Supporting Information for

Cycloaddition of isoselenocyanates to sodium and magnesium metallacycles

Vladimir A. Dodonov,^a Olga A. Kushnerova,^a Roman V. Rumyantsev,^a Alexander S. Novikov,^b Vladimir K. Osmanov^c and Igor L. Fedushkin^{*a}

 ^a G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina str. 49, Nizhny Novgorod 603137, Russia. Email: igorfed@iomc.ras.ru
 ^b Institute of Chemistry, Saint Petersburg State University Universitetskaya Nab., 7/9, Saint Petersburg 199034, Russia. Email:a.s.novikov@spbu.ru
 ^c Nizhny Novgorod State Technical University. Minina str. 24, N. Novgorod 603155, Russia. tantalovk@yandex.ru

Experimental Section

All the manipulations with air- and moisture-sensitive compounds were carried out in vacuum or under argon using standard Schlenk technique or under argon atmosphere in a drybox. Solvents (toluene, 1,2-dimethoxyethane, pyridine, THF, CH₂Cl₂, CHCl₃, hexane and pentane) were dried using appropriate methods and were distilled under argon or condensed in vacuo prior to use. THF-d₈ and benzene-d₆ were dried over Na/K alloy. [(dpp-bian)GaNa(DME)₂],^[1] [(H-dppbian)Na(DME)₂],^[2] [(dpp-bian)Ga-Ga(dpp-bian)],^[3] [(dpp-bian)Mg(THF)₃]^[4] were prepared according to literature procedures. Deuterated [(D-dpp-bian)Na(DME)2] was prepared according the literature procedure,^[2] where D_2O instead of H_2O was used as the reagent. Isoselenocyanates were synthesied by a slightly modified procedure^[5] was used with additional recrystallization from hexane. Other chemicals were purchased from commercial sources and used without further purification. The IR spectra were recorded on FSM-1201 spectrometer in Nujol, the NMR spectra - on Bruker AvanceNEO300 (300 MHz) or Advance III (400 MHz) spectrometers and were referenced to the residual ¹H or ¹³C signals of deuterated solvents. Chemical shifts are given in ppm. Abbreviations used: Ar - aromatic, naph - naphthalene, tol tolyl, pyr – pyridine, d - doublet, m - multiplet, t - triplet, s - singlet, br - broad, hept - heptet. The ESR spectra were obtained on a Bruker EMX spectrometer (9.75 GHz), the signals were referred to the signal of diphenylpicrylhydrazyl (g=2.0037). HFC constants were obtained by simulation with the WinEPR SimFonia Software and Easyspin toolbox.^[6] Elemental analyses were carried out on Elementar VarioEL III instrument.

General procedure for synthesis of isoselenocyanates.

A mixture of amine (0.15 mol), CHCl₃ (24 g, 16.2 mL, 0.20 mol), CH₂Cl₂ (100 mL), Aliquat 336 (2 g, 0.005 mol), and 50% aq NaOH (68.4 g, 45 mL, 0.86 mol) was vigorously stirred; an exothermic effect was observed. When the effect had ceased, the mixture was vigorously stirred and refluxed for 3 h. The mixture was cooled to r.t., and black, finely powdered, elemental selenium (15 g, 0.19 mol) was added. The reagents were vigorously stirred at refluxed for the 3 h. The mixture was cooled to r.t., then water (150 mL) and CH_2Cl_2 (150 mL) were added, and the unreacted selenium was filtered off under reduced pressure using a Büchner funnel and filter paper. The organic layer was separated and dried (anhydr. MgSO₄). The drying agent was filtered off, and the solvent was evaporated under reduced pressure. The residue was extracted with hexane 3 times with 150 ml. The extracts were combined and evaporated under reduced pressure to 60 ml and cooled to -20°C and dryed in vacuum.

