Supporting Information

Pb₂Al₂B₃O₈F₃: Structure and Properties of a New Fluoroaluminoborate with Non-traditional Chain-like B₃O₈ Group

Bao Jiang, †^a Shan Shu, †^{a,b} Zhihua Yang, ^{a,b} Fangfang Zhang, ^{a,b} Min Zhang, *^{a,b} and Shilie Pan*^{a,b}

- a. CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China. E-mails: zhangmin@ms.xjb.ac.cn (M. Zhang), slpan@ms.xjb.ac.cn (S. L. Pan)
- b. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

† These authors contributed equally.

asymmetric unit.					
Atom	X	У	Z	U _{eq}	BVS
Pb(1)	2084(1)	5119(1)	6456(1)	10(1)	2.05
Al(1)	5252(2)	6491(2)	5659(2)	6(1)	2.84
B(1)	8083(7)	7286(8)	5961(6)	8(1)	3.00
B(2)	5000	3556(10)	7500	3(2)	2.89
F(1)	5612(4)	8470(4)	5168(3)	12(1)	0.84
F(2)	5000	7182(5)	7500	8(1)	0.92
O(1)	3411(4)	6993(5)	5297(4)	9(1)	2.22
O(2)	4661(4)	4482(5)	6212(4)	6(1)	1.90
O(3)	7095(4)	6173(5)	6027(4)	9(1)	1.96
O(4)	3791(4)	2541(5)	7787(4)	10(1)	2.04

Table S1 The final Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) for Pb₂Al₂B₃O₈F₃, U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor (×10³), and the Bond Valence Sum for each atom in the asymmetric unit.

	~				
Table S2 Bond lengths	[Ă]	and angles	[deg]	for Pb ₂	$Al_2B_2O_0F_2$
				101 1 02	2-3-3-3

		5] 22 3	
Pb(1)-F(1)#1	2.423(3)	O(3)#2-Pb(1)-O(3)#3	144.36(17)
Pb(1)-O(1)	2.343(4)	O(4)#4-Pb(1)-O(2)	122.57(13)
Pb(1)-O(1)	2.945(4)	O(4)#4-Pb(1)-O(3)#3	148.15(12)
Pb(1)-O(2)	2.610(4)	O(4)#4-Pb(1)-O(3)#2	52.90(12)
Pb(1)-O(3)#2	2.642(4)	F(1)-Al(1)-F(2)	87.48(19)
Pb(1)-O(3)#3	2.692(4)	F(1)-Al(1)-O(1)	85.84(18)
Pb(1)-O(4)#4	2.577(4)	F(1)-Al(1)-O(2)	173.3(2)
Pb(1)-O(4)	3.052(4)	F(1)-Al(1)-O(2)#3	99.97(18)
Al(1)-F(1)	1.802(4)	F(1)-Al(1)-O(3)	89.64(19)
Al(1)-F(2)	1.832(2)	F(2)-Al(1)-Al(1)#3	131.55(17)
Al(1)-O(1)	1.896(4)	F(2)-Al(1)-O(1)	87.83(14)
Al(1)-O(2)#3	1.936(4)	F(2)-Al(1)-O(2)#3	171.6(2)
Al(1)-O(2)	1.899(4)	F(2)-Al(1)-O(2)	90.11(18)
Al(1)-O(3)	1.869(4)	F(2)-Al(1)-O(3)	90.47(13)
B(1)-O(1)#1	1.366(7)	O(1)-Al(1)-O(2)#3	88.92(18)
B(1)-O(3)	1.369(8)	O(1)-Al(1)-O(2)	87.9(2)
B(1)-O(4)#5	1.377(7)	O(2)-Al(1)-O(2)#3	82.07(17)
B(2)-O(2)×2	1.479(6)	O(3)-Al(1)-O(1)	175.2(2)
B(2)-O(4)×2	1.503(6)	O(3)-Al(1)-O(2)#3	93.35(18)
F(1)#1-Pb(1)-O(2)	129.36(12)	O(3)-Al(1)-O(2)	96.6(2)
F(1)#1-Pb(1)-O(3)#2	124.39(12)	O(2)-B(2)-O(2)#2	114.7(6)
F(1)#1-Pb(1)-O(3)#3	81.48(12)	O(2)#2-B(2)-O(4)#2	106.2(2)
F(1)#1-Pb(1)-O(4)#4	72.13(11)	O(2)#2-B(2)-O(4)	110.4(2)
O(1)-Pb(1)-F(1)#1	72.59(13)	O(2)-B(2)-O(4)#2	110.5(2)
O(1)-Pb(1)-O(2)	63.97(13)	O(2)-B(2)-O(4)	106.2(2)
O(1)-Pb(1)-O(3)#2	90.01(13)	O(4)-B(2)-O(4)#2	108.8(6)
O(1)-Pb(1)-O(3)#3	73.85(13)	O(1)#6-B(1)-O(3)	121.7(5)
O(1)-Pb(1)-O(4)#4	81.35(13)	O(1)#6-B(1)-O(4)#8	122.3(6)
O(2)-Pb(1)-O(3)#2	81.45(12)	O(3)-B(1)-O(4)#8	115.8(5)
O(2)-Pb(1)-O(3)#3	62.93(11)		

