# **Supporting Information**

# A supported Cr-Cr sextuple bond in an all-metal cluster

Xingman Liu<sup>a,\*</sup>, Min Zhang<sup>b</sup>, Yingtao Liu<sup>a</sup>, Shuixing Wu<sup>c,\*</sup> and Zhongmin Su<sup>b,d,\*</sup>

a. School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China. E-mail: <u>liuyt@nxu.edu.cn</u>.

b. Institute of Functional Material Chemistry, Faculty of Chemistry & National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun 130024, China.

c. Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, School of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, China. E-mail: <u>sxwu@hainnu.edu.cn</u>.

d. School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130024, China. E-mail: <u>zmsu@nenu.edu.cn</u>.

**Table S1.** The orbital component analysis results of the model structure  $D_{4h}$ -Cr<sub>2</sub>Na<sub>4</sub> calculated at the CCSD/6-311G(d) level.



The coefficient of each orbital is given by the contribution of the Na<sub>4</sub> and Cr<sub>2</sub> fragments.

**Table S2.** The orbital component analysis results of  $D_{5h}$ -Cr<sub>2</sub>Li<sub>5</sub> calculated at the CCSD/6-311G(d) level (only present the  $\alpha$  orbitals).



The coefficient of each orbital is given by the contribution of the Li<sub>5</sub> and Cr<sub>2</sub> fragments.

 $Cr_2Na_5^+$ HOMO-1 HOMO HOMO-2 HOMO-3 HOMO-4 Diagrams Energy/eV -10.63 -10.96 -14.51 -14.71 -7.67 Na<sub>5</sub>©3s~15.0% Na<sub>5</sub>©3s~20.7% Na<sub>5</sub>©3s~6.9% Na<sub>5</sub>©3s~73.1% Component Cr<sub>2</sub>©4s~61.0% Na<sub>5</sub>©3p<sub>x,v</sub>~10.9% Cr<sub>2</sub>©4s~29.4%  $Cr_2 @3d_{+1,-1} \sim 89.8\%$ Na<sub>5</sub>©3p<sub>x,v</sub>~20.9% Cr<sub>2</sub>©3d<sub>0</sub>~12.0% Cr2©3d+2.-2~64.8% Cr<sub>2</sub>©3d<sub>0</sub>~56.5%

**Table S3.** The orbital component analysis results of  $D_{5h}$ -Cr<sub>2</sub>Na<sub>5</sub><sup>+</sup> calculated at the CCSD/6-311G(d) level.

The coefficient of each orbital is given by the contribution of the Na<sub>5</sub> and Cr<sub>2</sub> fragments.

**Table S4.** The patterns and corresponding occupancy numbers of active orbitals of  $D_{5h}$ -Cr<sub>2</sub>Na<sub>5</sub><sup>+</sup> with CASSCF(10,10)/6-311G(d) level.



The Cr-Cr length is 1.579 Å.

The  $D_{5h}$ - $Cr_2Na_5^+$  structure was optimized at the CASSCF(10,10)/6-311G(d) level. The final Cr-Cr length shows 1.579 Å, which is slightly longer than that with other levels (Table S5). The active orbitals of  $D_{5h}$ - $Cr_2Na_5^+$  are including two quasi- $\pi$  orbitals, two  $\delta$  orbitals and one  $\sigma$ bonding orbital, as well as their corresponding anti-bonding orbitals. The lower two Cr-Cr  $\pi$ orbitals and one  $\sigma$  orbital were not included in the active space due to the energy difference over 2 eV at the B3LYP/6-311G(d) level.

