Supporting Information for

Ligand Exchange Among Iodine(I) Complexes

Shlin Yu*, Jas S. Ward

¹ University of Jyvaskyla, Department of Chemistry, Jyväskylä 40014, Finland

1.	General Considerations	2
2.	Synthesis of iodine(I) complex [I(X) ₂]PF ₆	3
3.	Synthesis of the asymmetrical iodine(I) complex [I(X)(16)]PF ₆	.58
4.	X-ray Crystallographic Studies	.68
5.	Computational Details	.70
6.	References for Supplementary Information	.75

1. General Considerations

All reagents and solvents were purchased from commercial suppliers and used without further purification. [I(16)₂]PF₆ was synthesised according to literature procedure.¹ NMR spectra were recorded on a Bruker Avance III 500 MHz or Avance 300 MHz spectrometers. The ¹H-¹⁵N NMR correlation spectra were recorded on a Bruker Avance III 500 MHz spectrometer at 30°C in CD₂Cl₂ or CD₃CN. Chemical shifts are reported on the δ scale in ppm using the residual solvent signal as internal standard (CD₂Cl₂, $\delta_{\rm H}$ 5.32; CD₃CN, $\delta_{\rm H}$ 1.94), or for ¹H-¹⁵N NMR spectroscopy, to an external *d*₃-MeNO₂ standard. Coupling constants are presented in Hz. For the ¹H-¹⁵N HMBC spectroscopy, spectral windows of 4 ppm (¹H) and 600 ppm (¹⁵N) were used with 1024 points in the direct dimension and 512 increments used in the indirect dimension resulting in a resolution of 1.2 ppm/point, however, a peak shape analysis was performed. Abbreviations of coupling patterns are as follows: br, broad; s, singlet; d, doublet; t, triplet; m, multiplet. Coupling constants (*J*) are expressed in Hz.

Single crystals of a quality suitable for X-ray diffraction were obtained for the complexes by slow evaporation of a CD₂Cl₂ solution over several days.

2. Synthesis of iodine(I) complex [I(X)₂]PF₆

2.1 Synthesis of [I(1)2]PF6

To a solution of silver hexafluorophosphate (3.0 mg, 0.012 mmol, 1.0 eq) in CD₂Cl₂ (1 mL), a solution of 4-cyanopyridine (1) (2.5 mg, 0.024 mmol, 2.0 eq) in CD₂Cl₂ (0.85 mL) was added. After the solution was stirred for 3 minutes at room temperature, the elemental I₂ (3.0 mg, 0.012 mmol, 1.0 eq) in CD₂Cl₂ (0.15 mL) was added. The mixture was centrifuged for 5 minutes and was filtered, then the solution of $[I(1)_2]PF_6$ (78%, determined by ¹H NMR integration of the crude reaction mixture; and proved by ¹H NMR titration experiments) was stored in a 4 mL vial in the fridge. ¹H NMR (500 MHz, CD₂Cl₂): δ 9.02 (d, *J* = 6.7 Hz, 2H), 7.88 (d, *J* = 6.8 Hz, 2H); ¹H-¹⁵N correlation NMR (500 MHz, CD₂Cl₂): δ -168.8.

NMR characterisation for ligand 1: ¹H-¹⁵N HMBC NMR (500 MHz, CD₂Cl₂): δ -52.8.

Figure S1. ¹H NMR spectrum of the crude mixture of reaction [I(1)₂]PF₆ (CD₂Cl₂, 500 MHz, 30 °C).

Figure S2. The stacked ¹H-¹⁵N HMBC-NMR Spectra of ligand **1** in green and $[N-I-N]^+$ complex $[I(1)_2]PF_6$ in red, in CD₂Cl₂ at 30 °C.

Figure S3. Partial ¹H NMR spectra (500 MHz, CD_2Cl_2 , 30 °C) of pure **1** (a), the crude mixture of reaction [I(1)₂]PF₆ in the absence (b) and in the presence of 0.1 (c), 0.2 (d), 0.4 (e), 1.0 (f), 1.2 (g), 1.6 (h), 1.9 (i), and 2.5 equivalents (j) of **16**.

2.2 Synthesis of [I(2)₂]PF₆

To a solution of silver hexafluorophosphate (1.95 mg, 0.008 mmol, 1.0 eq) in CD₂Cl₂ (1 mL), a solution of 4-(trifluoromethyl)pyridine (**2**) (2.28 mg, 0.015 mmol, 2.0 eq) in CD₂Cl₂ (0.85 mL) was added. After the solution was stirred for 3 minutes at room temperature, the elemental I₂ (1.96 mg, 0.008 mmol, 1.0 eq) in CD₂Cl₂ (0.15 mL) was added. The mixture was centrifuged for 5 minutes and was filtered, then the solution of $[I(2)_2]PF_6$ (75%, determined by ¹H NMR integration of the crude reaction mixture and proved by ¹H NMR titration experiments) was stored in a 4 mL vial in the fridge. ¹H NMR (500 MHz, CD₂Cl₂): δ 9.06 (d, *J* = 6.5 Hz, 2H), 7.89 (d, *J* = 6.6 Hz, 2H); ¹⁵N NMR (51 MHz, CD₂Cl₂): δ -168.5. The analytical data was in agreement with previously reported literature data.²

NMR characterisation for ligand 2: ¹⁵N NMR (51 MHz, CD₂Cl₂): δ -54.8.

Figure S4. ¹H NMR spectrum of the crude mixture of reaction [I(2)₂]PF₆ (CD₂Cl₂, 500 MHz, 30 °C).

Figure S5. The stacked ¹H-¹⁵N HMBC-NMR Spectra of ligand **2** in green and [N-I-N] complex $[I(2)_2]PF_6$ in red, in CD₂Cl₂ at 30 °C.

Figure S6. Partial ¹H NMR spectra (500 MHz, CD_2Cl_2 , 30 °C) of pure **2** (a), the crude mixture of reaction [I(**2**)₂]PF₆ in the absence (b) and in the presence of 0.1 (c), 0.2 (d), 0.3 (e), 0.5 (f), 1.0 (g), 1.5 (h) and 1.7 equivalents (i) of **16**.

2.3 Synthesis of [I(3)₂]PF₆

To a solution of silver hexafluorophosphate (2.1 mg, 0.008 mmol, 1.0 eq) in CD₂Cl₂ (1 mL), a solution of 4-bromopyridine (**3**) (0.016 mmol, 2.0 eq) in CD₂Cl₂ (0.9 mL) was added. After the solution was stirred for 3 minutes at room temperature, the elemental I₂ (2.1 mg, 0.008 mmol, 1.0 eq) in CD₂Cl₂ (0.1 mL) was added. The mixture was centrifuged for 5 minutes and was filtered, then the solution of $[I(3)_2]PF_6$ (82%, determined by ¹H NMR integration of the crude reaction mixture and proved by ¹H NMR titration experiments) was stored in a 4 mL vial in the fridge. ¹H NMR (500 MHz, CD₂Cl₂): δ 8.57 (d, *J* = 6.8 Hz, 2H), 7.79 (d, *J* = 6.8 Hz, 2H); ¹⁵N NMR (51 MHz, CD₂Cl₂): δ -180.8.

NMR characterisation for ligand 3: ¹⁵N NMR (51 MHz, CD₂Cl₂): δ -71.3.

Figure S7. ¹H NMR spectrum of [I(**3**)₂]PF₆ (CD₂Cl₂, 500 MHz, 30 °C).

Figure S8. The stacked ¹H-¹⁵N HMBC-NMR Spectra of ligand **3** in green and $[N-I-N]^+$ complex $[I(3)_2]PF_6$ in red, in CD₂Cl₂ at 30 °C.

Figure S9. Partial ¹H NMR spectra (500 MHz, CD_2Cl_2 , 30 °C) of pure **3** (a), the crude mixture of reaction [I(**3**)₂]PF₆ in the absence (b) and in the presence of 0.1 (c), 0.2 (d), 0.4 (e), 0.6 (f), 1.0 (g), 1.4 (h), 1.6 (i) and 1.8 equivalents (j) of **16**.

2.4 Synthesis of [I(4)₂]PF₆

To a solution of silver hexafluorophosphate (1.8 mg, 0.007 mmol, 1.0 eq) in CD₂Cl₂ (1.7 mL), a solution of 4-chloropyridine (4) (0.014 mmol, 2.0 eq) in CD₂Cl₂ (0.05 mL) was added. After the solution was stirred for 3 minutes at room temperature, the elemental I₂ (1.8 mg, 0.007 mmol, 1.0 eq) in CD₂Cl₂ (0.05 mL) was added. The mixture was centrifuged for 5 minutes and was filtered, then the solution of $[I(4)_2]PF_6$ (80%, determined by ¹H NMR integration of the crude reaction mixture and proved by ¹H NMR titration experiments) was stored in a 4 mL vial in the fridge. ¹H NMR (500 MHz, CD₂Cl₂): δ 8.67 (d, *J* = 6.8 Hz, 2H), 7.62 (d, *J* = 6.8 Hz, 2H); ¹⁵N NMR (51 MHz, CD₂Cl₂): δ -182.0.

