eta^1; \mu_1 - \eta^1: \eta^1; \mu_2 - \eta^1: \eta^1$
in TDP ⁶⁻		
SBU	$[BaZn_2(CO_2)_6]$ and $[BaZn(CO_2)_3(OH_2)]$	$[BaZn(CO_2)_6(H_2O)]$
Zn Coordination number	tetra-coordination	tetra-coordination
Ba Coordination number	hexa- and tetra-coordinated	eight-coordination
3D architectures	3-nodal 4-connected 2D sheet	5-connected nodes <i>fng</i> -type 3D structure
Point (Schläfli) symbol	$\{3.6^4.7\}_4\{3^2.6^2.7^2\}$	$\{4^6.6^4\}$
Synthetic conditions	3 mL DMF, 3 mL EtOH, 1.5 mL H_2O and 0.1 mL 10% HNO ₃ ; Heated at 130 °C for 72h	3 mL DMF, 3 mL EtOH, 4 mL H ₂ O and 0.1 mL 10% HNO ₃ ; Heated at 130 °C for 72h

 Table S3. The detailed structure comparisons among complexes NUC-27 and NUC-51.

	4	+	$CO_2 - Cataln-Bu_4NI$	lyst Br,CO ₂ ,T	\sim				
MOF	Catalyst (mmol)	<i>n-</i> Bu ₄ NBr (mmol)	Temperature (°C)	Pressure (atm)	Time (h)	Yield (%)	TON ^a	TOF ^b (h ⁻¹)	Ref.
Zn-MOF-74	0.06	0.075	80	1	6	70	58.3	9.7	S1
Zn-MOF-184	0.06	0.075	80	1	6	82	68.3	11.4	S 1
PNU-21	0.15	0.075	80	4	8	66	110	13.75	S2
Ba-MOF	0.1	0.4	25	1	48	19.8	39.6	0.83	S3
ZnMOF-1-NH ₂	0.2	0.5	80	8	8	88	58	7.3	S4
NUC-27	0.4	1.0	60	1	8	98	45	5.6	S5
NUC-21	0.2	1.0	60	1	6	92	46	7.6	S6
NUC-30	0.2	1.0	60	10	12	92	92	7.7	S7
NUC-51	0.2	1.0	55	1	6	97.2	121.3	16.2	Our

Table S4. Published Zn or Ba-based MOFs' catalytic effect of cycloaddition reaction.

^{*a*}**TON**= turnover number (defined as moles of the yielded product per mole of the catalyst per hour); ^{*b*}**TOF** = turnover frequency;

Molecular formula:

Zn-MOF-74: Zn₂ (2,5-dihydroxyterephthalic acid);

Zn-MOF-184: Zn₂ (4,4'-(ethyne-1,2-diyl)bis(2-oxido-Benzoate);

 $\textbf{PUN-21:} [Zn_2(H_2O)(stdb)_2(5H-Ade)(9H-Ade)_2]_n;$

Ba-MOF: $\{[Ba_2(BDPO)(H_2O)] \cdot DMA\}_n;$

ZnMOF-1-NH₂: $\{[Zn(ATA)(L) \cdot H_2O]\}_n$

NUC-27: ${[Ba_3Zn_4(TDP)_2(HCO_2)_2(OH_2)_2] \cdot 7DMF \cdot 4H_2O_n}$

NUC-21: $\{[(CH_3)_2NH_2]_2[CaZn(TDP)(H_2O)] \cdot 3DMF \cdot 3H_2O\}_n$

NUC-30: ${[ZnHo(TDP)(H_2O)] \cdot 5H_2O \cdot 3DMF}_n$

NUC-51: {[(CH₃)₂NH₂]₂[BaZn(TDP)(H₂O)]·DMF·5H₂O}_n

Entry	Epoxide	Epoxide size	Product	Product size
1	$-\!$	4.96 A 4.40 A		5.68A 4.43Å
2	FO		F 0 0	5.47Å 4.24N
3	CI	4.58 Å 3.79 Å		5.894 4.44
4		5.23 A 3.79 X		6-48.1 4.60M
5	F F O F	5.48 Å 4.52 Å		6.25Å 3,10Å
6	↓ ○	5.72 Å 4.54 Å		6.40Å 4.32Å
7		6.04 A 4.37 N		7.84A 4.F2A

Table S5. The molecular sizes of epoxides and corresponding products of cycloaddition reaction.