| Molecule                           | Methods                     | Sym      | R <sub>Cr-Cr</sub><br>(Å) | NPA <sub>Cr</sub><br>( e ) | WBI <sub>Cr-Cr</sub> | $\omega_{Cr-Cr}$<br>(cm <sup>-1</sup> ) | δ–<br>energy<br>(eV) |
|------------------------------------|-----------------------------|----------|---------------------------|----------------------------|----------------------|-----------------------------------------|----------------------|
| Cr <sub>2</sub>                    | CCSD/6-311G(d)              | D        | 1.530                     | 0.000                      | 6.018                | 987.09                                  | -3.780               |
|                                    | CCSD/6-311G(d)              | $D_{4h}$ | 1.561                     | 0.303                      | 5.399                | 897.52                                  | -5.514               |
| Cr <sub>2</sub> Na <sub>4</sub>    | TPSSH/6-311G(d, p)          | $D_{4h}$ | 1.570                     | 0.310                      | 5.383                | 871.38                                  | -4.921*              |
|                                    | B3LYP/6-311G(d)             | $D_{4h}$ | 1.572                     | 0.361                      | 5.301                | 827.01                                  | -7.677               |
|                                    | B3LYP/6-311G(d)             | $D_{5h}$ | 1.576                     | 0.084                      | 4.827                | 847.25                                  | -5.144               |
| Cr <sub>2</sub> INa <sub>5</sub> ° | BP86/Def2-TZVP              | $D_{5h}$ | 1.613                     | -0.400                     | 5.478                | 740.09                                  | -4.441               |
|                                    | B3LYP/6-311G(d)             | $D_{5h}$ | 1.562                     | 0.333                      | 5.348                | 895.67                                  | -9.950               |
| Cr2Nar <sup>+</sup>                | CCSD/6-311G(d)              | $D_{5h}$ | 1.571                     | 0.390                      | 5.251                | 839.87                                  | -7.670               |
|                                    | CASSCF(10,10)/6-<br>311G(d) | $D_{5h}$ | 1.579                     | 0.720†                     | /                    | /                                       | /                    |
|                                    | CCSD/Def2-TZVP              | $D_{5h}$ | 1.574                     | -0.281                     | 5.746                | 822.99                                  | -10.481              |
|                                    | BP86/Def2-TZVP              | C1       | 1.600                     | -0.351*                    | 5.678                | 772.22                                  | -7.650*              |
|                                    | B3LYP/6-311+G(d)            | C1       | 1.569                     | -1.060                     | 6.327                | 860.41                                  | -8.494               |
|                                    | CCSD/6-311G(d)              | $D_{5h}$ | 1.591                     | 0.151                      | /                    | 821.82                                  | -5.559               |
| $C = I \stackrel{:}{:} 0$          | B3LYP/6-311G(d)             | $D_{5h}$ | 1.590                     | 0.196                      | 4.701                | 813.58                                  | -5.056               |
| Cr <sub>2</sub> L15°               | CCSD/def2-TZVP              | $D_{5h}$ | 1.589                     | 0.307                      | 5.481                | /                                       | -7.388               |
|                                    | BP86/def2-TZVP              | $D_{5h}$ | 1.627                     | -0.459                     | 5.476                | 717.33                                  | -4.738               |
| $Cr_2Li_5^+$                       | CCSD/6-311G(d)              | $D_{5h}$ | 1.570                     | 0.381                      | 5.238                | 884.56                                  | -7.207               |

**Table S5**. The R<sub>Cr-Cr</sub>, WBI<sub>Cr-Cr</sub>,  $\omega_{Cr-Cr}$ , NPA<sub>Cr</sub> and the  $\delta$  bond energy data of Cr-Cr bonding structures calculated at the different methods and basis sets.

\*average value.

†mulliken charge.

| Molecule                                               | R <sub>Cr-Cr</sub> (Å) | $NPA_{Cr}( e )$ | $GAPT_{Cr}( e )$ | Mulliken <sub>Cr</sub> |
|--------------------------------------------------------|------------------------|-----------------|------------------|------------------------|
| Cr <sub>2</sub>                                        | 1.530                  | 0.000           | 0.000            | 0.000                  |
| Cr <sub>2</sub> (CHO <sub>2</sub> ) <sub>4</sub>       | 1.731                  | 1.094           | 1.124            | 1.025                  |
| Cr <sub>2</sub> (Ar') <sub>2</sub>                     | 1.605                  | 0.763           | 0.215            | 0.765                  |
| $D_{4h}$ -Cr <sub>2</sub> Na <sub>4</sub>              | 1.561                  | 0.303           | -0.088           | 0.495                  |
| $D_{5h}$ -Cr <sub>2</sub> Na <sub>5</sub> <sup>0</sup> | 1.576                  | 0.084           | -0.123           | 0.342                  |
| $D_{5h}$ -Cr <sub>2</sub> Na <sub>5</sub> <sup>+</sup> | 1.562                  | 0.333           | 0.040*           | 0.579                  |
| $D_{5h}$ -Cr <sub>2</sub> Li <sub>5</sub> <sup>0</sup> | 1.591                  | 0.151           | -0.023           | 0.498                  |
| $D_{5h}$ -Cr <sub>2</sub> Li <sub>5</sub> <sup>+</sup> | 1.570                  | 0.381           | -0.089           | 0.669                  |

**Table S6.** The NPA, Generalized Atomic Polar Tensors (GAPT) and Mulliken charge of Cr in our manuscript calculated at the B3LYP/6-311G(d) level.