NMR characterisation for ligand 4: ¹⁵N NMR (51 MHz, CD₂Cl₂): δ -72.2.

Figure S10. ¹H NMR spectrum of the crude mixture of reaction [I(4)₂]PF₆ (CD₂Cl₂, 500 MHz, 30 °C).

Figure S11. The stacked ¹H-¹⁵N HMBC-NMR Spectra of ligand **4** in green and $[N-I-N]^+$ complex $[I(4)_2]PF_6$ in red, in CD₂Cl₂ at 30 °C.

Figure S12. Partial ¹H NMR spectra (500 MHz, CD_2Cl_2 , 30 °C) of pure 4 (a), the crude mixture of reaction [I(4)₂]PF₆ in the absence (b) and in the presence of 0.1 (c), 0.2 (d), 0.4 (e), 0.6 (f), 1.0 (g) and 1.4 equivalents (h) of 16.

2.5 Synthesis of [I(5)₂]PF₆

To a solution of silver hexafluorophosphate (3.1 mg, 0.012 mmol, 1.0 eq) in CD₂Cl₂ (2.0 mL), a solution of 4-iodopyridine (**5**) (5.0 mg, 0.024 mmol, 2.0 eq) in CD₂Cl₂ (0.9 mL) was added. After the solution was stirred for 3 minutes at room temperature, the elemental I₂ (3.1 mg, 0.012 mmol, 1.0 eq) in CD₂Cl₂ (0.1 mL) was added. The mixture was centrifuged for 5 minutes and was filtered, then the solution of $[I(5)_2]PF_6$ (83%, determined by ¹H NMR integration of the crude reaction mixture and proved by ¹H NMR titration experiments) was stored in a 4 mL vial in the fridge. ¹H NMR (500 MHz, CD₂Cl₂): δ 8.36 (d, *J* = 6.6 Hz, 2H), 8.00 (d, *J* = 6.6 Hz, 2H).

Figure S13. ¹H NMR spectrum of the crude mixture of reaction [I(5)₂]PF₆ (CD₂Cl₂, 500 MHz, 30 °C).

Figure S14. Partial ¹H NMR spectra (500 MHz, CD_2Cl_2 , 30 °C) of pure 5 (a), the crude mixture of reaction [I(5)₂]PF₆ in the absence (b) and in the presence of 0.1 (c), 0.2 (d), 0.3 (e), 0.4 (f), 0.6 (g), 1.0 (h), 1.5 (i) and 2.0 equivalents (j) of 16.

2.6 Synthesis of [I(6)₂]PF₆

To a solution of silver hexafluorophosphate (9.1 mg, 0.036 mmol, 1.0 eq) in CD₂Cl₂ (1.0 mL), a solution of methyl isonicotinate (**6**) (9.9 mg, 0.072 mmol, 2.0 eq) in CD₂Cl₂ (0.65 mL) was added. After the solution was stirred for 3 minutes at room temperature, the elemental I₂ (9.2 mg, 0.036 mmol, 1.0 eq) in CD₂Cl₂ (0.35 mL) was added. The mixture was centrifuged for 5 minutes and was filtered, then the solution of $[I(6)_2]PF_6$ (88%, determined by ¹H NMR integration of the crude reaction mixture and proved by ¹H NMR titration experiments) was stored in a 4 mL vial in the fridge. ¹H NMR (500 MHz, CD₂Cl₂): δ 8.95 (d, *J* = 6.6 Hz, 4H), 8.13 (d, *J* = 6.6 Hz, 4H), 4.04 (s, 6H).

Figure S15. ¹H NMR spectrum of the crude mixture of reaction [I(6)₂]PF₆ (CD₂Cl₂, 500 MHz, 30 °C).

Figure S16. Partial ¹H NMR spectra (500 MHz, CD₂Cl₂, 30 °C) of pure **6** (a), the crude mixture of reaction $[I(6)_2]PF_6$ in the absence (b) and in the presence of 0.1 (b), 0.2 (c), 0.3 (d), 0.4 (e), 0.5 (f), 0.6 (g), 0.7 (h), 0.8 (i), 0.9 (j), 1.0 (k), 1.2 (l), 1.4 (m), 1.6 (n), 1.8 (o) and 2.0 equivalents (p) of **16**.

2.7 Synthesis of [I(7)₂]PF₆

To a solution of silver hexafluorophosphate (9.7 mg, 0.038 mmol, 1.0 eq) in CD₂Cl₂ (1.0 mL), a solution of pyridine (7) (6.1 mg, 0.076 mmol, 2.0 eq) in CD₂Cl₂ (0.55 mL) was added. After the solution was stirred for 3 minutes at room temperature, the elemental I₂ (9.8 mg, 0.038 mmol, 1.0 eq) in CD₂Cl₂ (0.45 mL) was added. The mixture was centrifuged for 5 minutes and was filtered, then the solution of $[I(7)_2]PF_6$ (95%, determined by ¹H NMR integration of the crude reaction mixture and proved by ¹H NMR titration experiments) was stored in a 4 mL vial in the fridge. ¹H NMR (500 MHz, CD₂Cl₂): δ 8.77 (d, *J* = 5.0 Hz, 4H), 8.24 (t, *J* = 7.8 Hz, 2H), 7.64 (t, *J* = 7.1 Hz, 4H). The analytical data was in agreement with previously reported literature data.¹

Figure S17. ¹H NMR spectrum of [I(7)₂]PF₆ (CD₂Cl₂, 500 MHz, 30 °C).

Figure S18. Partial ¹H NMR spectra (500 MHz, CD₂Cl₂, 30 °C) of [I(7)₂]PF₆ (3.85 mM) in the absence (a) and in the presence of 0.1 (b), 0.2 (c), 0.3 (d), 0.4 (e), 0.6 (f), 0.7 (g), 0.8 (h), 1.0 (i), 1.1 (j), 1.3 (k), 1.5 (l), 1.8 (m), 2.0 (n), 2.2 (o), 2.7 (p), 3.3 (q), 3.9 (r), and 4.7 equivalents (s) of **16**.

2.9 Synthesis of [I(8)₂]PF₆

To a solution of silver hexafluorophosphate (10.1 mg, 0.040 mmol, 1.0 eq) in CD₂Cl₂ (2.0 mL), a solution of 4-phenylpyridine (**8**) (12.4 mg, 0.080 mmol, 2.0 eq) in CD₂Cl₂ (0.60 mL) was added. After the solution was stirred for 3 minutes at room temperature, the elemental I₂ (10.2 mg, 0.040 mmol, 1.0 eq) in CD₂Cl₂ (0.40 mL) was added. The mixture was centrifuged for 5 minutes and was filtered, then the solution of [I(**8**)₂]PF₆ (89%, determined by ¹H NMR integration of the crude reaction mixture and proved by ¹H NMR titration experiments) was stored in a 4 mL vial in fridge. ¹H NMR (500 MHz, CD₂Cl₂): δ 8.77 (d, *J* = 5.4 Hz, 4H), 7.82 (d, *J* = 5.3 Hz, 4H), 7.79-7.74 (m, 4H), 7.64-7.58 (m, 6H).

Figure S19. ¹H NMR spectrum of the iodine(I) complex [I(8)₂]PF₆ (CD₂Cl₂, 500 MHz, 30 °C).

Figure S20. Partial ¹H NMR spectra (500 MHz, CD_2Cl_2 , 30 °C) of pure **8** (a), the iodine(I) complex [I(**8**)₂]PF₆ in the absence (b) and in the presence of 0.1 (c), 0.2 (d), 0.3 (e), 0.5 (f),), 1.0 (g), 1.5 (h) and 1.6 equivalents (i) of **16**.

2.9 Synthesis of [I(9)₂]PF₆

To a solution of silver hexafluorophosphate (9.0 mg, 0.036 mmol, 1.0 eq) in CD₂Cl₂ (1.0 mL), a solution of 4-benzylpyridine (**9**) (12.1 mg, 0.071 mmol, 2.0 eq) in CD₂Cl₂ (1.0 mL) was added. After the solution was stirred for 3 minutes at room temperature, the elemental I₂ (9.1 mg, 0.036 mmol, 1.0 eq) in CD₂Cl₂ (0.40 mL) was added. The mixture was centrifuged for 5 minutes and was filtered, then the solution of $[I(9)_2]PF_6$ (>95%, determined by ¹H NMR integration of the crude reaction mixture and proved by ¹H NMR titration experiments) was stored in a 4 mL vial in fridge. ¹H NMR (500 MHz, CD₂Cl₂): δ 8.57 (d, *J* = 6.7 Hz, 4H), 7.41-7.28 (m, 10H), 7.20 (d, *J* = 7.0 Hz, 4H), 4.14 (s, 4H).