Entry	Substrate	Molecular size	Product	Product size
1	O ₂ N	6.68A 3.86A		6.34A 3.55N
2	F O	6.70Å 3.88Å		5834 2.30h
3	-0 Br	6.88Å 3,42Å		6.18A 3.6MA
4		6.62A 3.96A		617A 333M
5		8.09Å 4.29Å		6.554 AULA
6		7.95Å 4.55Å		8.264 AUN
7		6.13A 4.50Å		6.31A 3.10Å
8		7.44Å 7.20Å		6.394 4.15h
9		10.54Å 1.51Å		8.53A 3.3A
10		8,17Å 1,63Å		10.80Å

Table S6. The molecular sizes of reactants and corresponding products of deacetalization-Knoevenagel condensation reaction.

Table S7. The elemental analysis results of cation exchange between tetrabutylammonium cations (TBA⁺) and dimethylamine cations (DMA⁺) in **NUC-51a**.

Sample	C/%	H/%	N/%
${[(CH_3)_2NH_2]_2[BaZn(TDP)]}_n (NUC-51a)$	46.18	2.94	4.90
Recovered sample of NUC-51a	58.26	6.47	3.49
$\label{eq:constraint} \{ [(C_4H_9)_4N]_2 [BaZn(TDP)] \}_n$ Speculated molecular formula after complete cation exchange	58.47	6.68	3.35

Fig. S1 The inner surface environment of cylindrical channel (a) and hexagon channel (b) in NUC-51.

Fig. S3 The SEM imagine of NUC-51.

Fig. S4 The PXRD patterns of NUC-51 sample under water treatment.

Fig. S5 Energy dispersive spectroscopy (EDS) elemental mappings of NUC-51 sample for C, N, O, Ba and Zn.

Fig. S7 The TGA curves of NUC-51 and NUC-51a.

Fig. S8 The PXRD patterns of **NUC-51** at variable temperatures and 1-7 correspond to simulation, 30°C, 100°C, 150°C, 280°C, 300°C and 350°C respectively.

Fig. S9 The catalytic efficiency of NUC-51a and NUC-51a' for cycloaddition reaction (a) and deacetalization-Knoevenagel condensation reaction (b).

Fig. S10 The PXRD patterns of NUC-51a and NUC-51a' after cycloaddition reaction and deacetalization-Knoevenagel condensation reaction.

Fig. S11 The PXRD patterns of NUC-51a and simulation.

Fig. S12 N₂ adsorption and desorption isotherms of NUC-51a at 77 K.

Fig. S13 CO₂ sorption isotherms of NUC-51a at 273 and 298 K.

Isosteric Heat Calculation.

The Q_{st} value is a parameter that describes the average enthalpy of adsorption for an adsorbing gas molecule at a specific surface coverage and is usually evaluated using two or more adsorption isotherms collected at similar temperatures. The zero-coverage isosteric heat of adsorption is evaluated by first fitting the temperature-dependent isotherm data to a virial-type expression, which can be written as:

$$\ln p = \ln N + \frac{1}{T} \sum_{i=0}^{m} a_i N^i + \sum_{j=0}^{n} b_j N^j$$

N: Adsorption capacity (mg/g); p: Pressure (mmHg); T: Temperature (K); $\mathbf{a_i} \cdot \mathbf{b_j}$: Empirical constant; R: Universal gas constant (8.314 J·mol⁻¹·K⁻¹)

The isosteric enthalpy of adsorption (Qst) :

$$Q_{st} = -R \sum_{i=0}^{m} a_i N^i$$

Fig. S14 CO₂ adsorption heat calculated by the virial equation of NUC-51a.

