Electronic Supplementary Information

Variable Dimensionality of Anion Framework in Four New Borophosphates and

Fluoroborophosphates with Short Cutoff Edge

Ruonan Zhang,^{+a,b} Siru Guo,^{+a,b} Xuping Wang,^{*a,c} Rong Yang,^{a,b} Zhen Chen,^{a,b} Wenyao Zhang,^{a,b}

Fangfang Zhang,^a Zhiyong Guo,^d Shujuan Han,*^a Zhihua Yang^a

^aCAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics &Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.

^bCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

^cAdvanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.

^dXuchang Quality and Technical Supervision, Inspection and Testing Center, National Quality Supervision and Inspection Center for Ceramic Products of China, West Section of Longxing Road, Dongcheng District, Xuchang 461000, China.

*Corresponding author, E-mail: hansj@ms.xjb.ac.cn

Empirical formula	$Cs_3B_3P_4O_{16}$	$Li(NH_4)_2B_3P_4O_{16}$	$K_4B_2P_2O_9F_2$	$Rb_3B_2PO_5F_4$
Formula weight	811.04	455.33	421.96	465
Temperature	302.0 K	300.0 K	302.0	298.0 K
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system, space group	Monoclinic, P2 ₁ /c a=13.0515(8)	Monoclinic, P2 ₁ /c a=7.3237(4)	Monoclinic, P2 ₁ /c a=13.1574(7)	Monoclinic, P2 ₁ /c a=7.3447(6)
Unit cell dimensions (Å)	b=15.3256(10) c=7.9289(5) β = 96.283(2)°	b=25.6466(14) c=7.6796(4) β = 119.951(4)°	b=12.3117(6) c=7.0252(4) β = 90.351(2)°	b=10.3803(8) c=12.3628(9) β = 94.699(3)°
Volume (ų)	1574.43(17)	1249.81(12)	1137.99(10)	939.37(13)
Z, Calculated density (g·cm⁻³)	4, 3.417	4, 2.420	4, 2.463	4, 3.288
Absorption coefficient	7.398 mm ⁻¹	0.713 mm ⁻¹	1.908 mm ⁻¹	15.794 mm ⁻¹
F(000)	1472	912	824	848
Theta range for data collection (°)	2.057 to 25.023	3.163 to 27.489	1.548 to 27.101	2.566 to 27.531
Limiting indices	-16 ≤ h ≤ 16, -19 ≤ k ≤ 17, -10 ≤ l ≤ 10	-9 ≤ h ≤ 9, -33 ≤ k ≤ 33, -9 ≤ l ≤ 9	-16 ≤ h ≤ 16, -15 ≤ k ≤ 15, -9 ≤ l ≤ 9	-9 ≤ h ≤ 9, -13 ≤ k ≤ 13, -16 ≤ l ≤ 16
Reflections	2780 / 2780	12631 / 2865	18995 / 2501	25049 / 2168
collected/unique	[<i>R</i> (int)=0.0381]	[<i>R</i> (int)=0.0754]	[<i>R</i> (int)=0.0762]	[<i>R</i> (int)=0.1172]
Completeness to theta	99.6%	99.7%	100.0%	100.0%
Max. and min. transmission	0.5580 and 0.4200	0.7455 and 0.6537	0.7407 and 0.6540	0.4891 and 0.3118
Data/restraints/parameters	2780/0/231	2865 / 38 / 259	2501/0/173	2168/0/137
Goodness-of-fit on F ²	1.104	1.034	1.048	1.039
Final <i>R</i> indices [I>2sigma(I)] ^a	$R_1 = 0.0420,$ $wR_2 = 0.0867$	$R_1 = 0.0384,$ $wR_2 = 0.0868$	$R_1 = 0.0542,$ $wR_2 = 0.1588$	$R_1 = 0.0331,$ $wR_2 = 0.0703$
<i>R</i> indices (all data ^a	$R_1 = 0.0493,$ $wR_2 = 0.0867$	$R_1 = 0.0592,$ $wR_2 = 0.0946$	$R_1 = 0.0704, wR_2$ = 0.1724	$R_1 = 0.0451,$ $wR_2 = 0.0760$
Extinction coefficient	0.00046(10)	N/A	N/A	0.0036(5)
Largest diff. peak and hole (e·Å ⁻³)	1.443 and -0.992	0.376 and -0.610	1.522 and -0.717	0.712 and -0.698

Table S1. Crystal data and structure refinement for four new compounds.

 $\frac{1}{a R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|} \text{ and } wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma wF_o^4]^{1/2} \text{ for } F_o^2 > 2\sigma (F_o^2)$

Atom s	x	у	Z	U(eq)	BVS
		Cs ₃ B ₃ P ₄	O ₁₆		
Cs(1)	7592(1)	2348(1)	8690(1)	21(1)	1.05
Cs(2)	5593(1)	8340(1)	3868(1)	33(1)	1.07
Cs(3)	9223(1)	8221(1)	4252(1)	34(1)	0.75
B(1)	7648(7)	4958(6)	7834(11)	14(2)	3.21
B(2)	8682(7)	5051(7)	3614(11)	15(2)	3.19
B(3)	5867(7)	5253(6)	3384(11)	12(2)	3.12
P(1)	7060(2)	4629(1)	11050(3)	12(1)	5.15
P(2)	9395(1)	4255(1)	6811(3)	12(1)	5.26
P(3)	7392(2)	6220(1)	5214(3)	13(1)	5.25
P(4)	3982(1)	5930(1)	3946(3)	11(1)	5.14
O(1)	6667(4)	3747(4)	10601(8)	22(1)	2.02
O(2)	7377(4)	5170(4)	9546(7)	15(1)	2.13
O(3)	7090(4)	4236(4)	7053(7)	18(1)	2.17
O(4)	9438(5)	3314(4)	7128(8)	33(2)	1.88
O(5)	8738(5)	4740(4)	8021(8)	28(2)	2.10
O(6)	8979(5)	4427(4)	4967(8)	26(1)	2.15
O(7)	7995(4)	4551(4)	2391(7)	18(1)	2.17
O(8)	9562(4)	5291(5)	2755(8)	27(2)	2.07
O(9)	8222(4)	5844(4)	4197(8)	24(1)	2.06
O(10)	7475(6)	5790(4)	6963(8)	33(2)	2.29
O(11)	6309(4)	6000(4)	4351(9)	29(2)	2.02
O(12)	6252(4)	5235(4)	1724(7)	18(1)	2.13
O(13)	6090(4)	4420(4)	4245(7)	22(1)	2.12
O(14)	4745(4)	5369(4)	3071(7)	16(1)	2.06
O(15)	4177(4)	6875(4)	4014(8)	22(1)	1.99
O(16)	7516(5)	7168(4)	5424(8)	25(1)	1.82
		Li(NH ₄) ₂ B ₃	P ₄ O ₁₆		
Li(1)	6844(8)	-3835(2)	5334(8)	18(1)	1.08
N(1)	-4472(5)	-4991(1)	3106(4)	22(1)	-
N(2)	-5276(5)	-2592(1)	2583(4)	28(1)	-
B(1)	-196(5)	-3010(1)	11945(5)	9(1)	3.12
B(2)	-598(5)	-4396(1)	1413(5)	10(1)	3.1
B(3)	2464(5)	-3660(1)	8126(5)	9(1)	3.12
P(1)	-672(1)	-5463(1)	1445(1)	8(1)	5.02
P(2)	-493(1)	-2978(1)	8120(1)	8(1)	5.17
P(3)	6599(1)	-3679(1)	11135(1)	9(1)	5.03
P(4)	2144(1)	-3790(1)	4460(1)	8(1)	5.05
O(1)	-1582(3)	-4908(1)	1280(3)	11(1)	1.96
O(2)	-1979(3)	-3192(1)	12130(3)	10(1)	1.95