Figure S21. ¹H NMR spectrum of the iodine(I) complex [I(9)₂]PF₆ (CD₂Cl₂, 500 MHz, 30 °C).

Figure S22. Partial ¹H NMR spectra (500 MHz, CD_2Cl_2 , 30 °C) of pure **9** (a), the iodine(I) complex [I(**9**)₂]PF₆ in the absence (b) and in the presence of 0.5 (c), 1.0 (d), 1.6 (e), 2.0 (f) and 2.6 equivalents (g) of **16**.

2.10 Synthesis of [I(10)₂]PF₆

To a solution of silver hexafluorophosphate (10.1 mg, 0.040 mmol, 1.0 eq) in CD₂Cl₂ (2.0 mL), a solution of 4-methylpyridine (**10**) (7.5 mg, 0.080 mmol, 2.0 eq) in CD₂Cl₂ (0.6 mL) was added. After the solution was stirred for 3 minutes at room temperature, the elemental I₂ (10.2 mg, 0.040 mmol, 1.0 eq) in CD₂Cl₂ (0.40 mL) was added. The mixture was centrifuged for 5 minutes and was filtered, then the solution of $[I(10)_2]PF_6$ (97%, determined by ¹H NMR integration of the crude reaction mixture and proved by ¹H NMR titration experiments) was stored in a 4 mL vial in the fridge. ¹H NMR (500 MHz, CD₂Cl₂): δ 8.56 (d, *J* = 6.5 Hz, 4H), 7.40 (d, *J* = 5.8 Hz, 4H), 2.55 (s, 6H).

Figure S23. ¹H NMR spectrum of the iodine(I) complex [I(10)₂]PF₆ (CD₂Cl₂, 500 MHz, 30 °C).

Figure S24. Partial ¹H NMR spectra (500 MHz, CD_2Cl_2 , 30 °C) of pure **10** (a), the iodine(I) complex [I(**10**)₂]PF₆ in the absence (b) and in the presence of 0.6 (c), 1.0 (d), 1.2 (e), 1.5 (f), 1.8 (g) and 2.0 equivalents (h) of **16**.

Figure S25. Partial ¹H NMR spectra (500 MHz, CD_2Cl_2 , 30 °C) of the crude mixture of reaction [I(16)₂]PF₆ (8 mM 16) in the absence (a) and in the presence of 0.2 (b), 0.4 (c), 0.6 (d), 1.0 (e), 1.5 (f), 2.0 (g), 4.0 (h), 6.0 (i), 10.0 (j), 15.0 (k) and 20.0 equivalents (l) of 10.

2.11 Synthesis of [I(11)₂]PF₆

To a solution of silver hexafluorophosphate (7.5 mg, 0.030 mmol, 1.0 eq) in CD₂Cl₂ (2.0 mL), a solution of 4-ethylpyridine (**11**) (6.4 mg, 0.060 mmol, 2.0 eq) in CD₂Cl₂ (0.65 mL) was added. After the solution was stirred for 3 minutes at room temperature, the elemental I₂ (7.6 mg, 0.030 mmol, 1.0 eq) in CD₂Cl₂ (0.35 mL) was added. The mixture was centrifuged for 5 minutes and was filtered, then the solution of $[I(11)_2]PF_6$ (96%, determined by ¹H NMR integration of the crude reaction mixture and proved by ¹H NMR titration experiments) was stored in a 4 mL vial in the fridge. ¹H NMR (500 MHz, CD₂Cl₂): δ 8.59 (d, *J* = 6.5 Hz, 4H), 7.42 (d, *J* = 5.8 Hz, 4H), 2.84 (q, *J* = 7.6 Hz, 4H), 1.32 (q, *J* = 7.6 Hz, 6H). The analytical data was in agreement with previously reported literature data.¹

Figure S26. ¹H NMR spectrum of the iodine(I) complex [I(11)₂]PF₆ (CD₂Cl₂, 500 MHz, 30 °C).

Figure S27. Partial ¹H NMR spectra (500 MHz, CD_2Cl_2 , 30 °C) of pure **11** (a), the iodine(I) complex [I(**11**)₂]PF₆ in the absence (b) and in the presence of 0.5 (c), 1.0 (d), 1.5 (e) and 2.0 equivalents (f) of **16**.

2.12 Synthesis of [I(12)₂]PF₆

To a solution of silver hexafluorophosphate (9.7 mg, 0.038 mmol, 1.0 eq) in CD₂Cl₂ (1.0 mL), a solution of 4-*tert*-butylpyridine (**12**) (10.4 mg, 0.077 mmol, 2.0 eq) in CD₂Cl₂ (0.6 mL) was added. After the solution was stirred for 3 minutes at room temperature, the elemental I₂ (9.8 mg, 0.038 mmol, 1.0 eq) in CD₂Cl₂ (0.4 mL) was added. The mixture was centrifuged for 5 minutes and was filtered, then the solution of $[I(12)_2]PF_6$ (92%, determined by ¹H NMR integration of the crude reaction mixture and proved by ¹H NMR titration experiments) was stored in a 4 mL vial in the fridge. ¹H NMR (500 MHz, CD₂Cl₂): δ 8.61 (d, *J* = 6.8 Hz, 4H), 7.57 (d, *J* = 6.8 Hz, 4H), 1.38 (s, 18H); ¹⁵N NMR (51 MHz, CD₂Cl₂): δ -181.4. NMR characterisation for ligand **12**: ¹⁵N NMR (51 MHz, CD₂Cl₂): δ -74.7.

Figure S28. ¹H NMR spectrum of the iodine(I) complex [I(12)₂]PF₆ (CD₂Cl₂, 500 MHz, 30 °C).

Figure S29. The stacked ¹H-¹⁵N HMBC-NMR Spectra of ligand **12** in green and $[N-I-N]^+$ complex $[I(12)_2]PF_6$ in red, in CD₂Cl₂ at 30 °C.

Figure S30. Partial ¹H NMR spectra (500 MHz, CD_2Cl_2 , 30 °C) of pure **12** (a), the iodine(I) complex [I(**12**)₂]PF₆ in the absence (b) and in the presence of 0.4 (c), 1.0 (d), 2.0 (e) and 3.0 equivalents (f) of **16**.

2.13 Synthesis of [I(13)₂]PF₆

To a solution of silver hexafluorophosphate (9.57 mg, 0.038 mmol, 1.0 eq) in CD₂Cl₂ (2.0 mL), a solution of 4-isopropylpyridine (**13**) (9.21 mg, 0.076 mmol, 2.0 eq) in CD₂Cl₂ (0.6 mL) was added. After the solution was stirred for 3 minutes at room temperature, the elemental I₂ (9.64 mg, 0.038 mmol, 1.0 eq) in CD₂Cl₂ (0.4 mL) was added. The mixture was centrifuged for 5 minutes and was filtered, then the solution of [I(**13**)₂]PF₆ (94%, determined by ¹H NMR integration of the crude reaction mixture and proved by ¹H NMR titration experiments) was stored in a 4 mL vial in the fridge. ¹H NMR (500 MHz, CD₂Cl₂): δ 8.60 (d, *J* = 6.8 Hz, 4H), 7.44 (d, *J* = 6.7 Hz, 4H), 3.08 (m, 2H), 1.32 (d, *J* = 7.0 Hz, 12H). The analytical data was in agreement with previously reported literature data.³

Figure S31. ¹H NMR spectrum of the iodine(I) complex [I(13)₂]PF₆ (CD₂Cl₂, 500 MHz, 30 °C).

in the absence (b) and in the presence of 0.4 (c), 1.0 (d), 1.5 (e), 2.0 (f) and 2.6 equivalents (g) of 16.

2.14 Synthesis of [I(14)₂]PF₆

To a solution of silver hexafluorophosphate (9.0 mg, 0.036 mmol, 1.0 eq) in CD₂Cl₂ (2.0 mL), a solution of 4-methoxypyridine (14) (7.8 mg, 0.071 mmol, 2.0 eq) in CD₂Cl₂ (0.65 mL) was added. After the solution was stirred for 3 minutes at room temperature, the elemental I₂ (9.1 mg, 0.036 mmol, 1.0 eq) in CD₂Cl₂ (0.35 mL) was added. The mixture was centrifuged for 5 minutes and was filtered, then the solution of $[I(14)_2]PF_6$ (96%, determined by ¹H NMR integration of the crude reaction mixture and proved by ¹H NMR titration experiments) was stored in a 4 mL vial in the fridge. ¹H NMR (500 MHz, CD₂Cl₂): δ 8.48 (d, *J* = 7.1 Hz, 4H), 7.02 (d, *J* = 7.1 Hz, 4H), 4.01 (s, 6H).