Orthomethylphenyl isoselenocyanates: yield 34%. Crystals suitable for X-ray diffraction analysis were obtained by recrystallization from hexane. IR (nujol, cm⁻¹): 465 M, 500 M, 527 M, 544 S, 627 S, 704 S, 752 VS, 860 S, 939 M, 1038 S, 1111 S, 1157 M, 1192 S, 1229 M, 1291 M, 1379 S, 1458 VS, 1483 VS, 1578 S, 1599 S, 2078 VS, 2116 VS. ¹H NMR (300 MHz, C₆D₆) 6.74 – 6.65 (m, 1H), 6.63 – 6.57 (m, 2H), 6.54 (dd, J = 8.3, 1.6 Hz, 1H), 1.83 (s, 3H). ¹³C NMR (75 MHz, C₆D₆) 135.2, 130.2, 129.2, 127.5, 126.5, 125.7, 17.6. ⁷⁷Se NMR (76 MHz, C₆D₆) -305.64. Elemental analysis C₈H₇NSe (196.11), calc. C 48.99, H 3.59, N 7.14 %; found C 48.68, H 3.34, N 7.43 %. Orthomethoxyphenyl isoselenocyanates: yield 41%. IR (nujol, cm⁻¹): 457 W, 536 W, 561 M, 613 M, 752 VS, 772 W, 849 M, 860 W, 934 M, 949 W, 1013 S, 1040 M, 1109 S, 1156 M, 1184 M, 1215 M, 1258 S, 1279 S, 1300 S, 1377 M, 1435 M, 1491 S, 1590 M, 2100 VS, 2136 VS. ¹H NMR (400 MHz, THF-d₈) 7.31 (td, J = 7.9, 1.6 Hz, 1H), 7.24 (dd, J = 7.9, 1.7 Hz, 1H), 7.06 (d, J = 8.3 Hz, 1H), 6.92 (td, J = 7.6, 1.1 Hz, 1H), 3.91 (s, 3H). ¹³C NMR (101 MHz, THF-d₈) 156.3, 133.3, 129.2, 125.9, 120.5, 119.0, 111.7, 55.5. ⁷⁷Se NMR (76 MHz, THF-d₈) -302.3. Elemental analysis C₈H₇NOSe (212.11), calc. C 45.30, H 3.33, N 6.60 %; found C 45.47, H 3.14, N 6.35 %.

Orthochlorophenyl isoselenocyanates: yield 42%. IR (nujol, cm⁻¹): 442 W, 509 M, 525 W, 540 W, 561 W, 623 M, 694 M, 752 VS, 856 M, 941 W, 1030 M, 1042 M, 1065 S, 1094 W, 1115 M, 1128 M, 1157 W, 1308 W, 1348 W, 1418 M, 1443 S, 1584 S, 1626 M, 2064 VS, 2108 VS. ¹H NMR (400 MHz, C_6D_6) 6.83 (dd, J = 7.6, 2.0 Hz, 1H), 6.63 – 6.49 (m, 2H), 6.49 – 6.39 (m, 1H). ¹³C NMR (75 MHz, C_6D_6) 134.9, 131.5, 129.7, 128.2, 127.2, 126.7. ⁷⁷Se NMR (76 MHz, C_6D_6) -282.3. Elemental analysis C_7H_4 CINSe (216.53), calc. C 38.83, H 1.86, N 6.47 %; found C 38.98, H 2.02, N 6.65 %.

Reaction of [(dpp-bian)HNa(DME)₂] with 1-isoselenocyanato-2-methoxybenzene.

0.106 g (0.497 mmol) of 2-(MeO)C₆H₄NCSe was added to a blue solution of 0.335 g (0.497 mmol) of [(dpp-bian)HNa(Et₂O)₂] in 5 ml of DME at 0 °C. The solution color changed to pale brown within 5 min. The resulting solution was layered with 10 ml of pentane. The vessel was sealed and left unshaken for two days at -20 °C. That gave light orange crystals of compound **2**. Yield 0.316 g, 77%. IR (nujol, cm⁻¹) 453 vw, 480 vw, 490 vw, 540 w, 556 w, 590 w, 604 w, 666 w, 677 vw, 739 s, 745 s, 758 s, 777 s, 806 s, 826 m, 858 m, 905 m, 936 s, 953 m, 961 m, 982 w, 1017 s, 1047 m, 1076 s, 1115 s, 1159 m, 1190 m, 1240 s, 1256 m, 1287 w, 1304 w, 1325 w, 1333 w, 1362 m, 1439 s, 1480 s, 1514 s, 1590 m, 1622 m, 1644 s, 3174 w. ¹H NMR (400 MHz, THF-*d*₈) 7.92 (s, 1H), 7.76 (d, *J* = 8.0 Hz, 1H), 7.56 (s, 1H), 7.54 (d, *J* = 8.3 Hz, 1H), 7.30 – 7.19 (m, 3H), 7.16 (t, *J* = 7.6 Hz, 1H), 7.14 (t, *J* = 7.8 Hz, 1H), 7.12 (d, *J* = 7.3 Hz, 1H), 6.92 (t, *J* = 7.7 Hz, 1H), 6.88 – 6.80 (m, 3H), 6.68 (d, *J* = 7.6 Hz, 1H), 3.07 (br s, 1H), 2.96 (hept, *J* = 6.8 Hz, 1H), 1.44 (d, *J* = 6.7 Hz, 3H), 1.23 (d, *J* = 6.8 Hz, 3H), 1.22 (d, *J* = 6.8 Hz, 3H), 1.08 (d, *J* = 6.9 Hz, 3H),