Symmetry transformations used to generate equivalent atoms:

^{#1}x-1/2,-y+3/2,-z+1, ^{#2}-x+1,y,-z+3/2, ^{#3}-x+1,-y+1,-z+1, ^{#4}-x+1/2,y+1/2,z, ^{#5}x-1/2,y-1/2,-z+3/2, ^{#8}x+1/2,y+1/2,-z+3/2

Atom	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Pb(1)	11(1)	10(1)	9(1)	0(1)	1(1)	-1(1)
Al(1)	6(1)	7(1)	6(1)	-1(1)	-1(1)	0(1)
B(1)	5(3)	8(3)	10(3)	-1(2)	-2(2)	3(3)
B(2)	3(2)	3(2)	3(2)	0	0(1)	0
F(1)	13(1)	12(1)	12(1)	1(1)	1(1)	0(1)
F(2)	10(2)	9(2)	7(2)	0	2(2)	0
O(1)	7(2)	13(2)	7(2)	1(2)	1(2)	0(2)
O(2)	5(2)	9(2)	5(2)	-2(1)	2(1)	0(2)
O(3)	11(2)	5(2)	11(2)	1(1)	-3(2)	-2(2)
O(4)	13(2)	12(2)	4(2)	1(1)	1(2)	-3(2)

Table S3 Anisotropic displacement parameters $(\times 10^3)$ of Pb₂Al₂B₃O₈F₃.

No.	Compounds	B-O groups	Space group	A/B
1	CaZrB(Al ₉ O ₁₈)	Isolated BO ₃	<i>P</i> 6 ₃	11
2	Na ₂ AlBAs ₄ O ₁₄	Isolated BO ₄	$P2_{1}/c$	7
3	Al ₅ BO ₉	Isolated BO ₃	Pbam	5
4	$Al_{20}B_4O_{36}$	Isolated BO ₃	$Cmc2_1$	5
5	$Al_5O_6(BO_3)$	Isolated BO ₃	$Cmc2_1$	5
6	$Pb_6AlF_7B_2O_7$	Isolated BO ₃	Cmca	3.5
7	NaFe3B3Al6Si6O30F	Isolated BO ₃	R3m	3.3
8	Li ₂ (BAlO ₄)	Isolated BO ₃	$P2_{1}/c$	3
9	$Al_4B_2O_9$	Isolated BO ₄	Pbam	2
10	$Al_4B_2O_9$	Isolated BO3 and BO4	C2/m	2
11	Li ₃ (AlB ₂ O ₆)	Isolated BO ₃	<i>P</i> -1	2
12	Li ₆ Al ₂ (BO ₃) ₄	Isolated BO ₃	<i>P</i> -1	2
13	$Li(Al_7B_4O_{17})$	Isolated BO ₃	<i>I</i> 4/ <i>m</i>	2
14	$Na_2Al_2(B_2O_7)$	Isolated BO ₃	<i>P</i> -31 <i>c</i>	2
15	$Na_2(Al_2B_2O_7)$	Isolated BO ₃	<i>R</i> -3c	2
16	$K_2(Al_2B_2O_7)$	Isolated BO ₃	P321	2
17	$(K_{0.48}Na_{0.52})_2Al_2B_2O_7$	Isolated BO ₃	P321	2
18	$Rb_2Al_2B_2O_7$	Isolated BO ₃	P321	2
19	$Rb_2(Al_2B_2O_7)$	Isolated BO ₃	$P2_{1}/c$	2
20	$Cs_2Al_2B_2O_7$	Isolated BO ₃	$P2_{1}/c$	2
21	CaAlBO ₄	Isolated BO ₃	Ccc2	2
22	SrBAlO ₄	Isolated BO ₃	Pccn	2
23	α -PbAlBO ₄	Isolated BO ₃	Pnma	2
24	β -PbAlBO ₄	Isolated BO ₃	Pbcn	2
25	$K_3Sr_3Li_2Al_4B_6O_{20}F$	Isolated BO ₃	R32	2
26	$K_3Ba_3Li_2Al_4B_6O_{20}F$	Isolated BO ₃	<i>P</i> -62 <i>c</i>	2
27	$Rb_{3}Ba_{3}Li_{2}Al_{4}B_{6}O_{20}F$	Isolated BO ₃	<i>P</i> -62 <i>c</i>	2
28	$Rb_3Al_3B_3O_{10}F$	Isolated BO ₃	P31c	2
29	BaAl(BO ₃)F ₂	Isolated BO ₃	$P6_{3}/m$	2
30	$Cu_2(AlBO_5)$	Isolated BO ₃	$P2_{1}/c$	2
31	$Cu_2(Al_6B_4O_{17})$	Isolated BO ₃	<i>I</i> 4/ <i>m</i>	2
32	AlMg(BO ₄)	Isolated BO ₄	Pnma	2
33	$NaCa_{0.5}(Al_2B_2O_7)$	Isolated BO ₃	$P6_3/m$	1.75
34	$NaSr_{0.5}(Al_2B_2O_7)$	Isolated BO ₃	$P6_{3}/m$	1.75
35	$K_{0.91}Rb_{1.09}Al_2(B_2O_7)$	Isolated BO ₃	<i>P</i> 321	1.5
36	Pb ₂ Bi ₂ AlB ₃ O ₁₁	Isolated BO ₃	C2/c	1.6
37	CaAl ₂ (BO ₃) ₂ O	Isolated BO ₃	<i>R</i> -3 <i>c</i>	1.5
38	$Ca_{0.05}Na_{1.90}Al_2B_2O_7$	Isolated BO ₃	$P6_{3}/m$	1.5
39	$Ca_{0.69}Na_{0.64}Al_2B_2O_7$	Isolated BO ₃	$P6_3/m$	1.5
40	α -SrAl ₂ (B ₂ O ₇)	Isolated BO ₃	<i>R</i> -3 <i>c</i>	1.5
41	β -Sr(Al ₂ B ₂ O ₇)	Isolated BO ₃	R32	1.5
42	$Ba_8(Al_{10}B_{12}O_{41})$	Isolated BO ₃	P-1	1.5