Figure S33. ¹H NMR spectrum of the iodine(I) complex [I(14)₂]PF₆ (CD₂Cl₂, 500 MHz, 30 °C).

Figure S34. Partial ¹H NMR spectra (500 MHz, CD_2Cl_2 , 30 °C) of pure **14** (a), the iodine(I) complex [I(**14**)₂]PF₆ in the absence (b) and in the presence of 0.5 (c), 1.0 (d), 1.6 (e), 2.0 (f), 2.4 (g) and 3.0 equivalents (h) of **16**.
2.15 Synthesis of [I(15)2]PF6

 $[I(15)_2]PF_6$ was prepared by the ligand exchange reaction of $[I(10)_2]PF_6$ and 4-aminopyridine (15), then proved by the following titrations 16 of into the crude mixture of reaction $[I(15)_2]PF_6$.

Figure S35. Partial ¹H NMR spectra (500 MHz, CD₂Cl₂, 30 °C) of pure **10** (a), 1 mM [I(**10**)₂]PF₆ in the absence (b) and in the presence of 0.2 (c), 0.4 (d), 0.6 (e), 1.0 (f), 1.8 (g) and 2.6 equivalents (h) of **15**.

Figure S36. Partial ¹H NMR spectra (500 MHz, CD_2Cl_2 , 30 °C) of pure 10 (a), pure 15 (b), the crude mixture of reaction [I(15)₂]PF₆ in the absence (c) and in the presence of 0.4 (d), 0.8 (e), 1.6 (f), 2.4 (g) and 3.2 equivalents (h) of 16, and pure [I(16)₂]PF₆ (i).

2.16 Synthesis of [I(17)₂]PF₆

To a solution of silver hexafluorophosphate (9.8 mg, 0.039 mmol, 1.0 eq) in CD₂Cl₂ (1.0 mL), a solution of 4-pyrrolidinopyridine (17) (6.5 mg, 0.078 mmol, 2.0 eq) in CD₂Cl₂ (0.6 mL) was added. After the solution was stirred for 3 minutes at room temperature, the elemental I₂ (9.9 mg, 0.039 mmol, 1.0 eq) in CD₂Cl₂ (0.4 mL) was added. The mixture was centrifuged for 5 minutes and was filtered, then the solution of $[I(17)_2]PF_6$ (72%, determined by ¹H NMR integration of the crude reaction mixture) was stored in a 4 mL vial in the fridge. ¹H NMR (500 MHz, CD₂Cl₂): δ 8.04 (d, *J* = 7.2 Hz, 4H), 6.39 (d, *J* = 6.8 Hz, 4H), 3.45-3.36 (m, 8H), 2.12-2.07 (m, 8H).

Figure S37. ¹H NMR spectrum of the crude mixture of reaction [I(17)₂]PF₆ (CD₂Cl₂, 500 MHz, 30 °C).

and in the presence of 0.1 (c), 0.2 (d), 0.4 (e), 0.6 (f), 1.0 (g), 1.5 (h), 2.0 (i) and 2.5 equivalents (j) of 17.

2.17 Synthesis of [I(18)₂]PF₆

To a solution of silver hexafluorophosphate (9.8 mg, 0.039 mmol, 1.0 eq) in CD₂Cl₂ (1.0 mL), a solution of 1-methyl-1,2,4-triazole (**18**) (6.5 mg, 0.078 mmol, 2.0 eq) in CD₂Cl₂ (0.6 mL) was added. After the solution was stirred for 3 minutes at room temperature, the elemental I₂ (9.9 mg, 0.039 mmol, 1.0 eq) in CD₂Cl₂ (0.4 mL) was added. The mixture was centrifuged for 5 minutes and was filtered, then the solution of $[I(18)_2]PF_6$ (93%, determined by ¹H NMR integration of the crude reaction mixture and proved by ¹H NMR titration experiments) was stored in a 4 mL vial in the fridge. ¹H NMR (500 MHz, CD₂Cl₂): δ 8.02 (s, 2H), 7.90 (s, 2H), 4.27 (s, 6H). The analytical data was in agreement with previously reported literature data.⁴

Figure S39. ¹H NMR spectrum of the crude mixture of reaction [I(18)₂]PF₆ (CD₂Cl₂, 500 MHz, 30 °C).

Figure S40. Partial ¹H NMR spectra (500 MHz, CD_2Cl_2 , 30 °C) of pure **18** (a), the crude mixture of reaction [I(**18**)₂]PF₆ in the absence (b) and in the presence of 0.5 (c), 0.8 (d), 1.2 (e), 1.6 (f) and 2.0 equivalents (g) of **16**.

2.18 Synthesis of [I(19)₂]PF₆

To a solution of silver hexafluorophosphate (5.7 mg, 0.023 mmol, 1.0 eq) in CD₂Cl₂ (1.0 mL), a solution of 1-methylimidazole (**19**) (3.7 mg, 0.045 mmol, 2.0 eq) in CD₂Cl₂ (0.8 mL) was added. After the solution was stirred for 3 minutes at room temperature, the elemental I₂ (5.7 mg, 0.023 mmol, 1.0 eq) in CD₂Cl₂ (0.2 mL) was added. The mixture was centrifuged for 5 minutes and was filtered, then the solution of $[I(19)_2]PF_6$ (96%, determined by ¹H NMR integration of the crude reaction mixture and proved by ¹H NMR titration experiments) was stored in a 4 mL vial in the fridge. ¹H NMR (500 MHz, CD₂Cl₂): δ 7.87 (s, 2H), 7.15 (s, 2H), 6.97 (s, 2H), 3.83 (s, 6H). The analytical data was in agreement with previously reported literature data.

Figure S42. Partial ¹H NMR spectra (500 MHz, CD_2Cl_2 , 30 °C) of pure 19 (a), the crude mixture of reaction $[I(19)_2]PF_6$ in the absence (b) and in the presence of 0.5 (c), 1.0 (d), 2.0 (e), 3.0 (f), 3.5 (g) and 4.0 equivalents (h) of 16.

2.19 Synthesis of [I(20)₂]PF₆

To a solution of silver hexafluorophosphate (4.9 mg, 0.019 mmol, 1.0 eq) in CD₂Cl₂ (1.0 mL), a solution of 2-methylpyridine (**20**) (3.6 mg, 0.039 mmol, 2.0 eq) in CD₂Cl₂ (0.8 mL) was added. After the solution was stirred for 3 minutes at room temperature, the elemental I₂ (4.9 mg, 0.019 mmol, 1.0 eq) in CD₂Cl₂ (0.2 mL) was added. The mixture was centrifuged for 5 minutes and was filtered, then the solution of $[I(20)_2]PF_6$ (77%, determined by ¹H NMR integration of the crude reaction mixture and proved by ¹H NMR titration experiments) was stored in a 4 mL vial in the fridge. ¹H NMR (500 MHz, CD₂Cl₂): δ 8.89 (dd, *J* = 5.6, 1.6 Hz, 2H), 8.08 (td, *J* = 7.7, 1.6 Hz, 2H), 7.59 (d, *J* = 7.9 Hz, 2H), 7.35 (d, *J* = 6.6 Hz, 2H), 2.85 (s, 6H).

Figure S43. ¹H NMR spectrum of the crude mixture of reaction [I(20)₂]PF₆ (CD₂Cl₂, 500 MHz, 30 °C).

Figure S44. Partial ¹H NMR spectra (500 MHz, CD_2Cl_2 , 30 °C) of pure 20 (a), the crude mixture of reaction [I(20)₂]PF₆ in the absence (b) and in the presence of 0.1 (c), 0.2 (d), 0.4 (e), 0.6 (f), 0.8 (g), 1.0 (h) and 1.5 equivalents (i) of 16.

2.20 Synthesis of [I(21)₂]PF₆

To a solution of silver hexafluorophosphate (2.0 mg, 0.008 mmol, 1.0 eq) in CD₂Cl₂ (1.0 mL), a solution of 2,6-lutidine (**21**) (1.7 mg, 0.016 mmol, 2.0 eq) in CD₂Cl₂ (0.9 mL) was added. After the solution was stirred for 3 minutes at room temperature, the elemental I₂ (2.0 mg, 0.008 mmol, 1.0 eq) in CD₂Cl₂ (0.1 mL) was added. The mixture was centrifuged for 5 minutes and was filtered, then the solution of $[I(21)_2]PF_6$ (about 12%, determined by ¹H NMR integration of the crude reaction mixture and proved by ¹H NMR titration experiments) was stored in a 4 mL vial in the fridge.