Table S2. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for four title compounds. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

O(3)	1581(3)	-3375(1)	12796(3)	10(1)	1.97
O(4)	-2323(3)	-4030(1)	265(3)	11(1)	1.98
O(5)	4624(3)	-3452(1)	9275(3)	12(1)	1.95
O(6)	569(3)	-4249(1)	3519(3)	12(1)	1.99
O(7)	1660(3)	-3533(1)	6011(3)	11(1)	1.98
O(8)	2434(3)	-4220(1)	8458(3)	10(1)	1.95
O(9)	1480(3)	-5540(1)	3155(3)	14(1)	1.70
O(10)	1189(3)	-3407(1)	8844(3)	13(1)	2.05
O(11)	864(3)	-4423(1)	624(3)	12(1)	1.95
O(12)	-1003(3)	-2911(1)	9810(3)	15(1)	2.05
O(13)	656(3)	-2524(1)	13065(3)	13(1)	1.97
O(14)	6106(3)	-3938(1)	12562(3)	15(1)	1.76
O(15)	-2449(3)	-3090(1)	6210(3)	17(1)	1.68
O(16)	4331(3)	-3977(1)	5337(3)	16(1)	1.80
		$K_4B_2P_2C$	0 ₉ F ₂		
K(1)	3365(1)	3577(1)	1172(2)	30(1)	1.08
К(2)	1675(1)	8742(1)	6589(2)	28(1)	1.06
К(З)	580(1)	3538(1)	13689(2)	27(1)	0.86
К(4)	4406(1)	6342(1)	13793(2)	24(1)	0.86
B(1)	2957(5)	4298(5)	6216(10)	24(1)	3.08
B(2)	2009(5)	5897(5)	6409(10)	26(1)	3.07
P(1)	1262(1)	4175(1)	8348(2)	25(1)	5.01
P(2)	3755(1)	5900(1)	8408(2)	24(1)	5.02
O(1)	345(4)	3613(4)	7547(8)	47(1)	1.95
O(2)	2245(4)	3670(3)	7392(7)	37(1)	2.01
O(3)	1395(4)	4131(4)	10445(7)	38(1)	2.08
O(4)	1263(3)	5402(4)	7692(7)	40(1)	2.10
O(5)	2438(3)	5116(3)	5144(5)	29(1)	1.91
O(6)	3779(3)	4750(4)	7386(7)	39(1)	2.12
O(7)	2789(3)	6479(4)	7508(8)	40(1)	2.00
O(8)	4671(4)	6526(4)	7826(8)	44(1)	1.97
O(9)	3612(4)	5745(4)	10483(7)	41(1)	2.07
F(1)	3428(3)	3532(3)	4989(5)	37(1)	1.04
F(2)	1473(3)	6708(3)	5351(5)	34(1)	1.09
		Rb ₃ B ₂ PC	D ₅ F ₄		
Rb(1)	2640(1)	5241(1)	3518(1)	26(1)	1.21
Rb(2)	-3956(1)	6630(1)	9119(1)	28(1)	1.13
Rb(3)	9137(1)	2908(1)	9268(1)	28(1)	1.00
B(1)	3689(7)	3793(5)	8160(4)	18(1)	3.10
B(2)	2491(7)	4769(5)	6373(4)	20(1)	3.04
P(1)	1265(2)	5754(1)	8214(1)	22(1)	5.09
O(1)	1148(4)	5455(3)	6962(3)	24(1)	2.25
O(2)	-589(5)	5592(3)	8596(3)	26(1)	2.02
O(3)	2151(5)	7019(3)	8445(3)	35(1)	1.91

O(4)	2545(5)	4652(4)	8728(3)	33(1)	2.17	
O(5)	3763(5)	4051(3)	7052(3)	28(1)	2.17	
F(1)	3426(4)	5687(3)	5765(2)	31(1)	1.03	
F(2)	1518(5)	3977(3)	5588(3)	36(1)	1.01	
F(3)	3075(5)	2514(3)	8343(3)	48(1)	0.97	
F(4)	5474(4)	3856(3)	8695(3)	37(1)	1.08	