\*average value

| Molecule                                               | diagram  | R <sub>Cr-Cr</sub><br>(Å) | Laplacian of<br>electron<br>density | G(r)  | V(r)   | V(r) /G(r) | ρ <sub>(BCP)</sub><br>(a.u.) |
|--------------------------------------------------------|----------|---------------------------|-------------------------------------|-------|--------|------------|------------------------------|
| Cr <sub>2</sub>                                        | <b>1</b> | 1.530                     | 2.492                               | 1.102 | -1.581 | 1.435      | 0.448                        |
| Cr <sub>2</sub> (CHO <sub>2</sub> ) <sub>4</sub>       | is -     | 1.731                     | 1.156                               | 0.525 | -0.762 | 1.451      | 0.275                        |
| $Cr_2(Ar')_2$                                          |          | 1.605                     | 1.875                               | 0.832 | -1.196 | 1.438      | 0.367                        |
| D <sub>4h</sub> -Cr <sub>2</sub> Na <sub>4</sub>       |          | 1.561                     | 2.238                               | 0.977 | -1.394 | 1.427      | 0.408                        |
| D <sub>5h</sub> -Cr <sub>2</sub> Na <sub>5</sub>       |          | 1.576                     | 2.112                               | 0.926 | -1.323 | 1.429      | 0.393                        |
| $D_{5h}$ -Cr <sub>2</sub> Na <sub>5</sub> <sup>+</sup> |          | 1.562                     | 2.218                               | 0.973 | -1.392 | 1.431      | 0.408                        |
| D <sub>5h</sub> -Cr <sub>2</sub> Li <sub>5</sub>       |          | 1.591                     | 1.983                               | 0.872 | -1.248 | 1.431      | 0.378                        |
| $D_{5h}$ -Cr <sub>2</sub> Li <sub>5</sub> <sup>+</sup> |          | 1.570                     | 2.139                               | 0.940 | -1.345 | 1.431      | 0.399                        |

**Table S7**. The topological analysis results at Cr-Cr's BCP calculated at the B3LYP/6-311G(d) level.

Table S8. The NEVPT2 calculation results following CASSCF(10,11)/6-311G(d) for  $D_{5h}$ -Cr<sub>2</sub>Na<sub>5</sub><sup>+</sup> in ORCA 4.2.1.

Five mainly occupied orbitals in active space and their occupy number are given below. The occupy number of other six orbitals is 0.313, 0.314, 0.197, 0.043, 0.043 and 0.026 respectively.

| Diagram          |       |       |       |       |       |
|------------------|-------|-------|-------|-------|-------|
| Occupy<br>number | 1.680 | 1.680 | 1.798 | 1.952 | 1.952 |















1.579 Å Cs 58.7



Fig. S1. The lowest-lying isomers of  $Cr_2Li_4$ ,  $Cr_2Li_5$ ,  $Cr_2Na_4$  and  $Cr_2Na_5$  with energy in kcal/mol. The distance between Cr-Cr is also given. These structures are re-optimized and filtrated at the B3LYP/6-31G(d) level after searched by CALYPSO program. Structures with imaginary frequencies are considered.



Fig. S2. The skeleton and the important FMOs of the  $D_{4h}$ -Cr<sub>2</sub>Na<sub>4</sub> at the CCSD/6-311G(d) level.



**Fig. S3**. The AdNDP pattern of  $D_{4h}$ -Cr<sub>2</sub>Na<sub>4</sub> at the CCSD/6-311G(d) level.



Fig. S4. The ELF (surface value = 0.40) and LOL (surface value = 0.20) plots of  $D_{4h}$ -Cr<sub>2</sub>Na<sub>4</sub> at the CCSD/6-311G(d) level.