Figure S45. Partial ¹H NMR spectra (500 MHz, CD_2Cl_2 , 30 °C) of pure 21 (a), the crude mixture of reaction $[I(21)_2]PF_6$ in the absence (b) and in the presence of 0.5 (c), 1.0 (d), 1.5 (e) and 1.8 equivalents (g) of 16.

To a solution of $[I(18)_2]PF_6$ (48.0 mg, 0.11 mmol, 1.0 eq.) in dichloromethane (1.0 mL), a solution of 21 (32.0 mg, 0.30 mmol, 2.7 eq.) in dichloromethane (0.5 mL) was added. The reaction mixture was stirred for 5 minutes, concentrated to ~1 mL under reduced pressure and upon the addition of

Et₂O (20 mL), the desired product was precipitated from solution as a white solid, which was filtered and washed with Et₂O. The product was dried under reduced pressure to obtain [I(21)₂]PF₆ (44.4 mg, 83%). ¹H NMR (500 MHz, CD₂Cl₂): δ 7.87 (t, *J* = 7.8 Hz, 2H), 7.38 (d, *J* = 7.8 Hz, 4H), 2.93 (s, 12H); ¹⁵N NMR (51 MHz, CD₃CN): δ -154.9.

NMR characterisation for 21: ¹⁵N NMR (51 MHz, CD₃CN): δ -67.8.

Figure S46. ¹H NMR spectrum (500 MHz, CD₂Cl₂, 30 °C) of [I(21)₂]PF₆.

Figure S47. The stacked ¹H-¹⁵N-HMBC spectra of ligand **21** in green and $[N-I-N]^+$ complex $[I(21)_2]PF_6$ in red, in CD₂Cl₂ at 30 °C.

Figure S48. ¹H NMR spectra (500 MHz, CD₂Cl₂, 30 °C) of [I(**18**)₂]PF₆ in the absence (a) and in the presence of 0.2 (b), 0.4 (c), 0.6 (d), 0.8 (e), 1.0 (f), 1.5 (g), 2.0 (h), 2.5 (i) equivalents of **21** and pure [I(**21**)₂]PF₆ (j).

2.21 Synthesis of [I(22)₂]PF₆

To a solution of silver hexafluorophosphate (3.2 mg, 0.013 mmol, 1.0 eq) in CD₂Cl₂ (2.0 mL), a solution of 2,4,6-trimethylpyridine (**22**) (3.1 mg, 0.025 mmol, 2.0 eq) in CD₂Cl₂ (0.9 mL) was added. After the solution was stirred for 3 minutes at room temperature, the elemental I₂ (3.2 mg, 0.013 mmol, 1.0 eq) in CD₂Cl₂ (0.1 mL) was added. The mixture was centrifuged for 5 minutes and was filtered, then the solution of $[I(22)_2]PF_6$ (43%, determined by ¹H NMR integration of the crude reaction mixture and proved by ¹H NMR titration experiments) was stored in a 4 mL vial in the fridge.

Figure S49. ¹H NMR spectrum of the crude mixture of reaction $[I(22)_2]PF_6$ by the $[N \cdots Ag^+ \cdots N] \rightarrow [N \cdots I^+ \cdots N]$ cation exchange reaction (CD₂Cl₂, 500 MHz, 30 °C).

Figure S50. Partial ¹H NMR spectra (500 MHz, CD₂Cl₂, 30 °C) of pure **22** (a), the crude mixture of reaction $[I(22)_2]PF_6$ in the absence (b) and in the presence of 0.2 (c), 0.6 (d), 1.0 (e), 1.4 (f) and 1.8 equivalents (g) of **16**.

To a solution of $[I(18)_2]PF_6$ (45.0 mg, 0.10 mmol, 1.0 eq.) in dichloromethane (1 mL), a solution of **22** (31.5 mg, 0.26 mmol, 2.6 eq.) in dichloromethane (0.5 mL) was added. The reaction mixture was stirred for 5 minutes, concentrated to ~1 mL under reduced pressure and upon the addition of Et₂O (20 mL), the desired product was precipitated from solution as a white solid, which was filtered and washed with Et₂O. The product was dried under reduced pressure to obtain $[I(22)_2]PF_6$ (44.7 mg,

87%). ¹**H NMR** (500 MHz, CD₃CN): δ 7.17 (s, 4H), 2.85 (s, 12H), 2.42 (s, 6H); ¹³**C NMR** (125 MHz, CD₃CN): X; ¹⁵**N NMR** (51 MHz, CD₃CN): δ -173.3.

NMR characterisation for 22: ¹⁵N NMR (51 MHz, CD₃CN): δ -67.8.

f2 (ppm)

Figure S52. The stacked ¹H-¹⁵N-HMBC spectra of ligand **22** in green and $[N-I-N]^+$ complex $[I(22)_2]PF_6$ in red, in CD₂Cl₂ at 30 °C.

0.2 (b), 0.6 (c), 1.0 (d), 1.5 (e), 1.8 (f) equivalents of 22 and pure $[I(22)_2]PF_6$ (g).

2.22 Synthesis of [I(23)₂]PF₆

To a solution of silver hexafluorophosphate (5.8 mg, 0.023 mmol, 1.0 eq) in CD₃CN (1.8 mL), a solution of 1,4-diazabicyclo[2.2.2]octane (**23**) (5.2 mg, 0.046 mmol, 2.0 eq) in CD₂Cl₂ (0.1 mL) was added. After the solution was stirred for 3 minutes at room temperature, the elemental I₂ (5.8 mg, 0.023 mmol, 1.0 eq) in CD₂Cl₂ (0.1 mL) was added. The mixture was centrifuged for 5 minutes and was filtered, then the solution of $[I(22)_2]PF_6$ was stored in a 4 mL vial in the fridge. ¹H NMR analysis (**Fig. S54**) showed complicated and broad peaks, indicating the reaction doesn't go well.

Figure S54. ¹H NMR spectrum of the crude mixture of reaction $[I(23)_2]PF_6$ by the $[N \cdots Ag \cdots N]^+ \rightarrow [N \cdots I \cdots N]^+$ cation exchange reaction (CD₃CN, 500 MHz, 30 °C).

To a solution of $[I(18)_2]PF_6$ (116.0 mg, 0.26 mmol, 1.0 eq.) in acetonitrile (1.0 mL), a solution of 23 (59.4 mg, 0.53 mmol, 2.0 eq.) in acetonitrile (0.5 mL) was added. The reaction mixture was stirred for 5 minutes, concentrated to ~0.5 mL under reduced pressure and upon the addition of Et₂O (20 mL), the desired product was precipitated from solution as a white solid, which was filtered and washed with Et₂O. The product was dried under reduced pressure to obtain $[I(23)_2]PF_6$ (92.0 mg, 70%). ¹H NMR (500 MHz, CD₃CN): δ 3.11-3.05 (m, 12H), 2.95-2.89 (m, 12H).

Figure S55. ¹H NMR spectrum (500 MHz, CD₃CN, 30 °C) of [I(23)₂]PF₆.

Figure S56. ¹H NMR spectra (500 MHz, CD₃CN, 30 °C) of $[I(18)_2]PF_6$ in the absence (a) and in the presence of 0.2 (b), 0.4 (c), 0.6 (d), 1.0 (e), 1.5 (f), 2.0 (g) and 2.5 (h) equivalents of 23.

3. Synthesis of the asymmetrical iodine(I) complex [I(X)(16)]PF₆

3.1 The study of 1:1 mixture of [I(15)2]PF6 and [I(16)2]PF6

Due to the bad solubility of $[I(15)_2]PF_6$ in CD₂Cl₂, the study of a 1:1 mixture of $[I(15)_2]PF_6$ and $[I(16)_2]PF_6$ was conducted in CD₃CN. To a 2 mL vial, 0.5 mL of 40 mM $I(15)_2]PF_6$ in CD₃CN and 0.5 mL of 40 mM $[I(16)_2]PF_6$ in CD₃CN were added and the mixture was studied by NMR spectroscopy. The molar ratios of $[I(15)_2]^+$, $[I(15)(16)]^+$ and $[I(16)_2]^+$ in the mixture was calculated to be 1:2:1 by integration of the corresponding ¹⁵N NMR signals.

Figure S57. ¹H NMR spectrum of 1:1 mixture of $[I(15)_2]PF_6$ and $[I(16)_2]PF_6$ in CD₃CN at 30 °C.