Cs(1)-O(3)	3.210(6)	B(1)-O(10)	1.456(11)
Cs(1)-O(1)	2.957(6)	B(2)-O(9)	1.452(11)
Cs(1)-O(1)#2	3.102(6)	B(2)-O(6)	1.458(11)
Cs(1)-O(7)#3	3.150(6)	B(2)-O(8)	1.445(10)
Cs(1)-O(13)#3	3.401(6)	B(2)-O(7)	1.464(11)
Cs(1)-O(15)#1	3.175(6)	B(3)-O(13)	1.462(11)
Cs(1)-O(15)#4	3.203(6)	B(3)-O(11)	1.461(11)
Cs(1)-O(6)#3	3.362(6)	B(3)-O(14)	1.469(10)
Cs(1)-O(4)	3.192(7)	B(3)-O(12)	1.460(10)
Cs(2)-O(14)#6	3.475(6)	P(1)-O(2)	1.546(5)
Cs(2)-O(2)#5	3.263(6)	P(1)-O(12)#11	1.544(6)
Cs(2)-O(12)#7	3.195(6)	P(1)-O(1)	1.476(6)
Cs(2)-O(1)#8	3.088(6)	P(1)-O(7)#11	1.533(6)
Cs(2)-O(13)#6	3.532(6)	P(2)-O(8)#10	1.534(6)
Cs(2)-O(15)	2.919(6)	P(2)-O(5)	1.546(7)
Cs(2)-O(16)	3.220(6)	P(2)-O(6)	1.526(6)
Cs(2)-O(10)#5	3.303(7)	P(2)-O(4)	1.465(7)
Cs(3)-O(2)#5	3.472(5)	P(3)-O(11)	1.539(6)
Cs(3)-O(5)#5	3.313(7)	P(3)-O(9)	1.532(6)
Cs(3)-O(16)	2.981(6)	P(3)-O(16)	1.469(6)
Cs(3)-O(10)#5	3.144(7)	P(3)-O(10)	1.529(6)
Cs(3)-O(4)#9	3.196(7)	P(4)-O(14)	1.537(6)
Cs(3)-O(4)#10	3.194(7)	P(4)-O(3)#4	1.552(6)
B(1)-O(2)	1.476(10)	P(4)-O(13)#4	1.544(6)
B(1)-O(3)	1.428(11)	P(4)-O(15)	1.469(6)
B(1)-O(5)	1.453(11)		
O(3)-Cs(1)-O(13)#3	132.53(14)	O(5)-B(1)-O(2)	106.7(7)
O(3)-Cs(1)-O(6)#3	158.53(15)	O(5)-B(1)-O(10)	110.4(7)
O(1)-Cs(1)-O(3)	58.46(16)	O(10)-B(1)-O(2)	101.7(7)
O(1)#2-Cs(1)-O(3)	97.12(15)	O(8)-B(2)-O(7)	106.4(7)
O(1)-Cs(1)-O(1)#2	130.6(2)	O(8) - B(2) - O(9)	108.4(7)
O(1)-CS(1)-O(7)#3	158.30(15)	O(8) - B(2) - O(6)	110.7(7)
O(1)#2-CS(1)-O(7)#3	46.11(14)	O(9)-B(2)-O(7)	113.8(7)
O(1)#2-CS(1)-O(13)#3	59.44(15)	O(9)-B(2)-O(6)	113.0(7)
O(1)-Cs(1)-O(13)#3	103.78(15)	O(6) - B(2) - O(7)	103.7(7)
O(1) - CS(1) - O(15) + 1	76.64(16)	O(12) - B(3) - O(14)	100.0(0)
O(1)-CS(1)-O(15)#4	70.04(10)	O(12) - B(3) - O(13)	109.5(7)
O(1)#2-Cs(1)-O(15)#4	0/ 82/12)	$O(12)_B(3) O(11)$	109.3(7)
$O(1)_{C_{1}}^{+2} O(1)_{-O(E)}^{+2}$	131 07/16)	$O(11)_R(2)_O(14)$	109.2(7)
$O(1)#2_C(1)_O(6)#2$	x31.37(10) 87 15/15)	$O(11)_B(3)_O(12)$	112 0(7)
O(1)#2-Cs(1)-O(0)#3	100 92/17	O(1)-P(1)-O(2)	11 <u>4</u> 9(3)

Table S3. Selected bond distances (Å) and angles (deg) for $Cs_{3}B_{3}P_{4}O_{16}.$

- 19				
	O(1)-Cs(1)-O(4)	103.32(17)	O(1)-P(1)-O(12)#11	113.6(3)
	O(7)#3-Cs(1)-O(3)	137.29(15)	O(1)-P(1)-O(7)#11	109.0(3)
	O(7)#3-Cs(1)-O(13)#3	54.93(14)	O(7)#11-P(1)-O(2)	108.5(3)
	O(7)#3-Cs(1)-O(15)#1	97.71(15)	O(7)#11-P(1)-O(12)#11	109.2(3)
	O(7)#3-Cs(1)-O(15)#4	104.99(14)	O(6)-P(2)-O(8)#10	110.5(4)
	O(7)#3-Cs(1)-O(6)#3	41.17(14)	O(6)-P(2)-O(5)	110.4(4)
	O(7)#3-Cs(1)-O(4)	98.12(16)	O(4)-P(2)-O(8)#10	113.1(4)
	O(15)#4-Cs(1)-O(3)	45.08(14)	O(4)-P(2)-O(5)	112.4(4)
	O(15)#1-Cs(1)-O(3)	107.99(14)	O(4)-P(2)-O(6)	109.7(4)
	O(15)#4-Cs(1)-O(13)#3	90.00(15)	O(8)#10-P(2)-O(5)	100.5(4)
	O(15)#1-Cs(1)-O(13)#3	43.84(14)	O(9)-P(3)-O(11)	110.6(4)
	O(15)#1-Cs(1)-O(15)#4	87.31(15)	O(16)-P(3)-O(11)	110.6(4)
	O(15)#4-Cs(1)-O(6)#3	145.83(15)	O(16)-P(3)-O(9)	110.9(4)
	O(15)#1-Cs(1)-O(6)#3	92.51(15)	O(16)-P(3)-O(10)	109.1(4)
	O(15)#1-Cs(1)-O(4)	162.81(17)	O(10)-P(3)-O(11)	106.2(4)
	O(6)#3-Cs(1)-O(13)#3	67.37(15)	O(10)-P(3)-O(9)	109.3(4)
	O(4)-Cs(1)-O(3)	63.54(15)	O(12)#11-P(1)-O(2)	101.3(3)
	O(4)-Cs(1)-O(13)#3	152.87(16)	O(14)-P(4)-O(3)#4	105.6(3)
	O(4)-Cs(1)-O(15)#4	95.00(16)	O(14)-P(4)-O(13)#4	109.4(3)
	O(4)-Cs(1)-O(6)#3	95.01(16)	O(13)#4-P(4)-O(3)#4	105.9(3)
	O(3)-B(1)-O(2)	114.0(7)	O(15)-P(4)-O(14)	116.7(3)
	O(3)-B(1)-O(5)	108.3(7)	O(15)-P(4)-O(3)#4	108.9(3)
	O(3)-B(1)-O(10)	115.3(7)	O(15)-P(4)-O(13)#4	109.7(4)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y-1/2,-z+3/2#2 x,-y+1/2,z-1/2#3 x,-y+1/2,z+1/2#4 -x+1,-y+1,-z+1#5 x,-y+3/2,z-1/2#6 -x+1,y+1/2,-z+1/2#7 x,-y+3/2,z+1/2#8 -x+1,y+1/2,-z+3/2#9 -x+2,y+1/2,-z+3/2#10 -x+2,-y+1,-z+1#11 x,y,z+1#12 -x+2,y-1/2,-z+3/2#13 -x+1,y-1/2,-z+1/2#14 x,y,z-1#14 x,y,z-1

