SUPPORTING INFORMATION

Luminescent cyclometalated alkynylplatinum(II) complexes with 1,3-di(pyrimidin-2-yl)benzene ligands: synthesis, electrochemistry, photophysics and computational studies

Mariia Hruzd,^a Nicolas le Poul,^b Marie Cordier,^a Samia Kahlal,^a Jean-Yves Saillard,^a Sylvain

Achelle,^{a*} Sébastien Gauthier,^{a*} and Françoise Robin-le Guen^{a*}

^a Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France. E-mails: sylvain.achelle@univ-rennes1.fr, sebastien.gauthier@univrennes1.fr francoise.le-guen@univ-rennes1.fr

^b Laboratoire de Chimie, Électrochimie Moléculaires et Chimie Analytique, UMR CNRS 6521, Université de Bretagne Occidentale, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu – CS 93837, F-29238 Brest Cedex 3, France.

Table of content

Synthesis of the N ^C N ligands 18-20	2
NMR Spectra of ligand 20	3
NMR Spectra of complexes 4-14	4
Mass spectra ESI-MS of complexes 3-14 and ligand 20	15
Crystallographic Data for 7 and 8	17
Addditional Cyclic Voltammetry	19
Additional Photophysical Data	20
Additional Theoretical Results	26
References	40

Scheme S1 Synthesis of the N^C^N ligands 18-20.

Fig. S6 ¹³C NMR spectrum (JMOD, 75 MHz, THF-d8) of 5.

Fig. S16¹³C NMR spectrum (JMOD, 75 MHz, CDCl₃) of 11.

Fig. S20¹³C NMR spectrum (JMOD, 75 MHz, CDCl₃) of 13.

N⁰	Mass Spectra	Assignment (m/z values)
3	Interes 110 110 110 110 110 110 110 11	eq:massessessessessessessessessessessessesse
4	Interes x106 3 2 1 428,0470 220 400 400 400 400 400 400 40	$\begin{split} & [\mathbf{M} + \mathbf{Na}]^+ (\mathbf{C_{22}H_{14}N_4Na^{195}Pt}) \ 552.0759, \\ & \text{found:} \ 552.0761 \ (0 \ \text{ppm}) \\ & [\mathbf{M_2} + \mathbf{Na}]^+ (\mathbf{C_{22}H_{16}N_4ONa^{195}Pt}) \\ & 570.0064, \ \text{found:} \ 570.0060 \ (1 \ \text{ppm}) \\ & [\mathbf{M} - \mathbf{C_8H_5}]^+ (\mathbf{C_{14}H_9N_4}^{195}Pt) \ 428.0470, \\ & \text{found:} \ 428.0470 \ (0 \ \text{ppm}) \end{split}$
5	Inters. ESI_11689_M6_01.4: +MS, 0.0-1.7mm FI-102 3 542.0668 2 428.0468 428.0468 554.200 200 400 650 800 1000 m/z	[M+Na] ⁺ (C ₂₃ H ₁₆ N ₄ ONa ¹⁹⁵ Pt) 582.0864, found: 582.868 (1 ppm) [M ₂ +Na] ⁺ (C ₂₃ H ₁₈ N ₄ ¹⁶ ONa ¹⁹⁵ Pt) 600.0969, found: 600.0065 (1 ppm) [M-C ₉ H ₇ O] ⁺ (C ₁₄ H ₉ N ₄ ¹⁹⁵ Pt) 428.0469, found: 428.0468 (0 ppm)
6	Inters. 551_11688_MS_01.d+4MS_00.2 Omin 81-120 100 577.0712 0.75 0.55 0.25 435.0469 0.00 200 200 400 0.00 000 1000 1200	[M+Na] ⁺ (C ₂₃ H ₁₃ N ₅ Na ¹⁹⁵ Pt) 577.0711, found: 577.0712 (0 ppm) [M ₂ + Na] ⁺ (C ₂₃ H ₁₅ N5ONa ¹⁹⁵ Pt) 595.0816, found: 595.0816 (0 ppm) [M-C ₉ H ₄ N] ⁺ (C ₁₄ H ₉ N ₄ ¹⁹⁵ Pt) 428.0469, found: 428.0468 (0 ppm)
7	Notes: (Si_11373_M5_01.6 +M5, 0.0-2.0min #1-120 1.0 512.0866 0.6 66 0.6 469.3383 0.0 1000 1141_1942 200 460 600 800 1000 1200	$[M+Na]^{+}(C_{23}H_{16}N_4ONa^{195}Pt)$ 582.0864, found: 577.0666 (0 ppm) $[M-C_8H_5]^{+}(C_{15}H_{11}N_4O^{195}Pt) 458.0575$ found: 458.0570 (1 ppm) $[M+K]^{+}(C_{23}H_{16}N_4OK^{195}Pt) 598.0603$ found: 598.0599 (1 ppm) $[M_2+Na]^{+}(C_{23}H_{18}N_4O_2Na^{195}Pt)$ 600.0969 found: 600.0963 (1 ppm) $M^{+}(m/z 559); [M+H]^{+}(m/z 560),$ $[L_2Pt_2]^{+}(m/z 558, 660,916); [L_2Pt_2L]^{+}$ (m/z 1017 base peak, 1118,1219, 1368)
8	Intens. ESt_11369_M6_01.4:+M5_00-17min 81-302 1.5 612.0977 1.0 0.5 0.0 325.1716 200 400 600 800 1000 1200 200 400	$[M+Na]^{+}(C_{24}H_{18}N_4O_2Na^{195}Pt)$ 612.0970, found: 612.0977 (1 ppm) $[M-C_9H_7O]^{+}(C_{15}H_{11}N_4O^{195}Pt)$ 458.0575 found: 458.055 (0 ppm) $[M_2+Na]^{+}(C_{24}H_{20}N_4O_3Na^{195}Pt)$ 630.1075 found: 630.1075 (1 ppm) M ⁺ (m/z 589); [M+H] ⁺ (m/z 590), [L_2Pt_2] ⁺ (m/z 916); [L_2Pt_2L] ⁺ (m/z 1047 base peak)