 Table S4 Aluminum borates in the reported structures.

43	$SnAl_2(BO_3)_2F_2$	Isolated BO ₃	$I4_1/amd$	1.5
44	$Ba(Al_2B_2O_7)$	Isolated BO ₃	<i>R</i> -3 <i>c</i>	1.5
45	$Al_8(BO_3)_4(B_2O_5)F_8$	Isolated BO ₃ and B ₂ O ₅	P42/nmc	1.33
46	$Pb_2Al_2B_3O_8F_3$	Isolated B_3O_8	Pbcn	1.33
47	Li ₄ NaKAl ₄ Be ₃ B ₁₀ O ₂₇	Isolated BO ₃	<i>P</i> -43 <i>m</i>	1.3
48	$Al_6(BO_3)_5F_3$	Isolated BO ₃	$P6_{3}/m$	1.2
49	AlBO ₃	Isolated BO ₃	<i>R</i> -3 <i>c</i>	1
50	$Li(AlB_2O_5)$	Isolated B ₂ O ₅	C2/c	1
51	YAl ₃ (BO ₃) ₄	Isolated BO ₃	R32	1
52	α -NdAl ₃ (BO ₃) ₄	Isolated BO ₃	C2/c	1
53	β -NdAl ₃ (BO ₃) ₄	Isolated BO ₃	C2/c	1
54	α -GdAl ₃ (BO ₃) ₄	Isolated BO ₃	<i>R</i> 32	1
55	β -GdAl ₃ (BO ₃) ₄	Isolated BO ₃	<i>R</i> 32	1
56	PrAl ₃ (BO ₃) ₄	Isolated BO ₃	C2/c	1
57	HoAl ₃ (BO ₃) ₄	Isolated BO ₃	<i>R</i> 32	1
58	α -ErAl ₃ (BO ₃) ₄	Isolated BO ₃	<i>R</i> 32	1
59	β -ErAl ₃ (BO ₃) ₄	Isolated BO ₃	<i>C</i> 2	1
60	TmAl ₃ (BO ₃) ₄	Isolated BO ₃	<i>R</i> 32	1
61	YbAl ₃ (BO ₃) ₄	Isolated BO ₃	R32	1
62	$NaBa_4Al_2B_8O_{18}Cl_3$	Isolated B ₄ O ₉	$P4_2nm$	0.875
63	NaBa4(A0.8751B4O9)2Br3	Isolated B ₄ O ₉	$P4_2nm$	0.875
64	Li ₇ BaAlB ₁₂ O ₂₄	B ₆ O ₁₄ chain	<i>R</i> -3	0.75
65	Li ₇ SrAlB ₁₂ O ₂₄	B ₆ O ₁₄ chain	<i>R</i> -3	0.75
66	Li ₅ MgSrAlB ₁₂ O ₂₄	B_2O_6 chain	<i>R</i> -3	0.75
67	Li ₅ ZnSrAlB ₁₂ O ₂₄	B ₂ O ₆ chain	<i>R</i> -3	0.75
68	$Cs(Al_4Be_4B_{12}O_{28})$	BO ₄ 3D-network	<i>P</i> -43 <i>m</i>	0.75
69	Ba ₂ AlB ₄ O ₉ Cl	Isolated B ₄ O ₉	$P4_2nm$	0.75
70	CsAlB ₃ O ₆ F	Isolated B ₃ O ₆	$Pna2_1$	0.75
71	RbAlB3O6F	Isolated B ₃ O ₆	$Pna2_1$	0.75
72	Cs0.5Rb0.5A1B3O6F	Isolated B ₃ O ₆	<i>P</i> -62 <i>c</i>	0.75
73	$Cs_{0.55}Al_4B_{12}Be_5O_{28}\\$	BO ₄ 3D-network	<i>P</i> -43 <i>m</i>	0.7125
74	$Ba_6Al_4B_{14}O_{33}$	Isolated B ₆ O ₁₄	<i>P</i> -1	0.714
75	$Al_4(B_6O_{15})$	Isolated B ₂ O ₅	R3	0.66
76	$Cs_3AlB_6O_{12}$	Isolated B ₁₂ O ₂₄	$P2_{1}/c$	0.66
77	CaAl(B ₃ O ₇)	BO ₄ layer	Cmma	0.66
78	SrAlB ₃ O ₆ F ₂	B ₃ O ₆ chain	$P2_{1}/c$	0.66
79	$Cs_3AlB_6O_{12}$	Isolated B ₁₂ O ₂₄	$P2_l/c$	0.66
80	$Li_2(AlB_5O_{10})$	Isolated B ₅ O ₁₀	$P2_{1}/c$	0.6
81	$Cs_2AlB_5O_{10}$	Isolated B ₅ O ₁₀	<i>P</i> 3 ₁ 21	0.6
82	$NaSr_7Al(B_{18}O_{36})$	Isolated B ₁₈ O ₃₆	<i>R</i> -3 <i>c</i>	0.5
83	$K_3AlB_8O_{15}$	B ₈ O ₁₅ chain	$P2_{1}/c$	0.5