Li(1)-O(9)#2	1.998(5)	P(1)-O(1)	1.5509(19)
Li(1)-O(14)#3	1.934(5)	P(1)-O(8)#4	1.558(2)
Li(1)-O(15)#1	2.008(5)	P(1)-O(9)	1.4760(19)
Li(1)-O(16)	1.876(6)	P(1)-O(11)#5	1.5519(19)
B(1)-O(2)	1.458(4)	P(2)-O(10)	1.5335(19)
B(1)-O(3)	1.463(3)	P(2)-O(12)	1.529(2)
B(1)-O(12)	1.462(3)	P(2)-O(13)#6	1.550(2)
B(1)-O(13)	1.468(3)	P(2)-O(15)	1.480(2)
B(2)-O(1)	1.474(4)	P(3)-O(2)#1	1.5617(19)
B(2)-O(4)	1.463(4)	P(3)-O(4)#7	1.550(2)
B(2)-O(6)	1.454(3)	P(3)-O(5)	1.5521(19)
B(2)-O(11)	1.472(4)	P(3)-O(14)	1.472(2)
B(3)-O(5)	1.474(4)	P(4)-O(3)#3	1.5541(18)
B(3)-O(7)	1.461(3)	P(4)-O(6)	1.5525(19)
B(3)-O(8)	1.462(3)	P(4)-O(7)	1.549(2)
B(3)-O(10)	1.453(4)	P(4)-O(16)	1.474(2)
O(14)#3-Li(1)-O(9)#2	106.5(3)	O(1)-P(1)-O(8)#4	98.67(10)
O(14)#3-Li(1)-O(15)#1	112.4(3)	O(1)-P(1)-O(11)#5	105.91(11)
O(16)-Li(1)-O(9)#2	99.4(3)	O(9)-P(1)-O(8)#4	115.39(11)
O(16)-Li(1)-O(14)#3	103.9(2)	O(9)-P(1)-O(11)#5	113.32(12)
O(16)-Li(1)-O(15)#1	105.8(3)	O(11)#5-P(1)-O(8)#4	107.23(11)
O(2)-B(1)-O(3)	113.2(2)	O(10)-P(2)-O(13)#6	104.88(11)
O(2)-B(1)-O(12)	106.6(2)	O(12)-P(2)-O(10)	105.47(11)
O(2)-B(1)-O(13)	110.6(2)	O(12)-P(2)-O(13)#6	107.13(11)
O(3)-B(1)-O(13)	104.9(2)	O(15)-P(2)-O(10)	115.23(11)
O(12)-B(1)-O(3)	112.6(2)	O(15)-P(2)-O(12)	109.70(12)
O(12)-B(1)-O(13)	108.9(2)	O(15)-P(2)-O(13)#6	113.80(11)
O(4)-B(2)-O(1)	106.6(2)	O(4)#7-P(3)-O(2)#1	108.49(11)
O(4)-B(2)-O(11)	111.7(2)	O(4)#7-P(3)-O(5)	105.17(11)
O(6)-B(2)-O(1)	107.5(2)	O(5)-P(3)-O(2)#1	103.72(10)
O(6)-B(2)-O(4)	110.8(2)	O(14)-P(3)-O(2)#1	110.30(11)
O(6)-B(2)-O(11)	108.9(2)	O(14)-P(3)-O(4)#7	115.29(11)
O(11)-B(2)-O(1)	111.2(2)	O(14)-P(3)-O(5)	113.10(11)
O(7)-B(3)-O(5)	107.6(2)	O(6)-P(4)-O(3)#3	107.92(10)
O(7)-B(3)-O(8)	112.3(2)	O(7)-P(4)-O(3)#3	105.81(10)
O(8)-B(3)-O(5)	110.9(2)	O(7)-P(4)-O(6)	106.11(11)
O(10)-B(3)-O(5)	108.2(2)	O(16)-P(4)-O(3)#3	112.42(11)
O(10)-B(3)-O(7)	110.2(2)	O(16)-P(4)-O(6)	110.53(12)

Table S4. Selected bond lengths (Å) and angles (deg.) for $Li(NH_4)_2B_3P_4O_{16}$.

O(10)-B(3	3)-O(8) 1	L07.7(2)	O(16)-P	(4)-O(7)	113.66(11)
Symmetry transformations used to generate equivalent atoms:					
#1 x+1,y,z	#2 -x+1,-y-1,-z+1	#3 x	,y,z-1	#4 -x,-y-1,-z+1	#5 -x,-y-1,-z
#6 x,-y-1/2,z-1/2	#7 x+1,y,z+1	#8 x	-1,y,z	#9 x,y,z+1	#10 x-1,y,z-1
#11 x,-y-1/2,z+1/2					

K(1)-O(2)#2	3.031(5)	K(4)-O(5)#8	3.148(5)
K(1)-O(2)#1	3.251(4)	K(4)-O(6)#8	3.304(5)
K(1)-O(3)#2	2.726(5)	K(4)-O(6)#10	2.867(4)
K(1)-O(6)#2	3.078(5)	K(4)-O(7)#8	3.382(5)
K(1)-O(8)#3	2.676(5)	K(4)-O(8)#8	2.861(6)
K(1)-O(9)#2	2.733(5)	K(4)-O(8)#4	2.734(5)
K(1)-F(1)	2.683(4)	K(4)-O(9)	2.647(5)
K(1)-F(1)#1	2.727(4)	K(4)-F(1)#10	2.975(4)
K(2)-O(1)#6	2.735(5)	B(1)-O(2)	1.472(8)
K(2)-O(3)#5	2.764(5)	B(1)-O(5)	1.428(8)
K(2)-O(4)#5	2.980(5)	B(1)-O(6)	1.464(8)
K(2)-O(5)#4	3.032(4)	B(1)-F(1)	1.422(7)
K(2)-O(7)#5	3.239(6)	B(2)-O(4)	1.469(8)
K(2)-O(7)	3.212(5)	B(2)-O(5)	1.428(8)
K(2)-O(9)#5	2.743(5)	B(2)-O(7)	1.466(8)
K(2)-F(2)	2.664(4)	B(2)-F(2)	1.428(7)
K(2)-F(2)#4	2.715(4)	P(1)-O(1)	1.498(5)
K(3)-O(1)#9	2.783(6)	P(1)-O(2)	1.588(5)
K(3)-O(1)#8	2.731(6)	P(1)-O(3)	1.483(5)
K(3)-O(2)#8	3.395(5)	P(1)-O(4)	1.579(4)
K(3)-O(3)	2.628(5)	P(2)-O(6)	1.588(4)
K(3)-O(4)#7	2.915(5)	P(2)-O(7)	1.586(5)
K(3)-O(5)#8	3.282(5)	P(2)-O(8)	1.490(5)
K(3)-F(2)#7	2.804(4)	P(2)-O(9)	1.484(5)
O(2)#2-K(1)-O(2)#1	92.55(13)	F(1)#1-K(1)-O(9)#2	150.71(14)
O(2)#2-K(1)-O(6)#2	46.59(12)	F(1)-K(1)-F(1)#1	106.51(10)
O(3)#2-K(1)-O(2)#2	50.93(13)	O(5)-B(1)-O(2)	111.3(5)
O(3)#2-K(1)-O(2)#1	80.22(14)	O(5)-B(1)-O(6)	112.1(5)
O(3)#2-K(1)-O(6)#2	83.90(13)	O(6)-B(1)-O(2)	110.8(5)
O(3)#2-K(1)-O(9)#2	80.59(15)	F(1)-B(1)-O(2)	105.8(4)
O(3)#2-K(1)-F(1)#1	102.22(14)	F(1)-B(1)-O(5)	110.9(5)
O(6)#2-K(1)-O(2)#1	135.22(13)	F(1)-B(1)-O(6)	105.6(5)
O(8)#3-K(1)- $O(2)$ #2	134.07(15)	O(5)-B(2)-O(4)	111.7(5)
O(8)#3-K(1)- $O(2)$ #1	109.18(14)	O(5)-B(2)-O(7)	112.2(5)
O(8)#3-K(1)- $O(3)$ #2	167.55(16)	O(5)-B(2)-F(2)	110.0(5)
O(8)#3 - K(1) - O(6)#2	94.23(14)	U(7) - B(2) - U(4)	106 2(5)
O(8)#3-K(1)- $O(9)$ #2	88.70(15)	F(2)-B(2)-O(4)	106.2(5)
O(8) # 3 - N(1) - F(1) # 1	90.23(15)	$\Gamma(Z) = D(Z) = U(Z)$	108 V(2) 108 Y(2)
$O(0)#3^{(1)}^{-1}(1)$	13.20(13) 03 20(11)	O(1) P(1) O(2)	100.4(3)
O(3)#2 K(1) O(2)#2	02.20(14) 150 70/11)	O(1) - P(1) - O(4)	116 5(2)
O(3)#2 - N(1) - O(2)#1	100.70(14) 50 70(12)	O(3) - F(1) - O(1) O(2) P(1) O(2)	100 2(2)
O(3) + 2 - N(1) - O(0) + 2	JU.72(13)	$O(3)^{-r}(1)^{-}O(2)$	100.3(2)