Crystallographic Data for 7 and 8

Complex 7: crystal Data for C₂₃ H₁₆ N₄ O Pt, (M = 559.49), monoclinic, space group *C 2/c* (I.T.#15), a = 24.768(3), b = 10.8889(13), c = 13.8726(19)Å, $\beta = 92.343(6)^{\circ}$, V = 3738.3(8) Å³. Z = 8, d = 1.988 g.cm⁻³, $\mu = 7.530$ mm⁻¹. The structure was solved by dual-space algorithm using the *SHELXT* program,^[1] and then refined with full-matrix least-square methods based on F^2 (*SHELXL*).^[2] All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. H atoms were finally included in their calculated positions. A final refinement on F^2 with 4245 unique intensities and 221 parameters converged at $\omega R(F^2) = 0.0965$ (R(F) = 0.0467) for 2978 observed reflections with $I > 2\sigma(I)$.

Compound	7	
Empirical formula	C23 H16 N4 O Pt	
CCDC	2126978	
Formula weight	559.49	
Temperature	150 K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	<i>C 2/c</i>	
Unit cell dimensions	a = 24.768(3) Å	$\alpha = 90^{\circ}$
	b = 10.8889(13) Å	$\beta = 92.343(6)^{\circ}$
	c = 13.8726(19)Å	$\gamma = 90^{\circ}$
Volume	3738.3(8) Å ³	,
Ζ	8	
Density (calculated)	1.988 g/cm ³	
Absorption coefficient	7.530 mm ⁻¹	
F(000)	2144	
Crystal size	0.160 x 0.150 x 0.130 mm	1
Crystal color	orange	
Theta range for data collection	2.497 to 27.473°.	
Index ranges	-22<=h<=31, -14<=k<=14	4, -16<=l<=17
Reflections collected	12914	
Independent reflections	4245 [R(int) = 0.0636]	
Reflections [I>2sigma(I)]	2978	
Completeness to theta max	99.0 %	
Absorption correction	multi-scan	
Max. and min. transmission	0.376 and 0.297	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	4245 / 1 / 221	
Goodness-of-fit on F ²	1.031	
Final R indices [I>2sigma(I)]	R1 = 0.0467, wR2 = 0.09	965
R indices (all data)	R1 = 0.0773, wR2 = 0.10	078
Largest diff. peak and hole	2.575 and -1.931 e.Å ⁻³	

Table S2. Crystallographic data for 7.

Complex 8: crystal Data for C₂₄ H₁₈ N₄ O₂ Pt, (M = 589.51), monoclinic, space group $P 2_1/c$ (I.T.#14), a = 12.4772(12), b = 7.8562(5), c = 20.3724(18) Å, $\alpha = 90$, $\beta = 94.458(6)$, $\gamma = 90$ °, V = 1990.9(3) Å³. Z = 4, d = 1.967 g.cm⁻³, $\mu = 7.078$ mm⁻¹. The structure was solved by dual-space algorithm using the SHELXT program,^[1] and then refined with full-matrix least-square methods based on F² (SHELXL).^[2] All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. H atoms were finally included in their calculated positions. A final refinement on F² with 3675 unique intensities and 282 parameters converged at $\omega R(F^2) = 0.0852$ (R(F) = 0.0424) for 2555 observed reflections with I > 2 σ (I).