Figure S58. ¹H-¹⁵N-HMBC NMR spectrum of 1:1 mixture of $[I(15)_2]PF_6$ and $[I(16)_2]PF_6$ in CD₃CN at 30 °C. $[I(15)_2]^+: (\delta^{15}N = -211.5); [I(16)_2]^+: (\delta^{15}N = -217.6); [I(15)(16)]^+: (\delta^{15}N(15) = -209.6, (\delta^{15}N(16) = -215.6).$

Figure S59. ¹⁵N NMR spectrum of 1:1 mixture of $[I(15)_2]PF_6$ and $[I(16)_2]PF_6$, projected from the related ¹H-¹⁵N-HMBC NMR spectrum.

Figure S60. The stacked ¹H-¹⁵N HMBC-NMR Spectra of ligand **15** in green and $[N-I-N]^+$ complex $[I(15)_2]PF_6$ in red, in CD₂CN at 30 °C.

3.2 The study of 1:1 mixture of [I(12)₂]PF₆ and [I(16)₂]PF₆

To a 2 mL vial, 0.5 mL of 40 mM $I(12)_2$]PF₆ in CD₂Cl₂ and 0.5 mL of 40 mM $[I(16)_2]$ PF₆ in CD₂Cl₂ were added and the mixture was studied by NMR spectroscopy. The molar ratios of $[I(12)_2]^+$, $[I(12)(16)]^+$ and $[I(16)_2]^+$ in the mixture was calculated to be 1:3.2:1 by integration of the corresponding ¹H NMR signals.

Figure S61. ¹H NMR spectrum of 1:1 mixture of $[I(12)_2]PF_6$ and $[I(16)_2]PF_6$ in CD₂Cl₂ at 30 °C.

Figure S62. ¹H-¹⁵N-HMBC NMR spectrum of 1:1 mixture of $[I(12)_2]PF_6$ and $[I(16)_2]PF_6$ in CD₂Cl₂ at 30 °C. $[I(12)_2]^+: (\delta^{15}N = -181.4); [I(16)_2]^+: (\delta^{15}N = -216.3); [I(12)(16)]^+: (\delta^{15}N(12) = -166.7, (\delta^{15}N(16) = -232.2).$

3.3 The study of 1:1 mixture of [I(7)₂]PF₆ and [I(16)₂]PF₆

To a 2 mL vial, 0.5 mL of 40 mM $I(7)_2$]PF₆ in CD₂Cl₂ and 0.5 mL of 40 mM $[I(16)_2]$ PF₆ in CD₂Cl₂ were added and the mixture was studied by NMR spectroscopy. The molar ratios of $[I(7)_2]^+$, $[I(7)(16)]^+$ and $[I(16)_2]^+$ in the mixture was calculated to be about 1:4.8:1 by integration of the corresponding ¹H NMR signals.

Figure S64. ¹H-¹⁵N-HMBC NMR spectrum of 1:1 mixture of $[I(7)_2]PF_6$ and $[I(16)_2]PF_6$ in CD₂Cl₂ at 30 °C. $[I(7)_2]^+: (\delta^{15}N = -174.7); [I(16)_2]^+: (\delta^{15}N = -216.3); [I(7)(16)]^+: (\delta^{15}N(7) = not detectable, (\delta^{15}N(16) = -236.9).$

3.4 The study of 1:1 mixture of [I(18)2]PF6 and [I(16)2]PF6

To a 2 mL vial, 0.5 mL of 40 mM I(18)₂]PF₆ in CD₂Cl₂ and 0.5 mL of 40 mM [I(16)₂]PF₆ in CD₂Cl₂ were added and the mixture was studied by NMR spectroscopy. The molar ratios of $[I(18)_2]^+$, $[I(18)(16)]^+$ and $[I(16)_2]^+$ in the mixture was calculated to be about 1:9.5:1 by integration of the corresponding ¹H NMR signals.

Figure S65. Partial ¹H NMR spectrum of 1:1 mixture of $[I(18)_2]PF_6$ and $[I(16)_2]PF_6$ in CD₂Cl₂ at 30 °C.

Figure S66. ¹H-¹⁵N-HMBC NMR spectrum of 1:1 mixture of $[I(18)_2]PF_6$ and $[I(16)_2]PF_6$ in CD₂Cl₂ at 30 °C. $[I(16)_2]^+: (\delta^{15}N = -216.3); [I(18)(16)]^+: (\delta^{15}N(18) = not detectable, (\delta^{15}N(16) = -243.6).$

3.5 The Study of asymmetrical iodine(I)complex [I(1)(16)]PF₆

The iodine(I) complex $[I(1)_2]PF_6$ cannot be obtained purely (Figure S1), Thus the asymmetrical iodine(I) complex $[I(1)(16)]PF_6$ were attempted from the ligands 1 and 16 directly. To a solution of silver hexafluorophosphate (6.0 mg, 0.024 mmol, 1.0 eq) in CD₂Cl₂ (1 mL), a solution of 4- cyanopyridine (1) (2.5 mg, 0.024 mmol, 1.0 eq) and 4-(dimethylamino)pyridine (16) (2.9 mg, 0.024 mmol, 1.0 eq) in CD₂Cl₂ (0.85 mL) was added. After the solution was stirred for 3 minutes at room temperature, the elemental I₂ (6.0 mg, 0.024 mmol, 1.0 eq) in CD₂Cl₂ (0.15 mL) was added. The mixture was centrifuged for 1 minute and filtered, then the reaction mixture of $[I(1)(16)]PF_6$ was studied by NMR spectroscopy. Probably due to the reactivity of $[I(1)(16)]^+$ and $[I(1)_2]^+$, free ligands 1 and 16 were observed in the mixture, the amounts of which cannot be ignored. The molar ratios of $[I(1)_2]^+$, $[I(1)(16)]^+$ and $[I(16)_2]^+$ in the mixture was calculated to be about 1:23.5:1.2 by integration of the corresponding ¹H NMR signals.

Figure S67. Partial ¹H NMR spectrum of the reaction mixture of [I(1)(16)]PF₆ in CD₂Cl₂ at 30 °C.

Figure S68. ¹⁵N NMR spectrum of the reaction mixture of [I(1)(16)]PF₆ in CD₂Cl₂ at 30 °C. $[I(16)_2]^+$: (δ^{15} N = -216.2); $[I(1)(16)]^+$: (δ^{15} N(1) = not detectable, (δ^{15} N(16) = -252.0).

Comp*	$\delta_{\rm N}^{\ a}$	$\Delta \delta_{\rm N}^{\ b}$	$\Delta\Delta\delta_{\rm N}$ ^c
16	-108.6 (-104.9) ^d		
[I(16) ₂] ⁺	-216.2 (-215.6) ^d	-107.6 (-110.7) ^d	
15	-99.1 ^d		
$[I(15)_2]^+$	-211.4 ^d	-112.3 ^d	
$[1(15)(16)]^+$	15 : -209.6 ^d	15 : -110.5 ^d	15 : +1.8 ^d
[1(13)(10)]	16 : -217.6 ^d	16 : - 112.7 ^d	16 : -2.0 ^d
12	-74.7		
$[I(12)_2]^+$	-181.4	-106.7	
	15 : -166.7	15: -92.0	15 : +14.7
[1(12)(10)]	16 : -232.2	16 : -123.6	16 : -16.3
7	-66.8		
$[I(7)_2]^+$	-174.7	-107.9	
	7: -156.0	7: -89.2	7 : +18.7
[1(7)(16)]	16 : -236.9	16 : -128.3	16 : -21.0
18	-31.1		
$[I(18)_2]^+$	-142.4	-111.3	
[I(18)(16)] ⁺	18:	18:	18:
	16 : -243.6	16 : -135.0	16 : -27.4
1	-52.8		
$[I(1)_2]^+$	-168.8	-116.0	
[](1)(1()] ⁺	1:	1:	1:
[1(1)(10)]	16 : -252.0	16 : -143.4	16 : -35.8

Table S1. The ¹⁵N chemical shift (δ_N), $\Delta\delta_N$, $\Delta\Delta\delta_N$ values for ligands **16**, **15**, **12**, **18**, **1**, and relative complexes.

^a δ_N is the ¹⁵N chemical shift of pyridinic nitrogen of [N-I-N] complexes or free ligands ^b $\Delta\delta_N$ are The ¹⁵N NMR chemical shift change of pyridinic nitrogen of DMAP upon complexation; ^c $\Delta\Delta\delta_N$ are the chemical shift differences of δ_N between the asymmetrical complex and the analogue symmetrical one, $\Delta\Delta\delta_N = \Delta\delta_N(asymm.) - \Delta\delta_N(symm.)$; ^d performed in CD₃CN.