Table S5. Selected bond lengths (Å) and angles (deg.) for $K_4B_2P_2O_9F_2.$

	F(1)-K(1)-O(2)#2	152.65(14)	O(3)-P(1)-O(4)	109.0(3)		
	F(1)-K(1)-O(2)#1	74.36(13)	O(4)-P(1)-O(2)	104.4(2)		
	F(1)#1-K(1)-O(2)#2	77.56(12)	O(7)-P(2)-O(6)	103.8(2)		
	F(1)#1-K(1)-O(2)#1	44.37(11)	O(8)-P(2)-O(6)	108.6(3)		
	F(1)-K(1)-O(3)#2	102.46(15)	O(8)-P(2)-O(7)	107.9(3)		
	F(1)-K(1)-O(6)#2	150.31(13)	O(9)-P(2)-O(6)	109.4(3)		
	F(1)#1-K(1)-O(6)#2	100.23(11)	O(9)-P(2)-O(7)	110.1(3)		
	F(1)-K(1)-O(9)#2	101.18(14)	O(9)-P(2)-O(8)	116.3(3)		
Symmetry tra	Symmetry transformations used to generate equivalent atoms:					
#1 x,-y+1/2,z-	1/2 #2 x,y,z-1	#3	-x+1,-y+1,-z+1	#4 x,-y+3/2,z+1/2		
#5 x,-y+3/2,z-	1/2 #6 -x,y+1/2,-	-z+3/2 #7	' -x,-y+1,-z+2	#8 x,y,z+1		
#9 x,-y+1/2,z+	-1/2 #10 -x+1,-y+1	1,-z+2 #2	11 -x,y-1/2,-z+3/2			

