Supporting Information

Ru Doped Molybdenum-based Nanowire Arrays for Efficient

Hydrogen Evolution over a Broad pH Range

Shaohua Yang, Jinhui Li*, Duanlin , Yaqiong Gong*

School of Chemical Engineering and Technology, North University of China, Taiyuan,

030051, P. R. China

* Email: ljh1294@163.com (Jinhui Li); gyq@nuc.edu.cn (Yaqiong Gong)

Fig. S1. SEM images of Mo-based NWAs/CFP.

Catalyst	η_{10}	Tafel slop	C _{dl}
Catalyst	(mV)	(mV dec ⁻¹)	(mF cm ⁻²)
Ru-MoP NWAs/CFP	39.0	39.0	66.5
Ru-MoS ₂ NWAs/CFP	69.3	57.0	46.5
Ru-MoO ₂ NWAs/CFP	93.1	75.0	21.9
Ru-MoSe ₂ NWAs/CFP	120.5	83.0	16.1
Ru-MoN NWAs/CFP	154.6	82.0	14.9
Pt/C/CFP	24.2	25.0	—

Table S1. Electrochemical parameters of electrocatalysts for HER in 0.5 M H_2SO_4 electrolyte

Table S2. Comparison of HER activity of the Ru-NiFeP/NF catalystwith other reported electrocatalysts in 0.5 M H_2SO_4

Electrocatalysts	Overpotential (mV)	Tafel slope	Reference
	at 10 mA cm ⁻²	(mV dec ⁻¹)	
Ru-MoP NWAs/CFP	39.0	39.0	This work
S-MoP NPL	86.0	34.0	ACS Catal. 2019, 9, 651-
			659.
MoP@NC	96.0	49.2	Appl. Catal. B Environ.,
			263, 2020, 118358.
MoP/Mo ₂ C@C	89.0	45.0	ACS Appl. Mater.
			Interfaces 2017, 9, 19,
			16270–16279.
MoP@NPSC	71.0	75.0	ACS Appl. Mater.
			Interfaces 2020, 12, 44,
			49596–49606.
MoP-Ru ₂ P/NPC	82.0	39.33	Appl. Catal. B Environ.,
			303, 2022, 120879.
Ru-MoSe ₂	143.0	73.0	J. Phys. Chem. C 2019,
			123, 1987–1994.
2D-MoO ₂ /Ru/ NC	68.0	38.0	J. Phys. Chem. C 2020,
			124, 10804–10814.
RuP-475	46.0	39.0	ACS Sustainable Chem.
			Eng. 2018, 6, 6388-6394.
Ru-modified FeP	62.0	45.0	J. Mater. Chem. A, 2020,
			8, 22607.

Catalyst	η_{10}	Tafel slop	C _{dl}
Cuturyst	(mV)	(mV dec ⁻¹)	(mF cm ⁻²)
Ru-MoP NWAs/CFP	67.1	69.0	42.8
Ru-MoS ₂ NWAs/CFP	86.1	96.0	22.3
Ru-MoO ₂ NWAs/CFP	118.0	83.0	19.9
Ru-MoSe ₂ NWAs/CFP	155.6	122.0	13.1
Ru-MoN NWAs/CFP	208.6	107.0	11.4
Pt/C/CFP	57.6	46.0	_

Table S3. Electrochemical paramters of electrocatalysts for HER in 1.0 M PBS electrolyte