4. X-ray Crystallographic Studies

The single crystal X-ray data for $[I(23)_2]PF_6$ and $[I(18)(16)]PF_6$ were collected at 120 K using an Agilent SuperNova dual wavelength diffractometer with an Atlas detector using mirrormonochromated Cu-K α ($\lambda = 1.54184$ Å) radiation. The program CrysAlisPro⁵ was used for the data collection and reduction on the SuperNova diffractometer, and the intensities were absorption corrected using a gaussian face index absorption correction method. All structures were solved by intrinsic phasing (SHELXT)⁶ and refined by full-matrix least squares on F^2 using the Olex2,⁷ utilising the SHELXL-2015 module.⁸ Anisotropic displacement parameters were assigned to non-H atoms and isotropic displacement parameters for all H atoms were constrained to multiples of the equivalent displacement parameters of their parent atoms with $U_{iso}(H) = 1.2 U_{eq}$ (aromatic) or 1.5 U_{eq} (alkyl) of their respective parent atoms. The X-ray single crystal data and CCDC numbers of all new structures are included below.

CCDC 2127227-2127228 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via <u>http://www.ccdc.cam.ac.uk/conts/retrieving.html</u> (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44 1223 336033; E-mail: <u>deposit@ccdc.cam.ac.uk</u>).

Crystal data for [I(**23**)₂]PF₆: CCDC-2127228, [C₁₂H₂₄IN₄][PF₆], M = 496.22, colourless plate, 0.26 × 0.10 × 0.05 mm³, Orthorhombic, space group *P*2₁2₁2₁, a = 10.3407(1) Å, b = 17.5114(3) Å, c = 20.2383(3) Å, V = 3664.75(9) Å³, Z = 8, D_{calc} = 1.799 gcm⁻³, F000 = 1968, μ = 15.14 mm⁻¹, T = 120 K, θ_{max} = 72.1°, 7153 total reflections, 6777 with I_o > 2 σ (I_o), R_{int} = 0.034, 7153 data, 434 parameters, 21 restraints, GooF = 1.04, 0.44 < d $\Delta\rho$ < -0.75 eÅ⁻³, R[F² > 2 σ (F²)] = 0.029, *w*R(F²) = 0.064.

Figure S69. The crystal structure of $[I(23)_2]PF_6$ (thermal ellipsoids at 50% probability; PF₆ anion omitted for clarity). A second crystallographically independent molecule of $[[I(23)_2]PF_6$ has been omitted for clarity.

Crystal data for [I(18)(16)]PF₆: CCDC-2127227, [C₁₀H₁₅IN₅][PF₆], M = 477.14, colourless plate, 0.18 × 0.16 × 0.02 mm³, Orthorhombic, space group *P*ca2₁, a = 10.7960(3) Å, b = 20.9622(5) Å, c = 14.3983(3) Å, V = 3258.45(14) Å³, Z = 8, D_{calc} = 1.945 gcm⁻³, F000 = 1856, μ = 17.02 mm⁻¹, T = 120 K, θ_{max} = 72.1°, 4634 total reflections, 4184 with I_o > 2 σ (I_o), R_{int} = 0.049, 4634 data, 422 parameters, 56 restraints, GooF = 1.03, 4.23 < d $\Delta \rho$ < -0.80 eÅ⁻³, R[F² > 2 σ (F²)] = 0.061, *w*R(F²) = 0.136.

Figure S70. The crystal structure of $[I(18)(16)]PF_6$ (thermal ellipsoids at 50% probability; PF₆ anion omitted for clarity). A second crystallographically independent molecule of $[I(18)(16)]PF_6$ has been omitted for clarity.

5. Computational Details

General Considerations

The geometry calculations for complexes were done at the M06-2X/def2-TZVP level of theory6 using the SPARTAN20 program⁹ with dichloromethane (dielectric = 8.82) as the solvent using the conductor like polarizable continuum model (C-PCM).^{10,11} The initial models were built using SPARTAN20 and optimized at the MM-level before the DFT calculations. The complexes $[I(L)(16)]^+$ (L = 16, 15, 12, 7, 18, 1) were built up from the corresponding MM-level optimized DMAP (16) and pyridine L so that the N…N distance was ca. 4.50 Å and the N–I–N angle ca. 180° and then optimized with the given DFT method.

Table S2: Computational (DFT) Bond Lengths and Angles for complexes $[I(16)_2]^+$ and $[I(L)(16)]^+$ (L = 15, 12, 7, 18; in order of decreasing Lewis basicity from top to bottom) (The available experimental results are also included).

Complex*	N _L –I [Å] (DFT/ XRD)	I–N ₁₆ [Å] (DFT/ XRD)	$\begin{array}{c} N_{L}-I-N_{16} [^{\circ}]\\ (DFT/XRD) \end{array}$	
$[I(16)_2]^+$	2.243/ 2.236(3)	2.245/ 2.251(3)	179.32/ 179.9(1)	3.05/2.92
$[I(15)(16)]^+$	2.252	2.240	179.53	3.25/3.06
$[I(12)(16)]^+$	2.286	2.209	179.44	
$[I(7)(16)]^+$	2.301	2.201	179.92	3.38/3.02
[I(18)(16)] ⁺	2.317/ 2.335(8) 2.340(8)	2.181/ 2.187(8) 2.163(8)	179.49/ 178.1(4) 177.0(4)	
$[I(1)(16)]^+$	2.343	2.168	179.55	2.82/2.71

Cartesian Coordinates

 $[I(16)_2]^+$

L	/=1			
LUMO/HOMO (ev) 3.05/2.92				
Н	-1.989000	-2.388000	0.562000	
С	-1.085000	-2.954000	0.378000	
С	1.254000	-4.265000	-0.108000	
Ν	0.020000	-2.242000	0.109000	
С	-1.094000	-4.323000	0.420000	
С	0.103000	-5.043000	0.175000	
С	1.165000	-2.900000	-0.129000	
Н	-2.022000	-4.826000	0.639000	
Н	2.034000	-2.291000	-0.343000	
Н	2.210000	-4.725000	-0.307000	
Н	-0.030000	2.439000	2.024000	
С	-0.057000	2.983000	1.088000	
С	-0.121000	4.238000	-1.329000	
Ν	-0.070000	2.243000	-0.031000	
С	-0.074000	4.352000	1.074000	
С	-0.107000	5.044000	-0.163000	
С	-0.102000	2.875000	-1.215000	
Н	-0.061000	4.877000	2.016000	
Н	-0.112000	2.245000	-2.096000	
Н	-0.147000	4.672000	-2.317000	
Ν	-0.124000	6.382000	-0.227000	
С	-0.111000	7.172000	0.995000	
Н	0.791000	6.975000	1.578000	
Н	-0.983000	6.951000	1.613000	

Η	-0.130000	8.225000	0.732000
С	-0.151000	7.050000	-1.519000
Η	-0.156000	8.123000	-1.359000
Η	-1.046000	6.778000	-2.083000
Η	0.728000	6.790000	-2.112000
Ι	-0.031000	0.000000	0.051000
Ν	0.145000	-6.381000	0.207000
С	-1.059000	-7.145000	0.499000
Η	-1.829000	-6.969000	-0.255000
Η	-1.461000	-6.879000	1.478000
Η	-0.812000	-8.201000	0.503000
С	1.389000	-7.079000	-0.082000
Η	1.210000	-8.148000	-0.030000
Η	2.162000	-6.819000	0.644000
Η	1.751000	-6.834000	-1.082000

$[I(15)(16)]^+$

LUN	MO/HOMO	(ev) 3.25	/3.06
Η	-0.496000	2.014000	-1.047000
С	-0.308000	1.111000	-1.614000
С	0.185000	-1.226000	-2.926000
Ν	-0.028000	0.008000	-0.902000
С	-0.359000	1.118000	-2.981000
С	-0.111000	-0.077000	-3.703000
С	0.213000	-1.136000	-1.561000
Η	-0.589000	2.045000	-3.484000
Η	0.436000	-2.004000	-0.953000
Η	0.388000	-2.181000	-3.384000
Н	-1.957000	0.062000	3.755000
С	-1.028000	0.085000	4.312000
С	1.377000	0.141000	5.594000
Ν	0.102000	0.096000	3.588000
С	-1.027000	0.100000	5.681000
С	0.201000	0.129000	6.372000
С	1.280000	0.124000	4.229000
Η	-1.963000	0.090000	6.223000
Η	2.166000	0.132000	3.607000
Н	2.350000	0.163000	6.066000
Ν	0.248000	0.145000	7.711000
Ι	0.031000	0.059000	1.337000
Ν	-0.153000	-0.119000	-5.041000
С	-0.463000	1.083000	-5.800000
Н	0.278000	1.864000	-5.616000
Н	-1.450000	1.468000	-5.538000
Н	-0.455000	0.841000	-6.858000
С	0.101000	-1.369000	-5.740000
Η	0.007000	-1.199000	-6.808000
Н	-0.618000	-2.136000	-5.445000
Η	1.109000	-1.735000	-5.533000
Η	-0.595000	0.138000	8.259000
Η	1.128000	0.167000	8.199000