Rb(1)-O(1)#22.888(3)Rb(3)-O(2)#9 3.174 Rb(1)-O(2)#2 $3.034(4)$ Rb(3)-O(2)#102.919Rb(1)-O(3)#3 $2.868(4)$ Rb(3)-O(3)#9 3.059 Rb(1)-O(5)#1 $2.885(4)$ Rb(3)-O(4)#10 3.203 Rb(1)-F(1) $2.829(3)$ Rb(3)-F(1)#8 2.979 Rb(1)-F(1) $2.829(3)$ Rb(3)-F(2)#11 3.014 Rb(1)-F(1)#1 $3.105(3)$ Rb(3)-F(2)#11 3.014 Rb(1)-F(2) $3.048(3)$ Rb(3)-F(2)#11 3.014 Rb(1)-F(2) $3.048(3)$ Rb(3)-F(4) 2.898 Rb(1)-F(3)#4 $2.888(3)$ Rb(3)-F(4) 2.898 Rb(1)-F(4)#1 $3.302(3)$ B(1)-O(4) 1.446 Rb(2)-O(2) $2.821(3)$ B(1)-O(5) 1.400 Rb(2)-O(3)#7 $2.939(4)$ B(1)-F(4) 1.422 Rb(2)-O(4)#5 $3.079(3)$ B(1)-F(4) 1.422 Rb(2)-O(5)#6 $2.909(4)$ B(2)-O(5) 1.417 Rb(2)-F(2)#6 $3.027(3)$ B(2)-F(1) 1.423 Rb(2)-F(2)#6 $3.294(4)$ P(1)-O(1) 1.574	4(4) 9(3) 5(4) 5(3) 4(3) 2(4) 3(3) 5(6) 5(6) 1(6) 3(6) 7(6)
Rb(1)-O(2)#23.034(4)Rb(3)-O(2)#102.919Rb(1)-O(3)#32.868(4)Rb(3)-O(3)#93.059Rb(1)-O(5)#12.885(4)Rb(3)-O(4)#103.203Rb(1)-F(1)2.829(3)Rb(3)-F(1)#82.979Rb(1)-F(1)3.105(3)Rb(3)-F(2)#113.014Rb(1)-F(2)3.048(3)Rb(3)-F(2)#113.014Rb(1)-F(2)3.048(3)Rb(3)-F(4)2.898Rb(1)-F(3)#42.888(3)Rb(3)-F(4)2.898Rb(1)-F(4)#13.302(3)B(1)-O(4)1.446Rb(2)-O(2)2.821(3)B(1)-O(5)1.400Rb(2)-O(3)#72.939(4)B(1)-F(3)1.426Rb(2)-O(4)#53.079(3)B(1)-F(4)1.425Rb(2)-O(4)#73.295(4)B(2)-O(1)1.458Rb(2)-F(2)#63.027(3)B(2)-F(1)1.425Rb(2)-F(2)#63.274(4)B(2)-F(2)1.419Rb(2)-F(3)#53.294(4)P(1)-O(1)1.574	9(3) 5(4) 3(4) 5(3) 4(3) 2(4) 8(3) 5(6) 5(6) 5(6) 1(6) 3(6) 7(6)
Rb(1)-O(3)#3 $2.868(4)$ $Rb(3)-O(3)#9$ 3.059 $Rb(1)-O(5)#1$ $2.885(4)$ $Rb(3)-O(4)#10$ 3.203 $Rb(1)-F(1)$ $2.829(3)$ $Rb(3)-F(1)#8$ 2.979 $Rb(1)-F(1)#1$ $3.105(3)$ $Rb(3)-F(2)#11$ 3.014 $Rb(1)-F(2)$ $3.048(3)$ $Rb(3)-F(2)#11$ 3.014 $Rb(1)-F(2)$ $3.048(3)$ $Rb(3)-F(3)#10$ 3.222 $Rb(1)-F(3)#4$ $2.888(3)$ $Rb(3)-F(4)$ 2.898 $Rb(1)-F(4)#1$ $3.302(3)$ $B(1)-O(4)$ 1.446 $Rb(2)-O(2)$ $2.821(3)$ $B(1)-O(5)$ 1.400 $Rb(2)-O(3)#7$ $2.939(4)$ $B(1)-F(3)$ 1.426 $Rb(2)-O(4)#5$ $3.079(3)$ $B(1)-F(4)$ 1.422 $Rb(2)-O(4)#5$ $3.079(3)$ $B(1)-F(4)$ 1.422 $Rb(2)-O(5)#6$ $2.909(4)$ $B(2)-O(5)$ 1.412 $Rb(2)-F(2)#6$ $3.027(3)$ $B(2)-F(1)$ 1.422 $Rb(2)-F(3)#5$ $3.274(4)$ $B(2)-F(2)$ 1.412 $Rb(2)-F(3)#6$ $3.294(4)$ $P(1)-O(1)$ 1.574	5(4) 3(4) 5(3) 4(3) 2(4) 8(3) 5(6) 5(6) 1(6) 3(6) 7(6)
Rb(1)-O(5)#12.885(4)Rb(3)-O(4)#103.203Rb(1)-F(1)2.829(3)Rb(3)-F(1)#82.975Rb(1)-F(1)#13.105(3)Rb(3)-F(2)#113.014Rb(1)-F(2)3.048(3)Rb(3)-F(2)#113.222Rb(1)-F(2)3.048(3)Rb(3)-F(4)2.898Rb(1)-F(3)#42.888(3)Rb(3)-F(4)2.898Rb(1)-F(4)#13.302(3)B(1)-O(4)1.446Rb(2)-O(2)2.821(3)B(1)-O(5)1.400Rb(2)-O(3)#72.939(4)B(1)-F(3)1.426Rb(2)-O(4)#53.079(3)B(1)-F(4)1.425Rb(2)-O(4)#73.295(4)B(2)-O(1)1.458Rb(2)-F(2)#63.027(3)B(2)-F(1)1.425Rb(2)-F(3)#53.274(4)B(2)-F(2)1.415Rb(2)-F(3)#63.294(4)P(1)-O(1)1.574	3(4) 5(3) 4(3) 2(4) 8(3) 5(6) 5(6) 1(6) 3(6) 7(6)
Rb(1)-F(1)2.829(3)Rb(3)-F(1)#82.975Rb(1)-F(1)#1 $3.105(3)$ Rb(3)-F(2)#11 3.014 Rb(1)-F(2) $3.048(3)$ Rb(3)-F(3)#10 3.222 Rb(1)-F(2) $3.048(3)$ Rb(3)-F(4) 2.898 Rb(1)-F(3)#4 $2.888(3)$ Rb(3)-F(4) 2.898 Rb(1)-F(4)#1 $3.302(3)$ B(1)-O(4) 1.446 Rb(2)-O(2) $2.821(3)$ B(1)-O(5) 1.400 Rb(2)-O(3)#7 $2.939(4)$ B(1)-F(3) 1.426 Rb(2)-O(4)#5 $3.079(3)$ B(1)-F(4) 1.422 Rb(2)-O(4)#7 $3.295(4)$ B(2)-O(1) 1.458 Rb(2)-O(5)#6 $2.909(4)$ B(2)-O(5) 1.412 Rb(2)-F(2)#6 $3.027(3)$ B(2)-F(1) 1.422 Rb(2)-F(3)#5 $3.294(4)$ P(1)-O(1) 1.574	5(3) 4(3) 2(4) 8(3) 5(6) 5(6) 5(6) 1(6) 3(6) 7(6)
Rb(1)-F(1)#13.105(3)Rb(3)-F(2)#113.014Rb(1)-F(2)3.048(3)Rb(3)-F(3)#103.222Rb(1)-F(3)#42.888(3)Rb(3)-F(4)2.898Rb(1)-F(4)#13.302(3)B(1)-O(4)1.446Rb(2)-O(2)2.821(3)B(1)-O(5)1.400Rb(2)-O(3)#72.939(4)B(1)-F(3)1.426Rb(2)-O(4)#53.079(3)B(1)-F(4)1.426Rb(2)-O(4)#73.295(4)B(2)-O(1)1.458Rb(2)-O(5)#62.909(4)B(2)-O(5)1.417Rb(2)-F(2)#63.027(3)B(2)-F(1)1.426Rb(2)-F(3)#53.274(4)B(2)-F(2)1.419Rb(2)-F(3)#63.294(4)P(1)-O(1)1.574	4(3) 2(4) 8(3) 5(6) 5(6) 5(6) 1(6) 3(6) 7(6)