No.	Compounds	B-O groups	Al-O/F configuration
1	$K_3Sr_3Li_2Al_4B_6O_{20}F$	Isolated BO ₃	AlO ₄
2	$K_3Ba_3Li_2Al_4B_6O_{20}F$	Isolated BO ₃	AlO ₄
3	$Rb_3Ba_3Li_2Al_4B_6O_{20}F$	Isolated BO ₃	AlO ₄
4	NaFe ₃ B ₃ Al ₆ Si ₆ O ₃₀ F	Isolated BO ₃	AlO ₆
5	CsAlB ₃ O ₆ F	Isolated B ₃ O ₆	AlO ₃ F
6	RbAlB ₃ O ₆ F	Isolated B ₃ O ₆	AlO ₃ F
7	$Rb_3Al_3B_3O_{10}F$	Isolated BO ₃	AlO ₄ andAlO ₃ F
8	BaAl(BO ₃)F ₂	Isolated BO ₃	AlO_3F_2
9	$Al_6(BO_3)_5F_3$	Isolated BO ₃	AlO ₅ F
10	$Al_8(BO_3)_4(B_2O_5)F_8$	Isolated BO3 and B2O5	AlO ₄ F ₂
11	$SnAl_2(BO_3)_2F_2$	Isolated BO ₃	AlO ₄ F ₂
12	$Pb_6AlF_7B_2O_7$	Isolated BO ₃	AlF ₆
13	$Pb_2Al_2B_3O_8F_3$	IsolatedB ₃ O ₈	AlO ₄ F ₂

Table S5 F-containing aluminum borates in the reported structures.

Figure S1 X-ray energy dispersive spectrum of Pb₂Al₂B₃O₈F₃ crystal.

Figure S2 $[AlO_4F_2]^{5-}$ groups in $SrAlB_3O_6F_2$ (a); $Al_8(BO_3)_4(B_2O_5)F_8$ (b); $Pb_2Al_2B_3O_8F_3$ (c); and $SnAl_2(BO_3)_2F_2$ (d).

Figure S3 The XRD pattern of calcined sample at 700 °C. The marked asterisks are $Pb_4Al_2B_2O_{10}$ (the PDF card number in the Jade is 43-0022).