Yield Calculation Based on the GC-MS Analysis

Gas chromatography mass spectrometry (GC-MS) analyses were executed on a time-of-flight Thermo Fisher Trace ISQ GC/MS instrument, the yield (%) was calculated based on the consumption of starting material using the equation:

δ H (400 MHz, DMSO) 4.96-4.82 (0 H, m), 4.56 (0 H, t, J 8.0), 4.10-4.02 (0 H, m), 1.36 (1 H, d, J 6.2).

 $\delta~H~(400~MHz, DMSO)~6.59~(0~H,~ddd,~J~64.4,~4.1,~0.9),~4.81-4.57~(1~H,~m),~3.38~(1~H,~s),~2.50~(1~H,~s).$

δ H (400 MHz, DMSO) 6.93 (0 H, dd, J 5.3, 1.3), 4.96 (0 H, dd, J 10.5, 5.3), 4.71 (0 H, dd, J 10.5, 1.3), 3.48 (1 H, s), 2.50 (1 H, s).

δ H (400 MHz, DMSO) 4.80 - 4.68 (0 H, m), 4.55 (0 H, t, J 8.1), 4.19-4.10 (0 H, m), 3.37 (1 H, s), 2.50 (1 H, s), 1.75-1.63 (1 H, m), 0.90 (1 H, t, J 7.4).

δ H (400 MHz, DMSO) 5.69-5.58 (0 H, m), 4.79 (1 H, t, J 9.1), 4.72 (1 H, dd, J 9.7, 4.1), 3.36 (1 H, s), 2.50 (1 H, s).

 $\delta \ {\rm H} \ (400 \ {\rm MHz}, {\rm DMSO}) \ 6.08-5.93 \ (0 \ {\rm H}, m), \ 5.43 \ (1 \ {\rm H}, \ {\rm dd}, \ {\rm J} \ 34.1, \ 13.8), \ 5.27 \ (0 \ {\rm H}, \ {\rm q}, \ {\rm J} \ 7.2), \ 4.64 \ (0 \ {\rm H}, \ {\rm t}, \ {\rm J} \ 8.2), \ 4.25-4.17 \ (0 \ {\rm H}, \ m), \ 3.38 \ (1 \ {\rm H}, \ {\rm s}), \ 2.50 \ (1 \ {\rm H}, \ {\rm s}).$

δ H (400 MHz, DMSO) 7.57-7.39 (5 H, m), 5.86 (1 H, t, J 8.0), 4.89 (1 H, t, J 8.3), 4.42 (1 H, t, J 8.2), 3.34 (1 H, s), 2.50 (1 H, s).

Recycle number Fig. S22 Recyclability study (five cycles) for catalytic activities of NUC-51a in cycloaddition reaction of styrene oxide with CO₂.

Fig. S23 The PXRD patterns of NUC-51a after recycled cycloaddition reaction.

Fig. S24 Evidence of heterogeneous nature of NUC-51a in the cycloaddition reaction.

Fig. S25 The catalytic mechanism of cycloaddition reaction of epoxides with CO₂.

δ H (400 MHz, DMSO) 8.73 (1 H, s), 8.42 (2 H, dd, J 17.3, 10.4), 8.25-8.06 (2 H, m), 3.45 (1 H, s), 2.51 (1 H, s).

δ H (400 MHz, DMSO) 8.56 (1 H, s), 8.15-8.00 (2 H, m), 7.51 (2 H, t, J 7.8), 3.47 (1 H, s), 2.51 (2 H, s).

δ H (400 MHz, DMSO) 8.63 (1 H, d, J 52.0), 7.66-7.46 (5 H, m), 3.47 (1 H, s), 2.51 (1 H, s).

(2 H, s).

Fig. S31 ¹H NMR spectrum of 2-[(3,4,5-trimethoxyphenyl)methylidene]propanedinitrile. δ H (400 MHz, DMSO) 8.40 (1 H, s), 7.38 (2 H, s), 3.83 (1 H, s), 3.81 (3 H, s), 3.44 (1 H, s), 2.51 (4 H, s).

(3 H, s).

δ H (400 MHz, DMSO) 8.42 (1 H, s), 7.73 (2 H, d, J 9.5), 7.40 (1 H, d, J 7.8), 3.43 (1 H, s), 2.52 (1 H, d, J 17.5), 2.40-2.21 (6 H, m).