Rb(1)-F(2) $3.048(3)$ $Rb(3)-F(3)#10$ 3.222 $Rb(1)-F(3)#4$ $2.888(3)$ $Rb(3)-F(4)$ 2.898 $Rb(1)-F(4)#1$ $3.302(3)$ $B(1)-O(4)$ 1.446 $Rb(2)-O(2)$ $2.821(3)$ $B(1)-O(5)$ 1.400 $Rb(2)-O(3)#7$ $2.939(4)$ $B(1)-F(3)$ 1.426 $Rb(2)-O(4)#5$ $3.079(3)$ $B(1)-F(4)$ 1.422 $Rb(2)-O(4)#7$ $3.295(4)$ $B(2)-O(1)$ 1.458 $Rb(2)-O(5)#6$ $2.909(4)$ $B(2)-O(5)$ 1.412 $Rb(2)-F(2)#6$ $3.027(3)$ $B(2)-F(1)$ 1.422 $Rb(2)-F(3)#5$ $3.294(4)$ $P(1)-O(1)$ 1.574	2(4) 8(3) 5(6) 5(6) 5(6) 1(6) 3(6) 7(6)
Rb(1)-F(3)#42.888(3) $Rb(3)-F(4)$ 2.898 $Rb(1)-F(4)#1$ 3.302(3) $B(1)-O(4)$ 1.446 $Rb(2)-O(2)$ 2.821(3) $B(1)-O(5)$ 1.400 $Rb(2)-O(3)#7$ 2.939(4) $B(1)-F(3)$ 1.426 $Rb(2)-O(4)#5$ 3.079(3) $B(1)-F(4)$ 1.426 $Rb(2)-O(4)#7$ 3.295(4) $B(2)-O(1)$ 1.458 $Rb(2)-O(5)#6$ 2.909(4) $B(2)-O(5)$ 1.417 $Rb(2)-F(2)#6$ 3.027(3) $B(2)-F(1)$ 1.426 $Rb(2)-F(3)#5$ 3.274(4) $B(2)-F(2)$ 1.419 $Rb(2)-F(3)#6$ 3.294(4) $P(1)-O(1)$ 1.574	8(3) 6(6) 0(6) 6(6) 1(6) 3(6) 7(6)
Rb(1)-F(4)#1 $3.302(3)$ $B(1)-O(4)$ 1.446 $Rb(2)-O(2)$ $2.821(3)$ $B(1)-O(5)$ 1.400 $Rb(2)-O(3)#7$ $2.939(4)$ $B(1)-F(3)$ 1.426 $Rb(2)-O(4)#5$ $3.079(3)$ $B(1)-F(4)$ 1.422 $Rb(2)-O(4)#7$ $3.295(4)$ $B(2)-O(1)$ 1.458 $Rb(2)-O(5)#6$ $2.909(4)$ $B(2)-O(5)$ 1.412 $Rb(2)-F(2)#6$ $3.027(3)$ $B(2)-F(1)$ 1.422 $Rb(2)-F(3)#5$ $3.294(4)$ $P(1)-O(1)$ 1.574	5(6) D(6) 5(6) 1(6) 3(6) 7(6)
Rb(2)-O(2)2.821(3) $B(1)-O(5)$ 1.400 $Rb(2)-O(3)#7$ 2.939(4) $B(1)-F(3)$ 1.426 $Rb(2)-O(4)#5$ 3.079(3) $B(1)-F(4)$ 1.422 $Rb(2)-O(4)#7$ 3.295(4) $B(2)-O(1)$ 1.458 $Rb(2)-O(5)#6$ 2.909(4) $B(2)-O(5)$ 1.412 $Rb(2)-F(2)#6$ 3.027(3) $B(2)-F(1)$ 1.422 $Rb(2)-F(3)#5$ 3.274(4) $B(2)-F(2)$ 1.412 $Rb(2)-F(3)#6$ 3.294(4) $P(1)-O(1)$ 1.574	D(6) 5(6) 1(6) 3(6) 7(6)
Rb(2)-O(3)#72.939(4)B(1)-F(3)1.426Rb(2)-O(4)#53.079(3)B(1)-F(4)1.422Rb(2)-O(4)#73.295(4)B(2)-O(1)1.458Rb(2)-O(5)#62.909(4)B(2)-O(5)1.412Rb(2)-F(2)#63.027(3)B(2)-F(1)1.423Rb(2)-F(3)#53.274(4)B(2)-F(2)1.412Rb(2)-F(3)#63.294(4)P(1)-O(1)1.574	5(6) 1(6) 3(6) 7(6)
Rb(2)-O(4)#53.079(3)B(1)-F(4)1.422Rb(2)-O(4)#73.295(4)B(2)-O(1)1.458Rb(2)-O(5)#62.909(4)B(2)-O(5)1.412Rb(2)-F(2)#63.027(3)B(2)-F(1)1.422Rb(2)-F(3)#53.274(4)B(2)-F(2)1.412Rb(2)-F(3)#63.294(4)P(1)-O(1)1.574	1(6) 8(6) 7(6)
Rb(2)-O(4)#73.295(4)B(2)-O(1)1.458Rb(2)-O(5)#62.909(4)B(2)-O(5)1.417Rb(2)-F(2)#63.027(3)B(2)-F(1)1.423Rb(2)-F(3)#53.274(4)B(2)-F(2)1.419Rb(2)-F(3)#63.294(4)P(1)-O(1)1.574	8(6) 7(6)
Rb(2)-O(5)#62.909(4)B(2)-O(5)1.417Rb(2)-F(2)#63.027(3)B(2)-F(1)1.423Rb(2)-F(3)#53.274(4)B(2)-F(2)1.419Rb(2)-F(3)#63.294(4)P(1)-O(1)1.574	7(6)
Rb(2)-F(2)#63.027(3)B(2)-F(1)1.423Rb(2)-F(3)#53.274(4)B(2)-F(2)1.419Rb(2)-F(3)#63.294(4)P(1)-O(1)1.574	2/01
Rb(2)-F(3)#53.274(4)B(2)-F(2)1.419Rb(2)-F(3)#63.294(4)P(1)-O(1)1.574	3(6)
Rb(2)-F(3)#6 3.294(4) P(1)-O(1) 1.574	9(6)
	4(3)
Rb(2)-F(4)#7 2.951(3) P(1)-O(2) 1.487	7(4)
Rb(2)-F(4)#5 3.048(3) P(1)-O(3) 1.482	2(4)
Rb(3)-O(1)#8 2.964(3) P(1)-O(4) 1.582	1(4)
O(1)#2-Rb(1)-O(2)#2 49.45(9) F(1)-Rb(1)-F(4)#1 134.5	55(8)
O(1)#2-Rb(1)-F(1)#1 147.07(9) F(1)#1-Rb(1)-F(4)#1 83.15	5(7)
O(1)#2-Rb(1)-F(2) 75.10(9) F(2)-Rb(1)-F(1)#1 86.34	4(8)
O(1)#2-Rb(1)-F(4)#1 111.30(8) F(2)-Rb(1)-F(4)#1 168.0	02(8)
O(2)#2-Rb(1)-F(1)#1 122.85(9) F(3)#4-Rb(1)-O(1)#2 81.25	5(10)
O(2)#2-Rb(1)-F(2) 116.83(9) F(3)#4-Rb(1)-O(2)#2 72.76	5(10)
O(2)#2-Rb(1)-F(4)#1 65.13(8) F(3)#4-Rb(1)-F(1)#1 66.94	4(9)
O(3)#3-Rb(1)-O(1)#2 97.21(10) F(3)#4-Rb(1)-F(2) 71.05	9(10)
O(3)#3-Rb(1)-O(2)#2 101.74(11) F(3)#4-Rb(1)-F(4)#1 99.36	ō(10)
O(3)#3-Rb(1)-O(5)#1 81.61(10) O(5)-B(1)-O(4) 115.4	4(4)
O(3)#3-Rb(1)-F(1)#1 115.31(10) O(5)-B(1)-F(3) 111.8	3(4)
O(3)#3-Rb(1)-F(2) 114.29(10) O(5)-B(1)-F(4) 109.8	3(4)
O(3)#3-Rb(1)-F(3)#4 173.92(12) F(3)-B(1)-O(4) 107.0	J(4)
O(3)#3-Rb(1)-F(4)#1 75.66(10) F(4)-B(1)-O(4) 107.2	2(4)
O(5)#1-Rb(1)-O(1)#2 154.10(10) F(4)-B(1)-F(3) 105.2	1(4)
O(5)#1-Rb(1)-O(2)#2 105.21(10) O(5)-B(2)-O(1) 113.6	ô(4)
O(5)#1-Rb(1)-F(1)#1 45.52(8) O(5)-B(2)-F(1) 110.0	J(4)
O(5)#1-Rb(1)-F(2) 129.10(9) O(5)-B(2)-F(2) 111.8	8(4)
O(5)#1-Rb(1)-F(3)#4 97.19(11) F(1)-B(2)-O(1) 108.2	2(4)
O(5)#1-Rb(1)-F(4)#1 43.16(8) F(2)-B(2)-O(1) 107.5	5(4)
F(1)-Rb(1)-O(1)#2 110.98(9) F(2)-B(2)-F(1) 105.3	3(4)