 $\begin{bmatrix} I(12)(16) \end{bmatrix}^+ \\ LUMO/HOMO (ev) & 3.03/2.93 \\ H & -1.954000 & 0.701000 & 3.048000 \end{bmatrix}$

С	-1.063000	0.456000	3.613000
С	1.242000	-0.188000	4.919000
Ν	0.016000	0.093000	2.900000
С	-1.059000	0.520000	4.979000
С	0.120000	0.195000	5.698000
С	1.144000	-0.223000	3.556000
Η	-1.965000	0.819000	5.484000
Η	1.991000	-0.511000	2.946000
Н	2.183000	-0.455000	5.375000
Η	0.467000	1.914000	-1.764000
С	0.214000	1.018000	-2.316000
С	-0.437000	-1.294000	-3.592000
Ν	-0.097000	-0.063000	-1.591000
С	0.213000	0.990000	-3.693000
С	-0.117000	-0.186000	-4.373000
С	-0.416000	-1.196000	-2.213000
Η	0.473000	1.892000	-4.228000
Η	-0.660000	-2.043000	-1.583000
Η	-0.704000	-2.243000	-4.033000
Ι	-0.049000	0.022000	0.693000
Ν	0.172000	0.249000	7.034000
С	-1.003000	0.647000	7.796000
Η	-1.832000	-0.042000	7.626000
Η	-1.322000	1.655000	7.521000
Η	-0.755000	0.638000	8.852000
С	1.401000	-0.100000	7.732000
Η	1.240000	0.006000	8.800000
Η	2.219000	0.558000	7.434000
Η	1.688000	-1.133000	7.524000
С	-0.112000	-0.214000	-5.894000
С	-0.522000	-1.580000	-6.444000
Η	0.165000	-2.365000	-6.124000
Η	-0.506000	-1.542000	-7.533000
Η	-1.533000	-1.851000	-6.131000
С	-1.095000	0.845000	-6.414000
Η	-0.816000	1.848000	-6.089000
Η	-2.108000	0.637000	-6.065000
Η	-1.095000	0.830000	-7.505000
С	1.305000	0.114000	-6.388000
Η	2.023000	-0.621000	-6.021000
Η	1.625000	1.104000	-6.060000
Η	1.320000	0.097000	-7.479000

[I(7	')(16)] ⁺		
LU	MO/HOMO	(ev) 3.38	/3.02
Η	2.052000	0.000000	4.210000
С	1.149000	0.000000	4.808000
С	-1.206000	-0.000000	6.187000
Ν	-0.008000	0.000000	4.142000
С	1.187000	0.000000	6.189000
С	-0.010000	0.000000	6.890000
С	-1.166000	-0.000000	4.805000
Η	2.140000	0.000000	6.698000
Η	-0.011000	0.000000	7.972000
Η	-2.068000	-0.000000	4.207000
Η	-2.160000	-0.000000	6.695000
Η	0.001000	-2.064000	-0.456000
---	-----------	-----------	-----------
С	0.002000	-1.156000	-1.045000
С	0.005000	1.204000	-2.411000
Ν	0.001000	-0.000000	-0.360000
С	0.005000	-1.204000	-2.411000
С	0.006000	-0.000000	-3.162000
С	0.002000	1.156000	-1.045000
Η	0.005000	-2.171000	-2.890000
Η	0.001000	2.064000	-0.456000
Η	0.005000	2.171000	-2.890000
Ν	0.009000	-0.000000	-4.499000
С	0.008000	-1.259000	-5.230000
Η	-0.882000	-1.846000	-4.995000
Η	0.893000	-1.851000	-4.989000
Η	0.013000	-1.046000	-6.294000
С	0.008000	1.259000	-5.230000
Η	0.013000	1.046000	-6.294000
Η	0.893000	1.851000	-4.989000
Η	-0.882000	1.846000	-4.995000
Ι	-0.005000	-0.000000	1.841000

[I(18)(16)]⁺

LUMO/HOMO (ev) 3.29/3.17				
Н	-1.656000	1.302000	0.314000	
С	-1.553000	0.239000	0.492000	
С	-1.157000	-2.428000	0.906000	
Ν	-0.328000	-0.282000	0.306000	
С	-2.623000	-0.515000	0.884000	
С	-2.461000	-1.906000	1.111000	
С	-0.146000	-1.598000	0.513000	
Н	-3.576000	-0.027000	1.013000	
Н	0.855000	-1.976000	0.352000	
Н	-0.937000	-3.473000	1.053000	
Ι	1.327000	0.994000	-0.319000	
Ν	-3.479000	-2.682000	1.498000	
С	-4.801000	-2.106000	1.698000	
Н	-5.177000	-1.664000	0.774000	
Н	-4.779000	-1.337000	2.473000	
Н	-5.482000	-2.892000	2.010000	
С	-3.269000	-4.103000	1.730000	
Н	-4.206000	-4.550000	2.044000	
Н	-2.526000	-4.264000	2.514000	
Н	-2.932000	-4.602000	0.819000	
С	3.907000	3.104000	-0.216000	
Н	3.846000	3.118000	0.858000	
С	4.751000	3.750000	-1.079000	
Н	5.567000	4.435000	-0.929000	
Ν	4.358000	3.351000	-2.304000	
Ν	3.346000	2.517000	-2.240000	
Ν	3.073000	2.366000	-0.980000	
С	4.917000	3.740000	-3.592000	
Н	5.970000	3.472000	-3.618000	
Н	4.797000	4.812000	-3.723000	
Н	4.371000	3.202000	-4.361000	

$[I(1)(16)]^+$

LUMO/HOMO (ev) 2.82/2.71					
Н	-0.503000	2.015000	-0.810000		
С	-0.313000	1.114000	-1.378000		
С	0.190000	-1.224000	-2.691000		
Ν	-0.030000	0.007000	-0.669000		
С	-0.360000	1.120000	-2.744000		
С	-0.108000	-0.074000	-3.467000		
С	0.217000	-1.140000	-1.328000		
Η	-0.592000	2.047000	-3.245000		
Η	0.442000	-2.006000	-0.720000		
Η	0.399000	-2.178000	-3.149000		
Η	-1.950000	0.078000	3.983000		
С	-1.024000	0.096000	4.544000		
С	1.388000	0.139000	5.835000		
Ν	0.108000	0.100000	3.839000		
С	-1.020000	0.113000	5.925000		
С	0.210000	0.135000	6.574000		
С	1.288000	0.121000	4.457000		
Η	-1.949000	0.109000	6.477000		
Н	2.170000	0.124000	3.828000		
Η	2.355000	0.156000	6.316000		
Ι	0.030000	0.058000	1.498000		
Ν	-0.149000	-0.114000	-4.802000		
С	-0.452000	1.090000	-5.562000		
Η	0.290000	1.868000	-5.373000		
Η	-1.440000	1.476000	-5.302000		
Η	-0.441000	0.849000	-6.619000		
С	0.117000	-1.362000	-5.505000		
Н	0.019000	-1.190000	-6.572000		
Н	-0.595000	-2.134000	-5.208000		
Н	1.129000	-1.717000	-5.300000		
С	0.264000	0.154000	8.011000		
Ν	0.310000	0.172000	9.156000		

6. References for Supplementary Information

- J. S. Ward, G. Fiorini, A. Frontera and K. Rissanen, *Chem. Commun.*, 2020, **56**, 8428–8431.
- 2 A.-C. C. Carlsson, K. Mehmeti, M. Uhrbom, A. Karim, M. Bedin, R. Puttreddy, R. Kleinmaier, A. A. Neverov, B. Nekoueishahraki, J. Gräfenstein, K. Rissanen and M. Erdélyi, *J. Am. Chem. Soc.*, 2016, **138**, 9853–9863.
- J. S. Ward, A. Frontera and K. Rissanen, *Chem. Commun.*, 2021, **57**, 5094–5097.
- 4 S. Yu, P. Kumar, J. S. Ward, A. Frontera and K. Rissanen, *Chem*, 2021, 7, 948–958.
- 5 Agilent Technologies Ltd, 2014.
- 6 G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Adv., 2015, 71, 3–8.
- 7 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339–341.
- 8 G. M. Sheldrick, Acta Crystallogr. Sect. C, Struct. Chem., 2015, 71, 3–8.
- 9 Spartan'20, Wavefunction Inc., Irvine CA, USA.
- 10 X. Zhang and J. M. Herbert, J. Phys. Chem. B, 2014, 118, 7806–7817.
- 11 A. W. Lange and J. M. Herbert, *Chem. Phys. Lett.*, 2011, **509**, 77–87.