Fig. S5. The AdNDP patterns of  $D_{5h}$ -Cr<sub>2</sub>Li<sub>5</sub> at the CCSD/6-311G(d) level.



Fig. S6. The structure information and the mainly frontier molecular orbitals of  $D_{5h}$ - $Cr_2Na_5^+$  at the CCSD/6-311G(d) level.



**Fig. S7**. The AdNDP patterns of  $D_{5h}$ -Cr<sub>2</sub>Na<sub>5</sub><sup>+</sup> at the CCSD/6-311G(d) level.



Fig. S8. The ELF plots (iso-surface = 0.40) of  $D_{5h}$ -Cr<sub>2</sub>Na<sub>5</sub><sup>+</sup> at the CCSD/6-311G(d) level.



Fig. S9. The ELF plots (surface value = 0.40) of  $D_{5h}$ -Cr<sub>2</sub>Li<sub>5</sub> at the CCSD/6-311G(d) level.



Fig. S10. The structure information and the mainly frontier molecular orbitals of  $C_{2v}$ - $Cr_2Na_3^-$  at the B3LYP/6-311G(d) level.



Fig. S11. The structure information and the mainly frontier molecular orbitals of  $D_{2h}$ -Cr<sub>2</sub>Na<sub>2</sub> and  $D_{2h}$ -Cr<sub>2</sub>Li<sub>2</sub> optmized at the B3LYP/6-311G(d) level.



Fig. S12. The mainly five NOCV pairs and their corresponding contribution (Donation from Blue to Green area) of ETS-NOCV calculation for  $D_{4h}$ -Cr<sub>2</sub>Na<sub>4</sub> at the B3LYP/6-311G(d) level.

The total of mainly 5 NOCV pairs' contribution is up to 95.9%, and the electrons are mainly transferred from the  $Cr_2$  fragment to the Na<sub>4</sub> fragment, which proves that using alkali metal atoms from the radial direction of Cr-Cr cannot form new  $\pi$  bonds like that in Zn-Zn and Be-Be.



Fig. S13. The structure information and the mainly frontier molecular orbitals (only present  $\alpha$  orbitals) of D<sub>5h</sub>-Cr<sub>2</sub>Na<sub>5</sub> (top) and D<sub>5h</sub>-Cr<sub>2</sub>Li<sub>5</sub> (bottom) with longer Cr-Cr length calculated at the B3LYP/6-311G(d) level.



Fig. S14. The structure information and the mainly frontier molecular orbitals of  $D_{5h}$ -Cr<sub>2</sub>Na<sub>5</sub><sup>+</sup> calculated at the B3LYP//6-311G(d)/SDD level based on the structure optimized at the CCSD/6-311G(d) level.



Fig. S15. The RMSD of  $D_{5h}$ -Cr<sub>2</sub>Li<sub>5</sub> during BOMD calculation at the B3LYP/6-31G(d) level with different temperature.



Fig. S16. The structure of  $Cr_2$  and its important FMOs at the B3LYP/6-311G(d) level.



**Fig. S17**. The Cr-Cr stretching vibrational frequency accompany with their corresponding modes calculated at the B3LYP/6-311G(d) level.

The XYZ coordinates of the D<sub>2h</sub>-Cr<sub>2</sub>Li<sub>2</sub>, D<sub>5h</sub>-Cr<sub>2</sub>Li<sub>5</sub>, D<sub>5h</sub>-Cr<sub>2</sub>Li<sub>5</sub><sup>+</sup>, D<sub>2h</sub>-Cr<sub>2</sub>Na<sub>2</sub>, C<sub>2v</sub>-Cr<sub>2</sub>Na<sub>3</sub><sup>-</sup>, D<sub>4h</sub>-Cr<sub>2</sub>Na<sub>4</sub>, D<sub>5h</sub>-Cr<sub>2</sub>Na<sub>5</sub> and D<sub>5h</sub>-Cr<sub>2</sub>Na<sub>5</sub><sup>+</sup> calculated at the B3LYP/6-311G(d) level.