Table S6. Selected bond lengths (Å) and angles (deg.) for $Rb_{3}B_{2}PO_{5}F_{4}.$

F(1)-Rb(1)-O(3)#3	83.30(10)	O(2)-P(1)-O(1)	108.2(2)
F(1)-Rb(1)-O(5)#1	94.64(9)	O(2)-P(1)-O(4)	108.6(2)
F(1)-Rb(1)-F(1)#1	70.14(10)	O(3)-P(1)-O(1)	110.6(2)
F(1)-Rb(1)-F(2)	45.05(8)	O(3)-P(1)-O(2)	116.0(2)
F(1)-Rb(1)-F(3)#4	102.75(10)	O(3)-P(1)-O(4)	109.0(2)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1	#2 -x,-y+1,-z+1	#3 x,-y+3/2,z-1/2	#4 x,-y+1/2,z-1/2
#5 -x,-y+1,-z+2	#6 -x,y+1/2,-z+3/2	#7 x-1,y,z	#8 -x+1,y-1/2,-z+3/2
#9 -x+1,-y+1,-z+2	#10 x+1,y,z	#11 x+1,-y+1/2,z+1/2	#12 -x,y-1/2,-z+3/2
#13 -x+1,y+1/2,-z+3/2	#14 x,-y+3/2,z+1/2	#15 x-1,-y+1/2,z-1/2	#16 x,-y+1/2,z+1/2

Absorption peaks (cm ⁻¹) for $Rb_3B_2PO_5F_4$		
1200, 1150, 1038, 949		
918, 791, 698, 606, 567		
528, 486		
	Absorption peaks (cm ⁻¹) for Rb ₃ B ₂ PO ₅ F ₄ 1200, 1150, 1038, 949 918, 791, 698, 606, 567 528, 486	

Table S7. Assignment of the absorption peaks observed in the IR spectrum of $Rb_3B_2PO_5F_4$:

Mode description	Absorption peaks (cm ⁻¹) for $Cs_3B_3P_4O_{16}$
v _s (PO ₄)	1250, 1227
v _{as} (BO ₄), v _{as} (ring)	1157, 1088, 991
δ(Β-Ο-Ρ)	868, 791
ν _s (BO ₄), δ(PO ₄)	891, 679, 640
δ(Ο-Ρ-Ο)	548
δ(BO ₄)	490, 432

Table S8. Assignment of the absorption peaks observed in the IR spectrum of $Cs_3B_3P_4O_{16}$:

Mode description	Absorption peaks (cm ⁻¹) for $Li(NH_4)_2B_3P_4O_{16}$
v _s (PO ₄)	1265, 1238
v _{as} (BO ₄), v _{as} (ring)	1103, 1034, 991, 933
δ(Β-Ο-Ρ)	845, 690
v _s (BO ₄), δ(PO ₄)	910, 605
δ(Ο-Ρ-Ο)	563
δ(BO ₄)	486, 443

Table S9. Assignment of the absorption peaks observed in the IR spectrum of $Li(NH_4)_2B_3P_4O_{16}$:

Mode description	Absorption peaks (cm ⁻¹) for $K_4B_2P_2O_9F_2$
v _s (PO ₄)	1226, 1203
$v_{as}(BO_3F)$, $v_{as}(ring)$	1103, 1062, 990
δ(Β-Ο-Ρ)	845, 714
v _s (BO ₃ F), δ(PO ₄)	953, 781, 645
δ(Ο-Ρ-Ο)	563, 536
δ(BO ₃ F)	491, 459

Table S10. Assignment of the absorption peaks observed in the IR spectrum of $K_4B_2P_2O_9F_2$:

Fig. S1. The PXRD patterns of (a) $Cs_3B_3P_4O_{16}$, (b) $Li(NH_4)_2B_3P_4O_{16}$, (c) $K_4B_2P_2O_9F_2$ and (d) $Rb_3B_2PO_5F_4$, respectively.

Fig. S2. The coordination of Cs(1), Cs(2) and Cs(3) in $Cs_3B_3P_4O_{16}$.

Fig. S3. The isolated $[{\rm LiO}_4]$ and $[{\rm NH}_4]$ units in ${\rm Li}({\rm NH}_4)_2{\rm B}_3{\rm P}_4{\rm O}_{16}.$

Fig. S4. The coordination of K^+ cations in $K_4B_2P_2O_9F_2$, (a) [K(1)O₆F₂], (b) [K(2)O₇F₂], (c) [K(3)O₆F] and (d) [K(4)O₇F].

Fig. S5. The coordination of (a) Rb(1), (b) Rb(2) and (c) Rb(3) in $Rb_3B_2PO_5F_4$, respectively.

Fig. S6. The IR spectra of the title compounds.

Fig. S7. UV–Vis–NIR diffuse reflectance spectra of (a) $Cs_3B_3P_4O_{16}$, (b) $Li(NH_4)_2B_3P_4O_{16}$, (c) $K_4B_2P_2O_9F_2$ and (d) $Rb_3B_2PO_5F_4$, respectively.

Fig. S8. Heyd–Scuseria–Ernzerhof (HSE06) hybrid functional implemented in PWmat code was performed to calculate band gap. Band structures (HSE06) of (a) $Cs_3B_3P_4O_{16}$, (b) $Li(NH_4)_2B_3P_4O_{16}$, (c) $K_4B_2P_2O_9F_2$ and (d) $Rb_3B_2PO_5F_4$, respectively.