Table S4. Comparison of HER activity of the Ru-NiFeP/NF catalyst

Electrocatalysts	Overpotential (mV)	Tafel slope	Reference
	at 10 mA cm ⁻²	(mV dec ⁻¹)	
Ru-MoP NWAs/CFP	67.1	69.0	This work
MoP@NC	191.0	95.0	Appl. Catal. B Environ.,
			263, 2020, 118358.
MoP/Mo ₂ C@C	136.0	93.0	ACS Appl. Mater.
			Interfaces 2017, 9, 19,
			16270–16279.
MoP-Ru ₂ P/NPC	126.0	70.89	Appl. Catal. B Environ.,
			303, 2022, 120879.
Ru@WNO-C	358.0	139.7	Nano Energy., 80,
			2021,105531.
Ru/Ni ₂ P@NPC	124.0	84.0	ACS Sustainable Chem.
			Eng. 2019, 7,
			17714-17722.
Mo - Ni ₂ P NWs/NF	84.0	82.0	Nanoscale, 2017, 9, 16674.
Ru@2H-MoS ₂	137.0	81.1	Appl. Catal. B Environ.,
			298, 2021,120490.
NiS ₂ /MoS ₂ HNW	284.0	83.0	ACS Catal. 2017, 7, 9,
			6179–6187.
Mo ₂ C/MoP@NPC	228.0	125.0	Journal of Colloid and
			Science., 513, 2018, 151-
			160.

with other reported electrocatalysts in 1.0 M PBS

Catalyst	η_{10}	Tafel slop	C _{dl}
Cataryst	(mV)	(mV dec ⁻¹)	(mF cm ⁻²)
Ru-MoP NWAs/CFP	49.9	47.0	36.2
Ru-MoS ₂ NWAs/CFP	67.9	56.0	27.3
Ru-MoO ₂ NWAs/CFP	91.5	73.0	24.7
Ru-MoSe ₂ NWAs/CFP	125.0	80.0	18.5
Ru-MoN NWAs/CFP	178.6	86.0	14.9
Pt/C/CFP	36.0	31.0	—

Table S5. Electrochemical paramters of electrocatalysts for HER in 1.0 M KOH electrolyte

Electrocatalysts	Overpotential (mV)	Tafel slope	Reference
	at 10 mA cm ⁻²	(mV dec ⁻¹)	
Ru-MoP NWAs/CFP	49.9	47.0	This work
MoP@NC	149	61.7	Appl. Catal. B Environ., 263, 2020, 118358.
MoP/Mo ₂ C@C	75.0	58.0	ACS Appl. Mater. Interfaces 2017, 9, 19, 16270–16279.
MoP-Ru ₂ P/NPC	47.0	36.93	Appl. Catal. B Environ., 303, 2022, 120879.
Ru/Ni-MoS ₂	32.0	41.0	APPl. Catal. B Environ., 298, 2021, 120557.
Ru SAs-Ni ₂ P	57.0	75.0	Nano Energy., 80, 2021, 105467.
Ru/Ni ₂ P@NPC	132.0	124.0	ACS Sustainable Chem. Eng. 2019, 7, 17714–17722.
MoP/Ni ₂ P/NF	75.0	100.2	J. Mater. Chem. A, 2017, 5, 15940.
Mo - Ni ₂ P NWs/NF	78.0	100.0	Nanoscale, 2017, 9, 16674
Ni-Mo-P/NF	63.0	87.3	Electrochimica. Acta., 335, 2020, 135643.

Table S6. Comparison of HER activity of the Ru-NiFeP/NF catalyst with other reported electrocatalysts in 1.0 M KOH

Fig. S3. Electrochemical double-layer capacitances of the Ru-MoP NWAs/CFP catalyst measured in

(a) acidic 0.5 M H₂SO₄, (b) neutral 1 M PBS, and (c) alkaline 1 M KOH, respectively.

Fig. S4. Cyclic voltammograms of the Ru-MoP NWAs/CFP catalyst measured in (a) acidic 0.5 M H₂SO₄, (b) neutral 1 M PBS, and (c) alkaline 1 M KOH, respectively.

Fig. S5. XRD patterns of the Ru-MoP NWAs/CFP catalyst after HER durability tests in (a) 0.5 M H₂SO₄, (b) 1 M PBS, and (c) 1 M KOH.

Fig. S6. SEM images of Ru-MoP NWAs/CFP after HER stability measurements.