#### D<sub>2h</sub>-Cr<sub>2</sub>Li<sub>2</sub>,

| Li | 0.00000000 | 0.00000000  | 2.66650300  |
|----|------------|-------------|-------------|
| Li | 0.00000000 | 0.00000000  | -2.66650300 |
| Cr | 0.00000000 | 0.77888000  | 0.00000000  |
| Cr | 0.00000000 | -0.77888000 | 0.00000000  |

#### D<sub>5h</sub>-Cr<sub>2</sub>Li<sub>5</sub>,

| Cr | 0.00000000  | 0.00000000  | 0.79533234  |
|----|-------------|-------------|-------------|
| Cr | -0.00000000 | 0.00000000  | -0.79533234 |
| Li | -1.54421169 | -2.12542505 | 0.00000000  |
| Li | -2.49858699 | 0.81184013  | 0.00000000  |
| Li | 1.54421169  | -2.12542505 | 0.00000000  |
| Li | -0.00000000 | 2.62716984  | 0.00000000  |
| Li | 2.49858699  | 0.81184013  | 0.00000000  |

#### $D_{5h}$ - $Cr_2Li_5^+$ ,

| Cr | 0.00000000  | -0.00000000 | 0.78500741  |
|----|-------------|-------------|-------------|
| Cr | -0.00000000 | -0.00000000 | -0.78500741 |
| Li | -0.00000000 | 2.72959272  | 0.00000000  |
| Li | 2.59599694  | 0.84349054  | 0.00000000  |
| Li | -2.59599694 | 0.84349054  | 0.00000000  |
| Li | 1.60441434  | -2.20828690 | 0.00000000  |

#### D<sub>2h</sub>-Cr<sub>2</sub>Na<sub>2</sub>,

| Na | 0.00000000 | 0.00000000  | 2.91420100  |
|----|------------|-------------|-------------|
| Na | 0.00000000 | 0.00000000  | -2.91420100 |
| Cr | 0.00000000 | 0.77605400  | 0.00000000  |
| Cr | 0.00000000 | -0.77605400 | 0.00000000  |

#### $C_{2v}$ - $Cr_2Na_3$ -,

| Cr | 0.00000000 | 0.00000000  | -1.29346993 |
|----|------------|-------------|-------------|
| Cr | 0.00000000 | -0.00000000 | 0.26639707  |
| Na | 0.00000000 | 2.85484461  | -0.47894245 |
| Na | 0.00000000 | -2.85484461 | -0.47894245 |
| Na | 0.00000000 | 0.00000000  | 3.19877407  |

#### D<sub>4h</sub>-Cr<sub>2</sub>Na<sub>4</sub>,

| Cr | -0.00000000 | 0.00000000  | 0.78020996  |
|----|-------------|-------------|-------------|
| Cr | -0.00000000 | 0.00000000  | -0.78020996 |
| Na | -0.00000000 | 2.89425656  | 0.00000000  |
| Na | 0.00000000  | -2.89425656 | 0.00000000  |
| Na | 2.89425656  | 0.00000000  | 0.00000000  |
| Na | -2.89425656 | -0.00000000 | 0.00000000  |

## D<sub>5h</sub>-Cr<sub>2</sub>Na<sub>5</sub>

| Cr 0.0000000 0.0000000 0.784070 | Cr | 0.00000000 | 0.00000000 | 0.78407008 |
|---------------------------------|----|------------|------------|------------|
|---------------------------------|----|------------|------------|------------|

- 26 -

| Cr | -0.00000000 | 0.00000000  | -0.78407008 |
|----|-------------|-------------|-------------|
| Na | 0.00000000  | 2.97088179  | 0.00000000  |
| Na | 2.82547649  | 0.91805296  | 0.00000000  |
| Na | -2.82547649 | 0.91805296  | 0.00000000  |
| Na | 1.74624050  | -2.40349386 | 0.00000000  |
| Na | -1.74624050 | -2.40349386 | 0.00000000  |

## $D_{5h}$ - $Cr_2Na_5^+$

| Cr | 0.00000000  | 0.00000000  | 0.78084077  |
|----|-------------|-------------|-------------|
| Cr | -0.00000000 | 0.00000000  | -0.78084077 |
| Na | -0.00000000 | 3.03091978  | 0.00000000  |
| Na | 2.88257600  | 0.93660572  | 0.00000000  |
| Na | -2.88257600 | 0.93660572  | 0.00000000  |
| Na | 1.78152994  | -2.45206561 | 0.00000000  |
| Na | -1.78152994 | -2.45206561 | 0.00000000  |