Compound 8 Empirical formula C24 H18 N4 O2 Pt CCDC 2126979 Formula weight 589.51 Temperature 150 K Wavelength 0.71073 Å Crystal system Monoclinic Space group $P 2_{1}/c$ Unit cell dimensions a = 12.4772(12) Å $\alpha = 90^{\circ}$. b = 7.8562(5) Å $\beta = 94.458(6)^{\circ}$. c = 20.3724(18) Å $\gamma = 90^{\circ}$. 1990.9(3) Å³ Volume Ζ 4 Density (calculated) 1.967 g/cm³ Absorption coefficient 7.078 mm⁻¹ F(000) 1136 Crystal size 0.230 x 0.090 x 0.040 mm Crystal color orange Theta range for data collection 2.686 to 25.681°. Index ranges -16<=h<=16, 0<=k<=10, 0<=l<=26 Reflections collected 3675 Independent reflections 3675 [R(int) = 0.0903]Reflections [I>2sigma(I)] 2555 97.1 % Completeness to theta max Absorption correction multi-scan Max. and min. transmission 0.753 and 0.410 Refinement method Full-matrix least-squares on F² Data / restraints / parameters 3675 / 0 / 282 Goodness-of-fit on F² 0.949 Final R indices [I>2sigma(I)] R1 = 0.0424, wR2 = 0.0852R indices (all data) R1 = 0.0778, wR2 = 0.09301.446 and -1.360 e.Å-3 Largest diff. peak and hole

Table S3. Crystallographic data for 8.

Fig. S22 Cyclic voltammograms at a Pt working electrode ($E / V vs. Fc^+/Fc$) of A) complexes 5 (orange) and 6 (brown); B) complexes 8 (purple), 9 (light green), 10 (pink) and 11 (olive); C) complexes 13 (gray) and 14 (cyan), in CH₂Cl₂/NBu₄PF₆ 0.1 M under inert atmosphere. C = 0.5 mM.

Fig. S23 Absorption spectra of complexes 4-6 in CH_2Cl_2 (C ~ 10⁻⁵ M).

Fig. S24 Absorption spectra of complexes 12-14 in CH_2Cl_2 (C ~ 10⁻⁵ M).

Fig. S25 Normalized emission spectra of complexes **4-6** in deoxygenated CH₂Cl₂ solution (C ~ 10⁻⁵ M). $\lambda_{\text{exc}} = \lambda^{abs}_{\text{max}}$ of the lowest energy band Inset: picture of CH₂Cl₂ solution taken under UV irradiation.

Fig. S26 Normalized emission spectra of complexes **12-14** in deoxygenated CH₂Cl₂ solution (C ~ 10⁻⁵ M). $\lambda_{exc} = \lambda^{abs}_{max}$ of the lowest energy band Inset: picture of CH₂Cl₂ solution taken under UV irradiation.

Fig. S27 Normalized emission spectra of complexes **2**, and **7-11** in KBr matrix (2 w%). %). $\lambda_{\text{exc}} = \lambda^{abs}_{\text{max}}$ of the lowest energy band in CH₂Cl₂ solution. Inset: picture of KBr pellets taken under UV irradiation

Fig. S28 Photophysical Data for Complex 2 *a*) Absorption spectra at different concentration in CH_2Cl_2 solution; *b*) excitation spectra at different concentration in CH_2Cl_2 solution; *c*) Beer-Lambert law ; *b*)emission spectra at different concentration in deoxygenated CH_2Cl_2 solution, $\lambda_{exc} = \lambda^{abs}_{max}$ of the lowest energy band.

Fig. S29 Photophysical Data for Complex 8 *a*) Absorption spectra at different concentration in CH_2Cl_2 solution; *b*)excitation spectra at different concentration in CH_2Cl_2 solution; *c*) Beer-Lambert law ; *b*)emission spectra at different concentration in deoxygenated CH_2Cl_2 solution, $\lambda_{exc} = \lambda^{abs}_{max}$ of the lowest energy band.

Additional Theoretical Results

Table S4. Major computed optical transitions λ (nm) contributing to the simulated absorption band of lowest energy (see Table 3) and their dominant character. Oscillator strengths are provided in parentheses.