δ H (400 MHz, DMSO) 8.13 (1 H, d, J 8.9), 7.74-7.68 (1 H, m), 7.61 (2 H, dd, J 18.0, 8.8), 7.54-7.41 (4 H, m), 7.22 (1 H, d, J 13.6), 5.01 (2 H, dd, J 21.5, 7.4), 3.48 (1 H, s), 2.50 (4 H, s).

Fig. S35 ¹H NMR spectrum of 2-{[4-(3,5-dimethylphenoxy)phenyl]methylidene}propanedinitrile.
δ H (400 MHz, DMSO) 7.95 (0 H, dd, J 32.0, 8.7), 7.58 (0 H, d, J 8.7), 7.12 (0 H, dd, J 16.7, 8.7), 6.91 (0 H, d, J 8.9),
6.84-6.73 (0 H, m), 3.84- 3.54 (0 H, m), 2.61- 2.44 (0 H, m), 2.29 (1 H, s).

Fig. S36 Recyclability study for catalytic activities of NUC-51a in deacetalization-Knoevenagel reaction.

Fig. S37 The PXRD patterns of NUC-51a after recycled deacetalization-Knoevenagel reaction.

Fig. S38 Evidence of heterogeneous nature of NUC-51a in the deacetalization-Knoevenagel reaction.

Fig. S39 Plausible reaction mechanism of deacetalization-Knoevenagel reaction catalyzed by NUC-51a.

Fig. S40 Two dimensional molecular sizes of deacetalization-Knoevenagel reaction reactants (close symbol) and products (open symbol) simulated by Mater Studio (The two-dimensional molecular sizes refer to the smaller two of the three parameters of molecular length, width and height).

Reference:

S1. Y. B. N. Tran.; Phuong T. K. Nguyen.; Quang T. Luong, Khoi D. Nguyen. Series of M-MOF-184 (M = Mg, Co, Ni, Zn, Cu, Fe) Metal-Organic Frameworks for Catalysis Cycloaddition of CO_{2.} *Inorg. Chem.*, 2020, **59**, 16747-16759.

S2. Rachuri, Y.; Kurisingal, J. F.; Chitumalla, R. K.; Vuppala, S.; Gu, Y.; Jang, J.; Choe, Y.; Syresh, E.; Pare, D. Adenine-based Zn(II)/Cd(II) metal-organic frameworks as efficient heterogeneous catalysts for facile CO₂ fixation into cyclic carbonates: a DFT-supported study of the reaction mechanism. *Inorg. Chem.*, 2019, **58**, 11389-11403.

S3. Li, X. Y.; Ma, L. N.; Liu, Y.; Lei, H.; Zhu, Z. Honeycomb Metal-Organic Framework with Lewis Acidic and Basic Bifunctional Sites: selective adsorption and CO₂ catalytic fixation. *ACS Appl. Mater. Interfaces.*, 2018, **10**, 10965-10973.

S4. Patel, P.; Parmar, B.; Kureshy, R. I.; Khan, N. H.; Suresh, E. Amine-Functionalized Zn(II) MOF as an Efficient Multifunctional Catalyst for CO₂ Utilization and Sulfoxidation Reaction. *Dalton Trans.*, 2018, **47**, 8041-8051.

S5. Chen, H.; Fan, L.; Hu, T.; Zhang, X. 6s-3d {Ba₃Zn₄}-Organic Framework as an effective heterogeneous catalyst for chemical fixation of CO₂ and knoevenagel condensation reaction. *Inorg. Chem.*, 2021, **60**, 3384-3392.

S6. Chen, H.; Fan, L.; Zhang, X. Highly robust 3s-3d {CaZn}-Organic Framework for excellent catalytic performance on chemical fixation of CO₂ and knoevenagel condensation reaction. *ACS Appl. Mater. Interfaces*, 2020, **12**, 54884-54892.

S7. Zhang, T.; Chen, H.; Lv, H.; Li, Q.; Zhang, X. Nanochannel-based heterometallic {Zn^{II}Ho^{III}}-organic framework with high catalytic activity for the chemical fixation of CO₂. *RSC Adv.*, 2021, **11**, 9731-9739.