	λ (osc. strenght)	Major contribution
1	386 (0.1293)	H->L (+96%)
2	429 (0.1313)	H->L (+91%)
3	383 (0.1117)	H->L (+96%)
	422 (0.0156)	H->L (+98%)
4	386 (0.0566)	H-1→L+1 (79%), H→L+1 (19%)
5	464 (0.1475)	H->L (+97%)
	420 (0.2341)	H→L (97%)
6	395 (0.0619)	H->L (96%)
	384 (0.1139)	H-1→L+1 (95%)
7	461 (0.1037)	H→L (83%), H→L+1 (15%)
	448 (0.1006)	H→L+1 (82%), H→L (15%)
0	482 (0.1274)	H→L+1 (62%), H→L (35%)
ð	470 (0.0746)	H→L (61%), H→L+1 (35%)
0	433 (0.0485)	H→L (67%), H→L+1 (31%)
9	424 (0.1354)	H→L+1 (67%), H→L (31%)
10	434 (0.0614)	H→L (75%), H→L+1 (23%)
10	425 (0.1338)	H→L+1 (74%), H→L (23%)
11	505 (0.2127)	H→L (71%), H→L+ 1(20%)
11	490 (0.0434)	H→L+1 (72%), H→L (20%)
12	434 (0.1577)	H→L+1 (97%)
13	467 (0.1745)	H→L+1 (97%)
14	385 (0.0851)	H-1→L+1 (97%)
14	384 (0.0928)	H-1→L (95%)

Compound	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Pt-N	2.035	2.035	2.036	2.038	2.038	2.039	2.039	2.039	2.040	2.041	2.040	2.038	2.038	2.040
[WBI]	[0.414]	[0.414]	[0.414]	[0.414]	[0.414]	[0.413]	[0.414]	[0.414]	[0.412]	[0.412]	[0.414]	[0.414]	[0.414]	[0.413]
Pt-C _{N^C^N}	1.905	1.906	1.901	1.939	1.938	1.940	1.940	1.939	1.941	1.941	1.940	1.935	1.935	1.937
[WBI]	[0.776]	[0.763]	[0.784]	[0.630]	[0.631]	[0.628]	[0.620]	[0.621]	[0.619]	[0.619]	[0.621]	[0.636]	[0.638]	[0.635]
Pt-Cl or Pt-CCR	2.425	2.424	2.421	2.047	2.047	2.043	2.046	2.047	2.042	2.042	2.047	2.045	2.045	2.042
[WBI]	[0.288]	[0.289]	[0.294]	[0.474]	[0.474]	[0.480]	[0.477]	[0.476]	[0.482]	[0.482]	[0.477]	[0.478]	[0.477]	[0.482]
C≡C				1.225	1.225	1.226	1.225	1.226	1.226	1.226	1.226	1.225	1.225	1.225
[WBI]	-	-	-	[2.741]	[2.742]	[2.709]	[2.736]	[2.740]	[2.707]	[2.704]	[2.732]	[2.740]	[2.742]	[2.713]

Table S5. Relevant computed interatomic distances (in Å) and corresponding Wiberg bond indices (WBI) into bracket. for complexes 1-14.

Fig. S30 DFT-optimized structures of compounds 1-14.

Fig. S31a The frontier orbitals of complexes 1-7

Fig. S31b The frontier orbitals of complexes 8-14

Fig. S32 Relationship between the experimental electrochemical $E_{pc}(3)$ values and the DFT-computed electron affinities (EA).

Fig. S33 TD-DFT-simulated UV/vis spectra of compounds 1-3

Fig. S34 TD-DFT-simulated UV/vis spectra of compounds 4-6

Fig. S35 TD-DFT-simulated UV/vis spectra of compounds 7-11

Fig. S36 TD-DFT-simulated UV/vis spectra of compounds 12-14

Fig. 37 DFT-simulated phosphorescence spectra of compounds 1-3

Fig. S38 DFT-simulated phosphorescence spectra of compounds 5 and 6

Fig. S39 DFT-simulated phosphorescence spectra of compounds 7-11

Fig. S40 DFT-simulated phosphorescence spectra of compounds 12 and 14

Fig. S41 DFT-optimized structures of the lowest triplet stated of compounds 1-14.

Fig. S42 Spin densities of the lowest triplet state of complexes 1-14.

Fig. S43 Density difference plots associated with the triplet—singlet emissive transitions. The blue and yellow colors indicate an increase and decrease of density upon de-excitation, respectively. The numerical values are the computed charge transfers (q^{CT}) and corresponding distance transfer (d^{CT} , in Å), respectively (see Computational details).

Fig. S44 Comparison of absorption spectra theoretical (black line) and practical (red line) of complexes 1, 2, 7 and 8 in CH₂Cl₂ solution

References

[1] Sheldrick, G. M. SHELXT - Integrated Space-group and Crystal-structure Determination. *Acta Cryst.*, **2015**, A71, 3–8.

[2] Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Cryst., 2015, C71, 3-8.