1.04 (d, J = 6.8 Hz, 3H), 0.85 (d, J = 6.7 Hz, 3H), 0.80 (d, J = 6.5 Hz, 3H), -0.32 (d, J = 6.4 Hz, 3H). ¹³C NMR (75 MHz, THF- d_8) 191.0, 178.9, 150.4, 146.6, 145.5, 144.1, 143.9, 143.8, 143.4, 143.3, 139.2, 136.5, 133.0, 130.7, 128.3, 126.9, 125.9, 124.5, 124.3, 123.7, 123.5, 123.3, 122.8, 122.8, 122.7, 122.4, 122.3, 121.6, 120.5, 111.9, 83.4, 55.4, 28.6, 28.2, 27.4, 26.7, 24.9, 24.4, 24.3, 24.1, 23.8, 23.7, 23.7, 20.7. ¹⁵N NMR (40 MHz, THF- d_8 , indirect observation) 64.1. ⁷⁷Se NMR (76 MHz, C₆D₆) -301.0. NMR assignment table is given below. Elemental analysis C₄₈H₅₈N₃O₃NaSe (826.92), calc. C 69.72, H 7.07, N 5.08 %; found C 69.53, H 6.87, N 5.28 %.

Reaction of [(dpp-bian)HNa(DME)₂] with 1-isoselenocyanato-2-methylbenzene.

0.088 g (0.446 mmol) of 2-MeC₆H₄NCSe was added to a blue solution of 0.300 g (0.446 mmol) of [(dpp-bian)HNa(Et₂O)₂] in 5 ml of DME at 0°C. The solution color changed to brown within 5 min. The resulting solution cooled down to -20°C. After 10 min violet and yellow-brown layers are formed. The upper violet layer was removed. The residue washed twice with cold DME. The yellow-brown residue was dryed in vacuum to give yellow-brown solid of compound 3. Yield 0.342 g, 85%. Removal of volatiles from violet layer resulted in violet solid (0.034 g), NMR and IR spectral characteristics correspond to [(dpp-bian)H₂].^[2] IR (nujol, cm⁻¹) 465 VS, 521 W, 538 W, 556 W, 604 VW, 631 VW, 694 VS, 750 S, 766 M, 783 M, 833 M, 855 M, 895 M, 938 W, 978 M, 1030 S, 1067 M, 1082 S, 1111 S, 1140 M, 1157 W, 1179 M, 1194 M, 1210 W, 1252 M, 1296 W, 1304 W, 1329 W, 1360 M, 1495 VS, 1524 W, 1568 S, 1588 M, 1605 S, 1620 W, 1645 M, 3162 M. ¹H NMR (400 MHz, C₆D₆) 7.65 (s, 1H, NH), 7.45 (d, J = 7.9 Hz, 1H, CH-naph), 7.33 (dd, J = 7.7, 1.2 Hz, 1H, CH-naph), 7.29 - 7.24 (m, 2H, CH-Ar), 7.24 - 7.18 (m, 2H, CH-Ar), 7.18 - 7.12 (m, 2H, CH-Tol), 7.08 – 7.02 (m, 1H, CH-Ar), 7.02 – 6.99 (m, 1H, CH-naph), 6.99 – 6.97 (m, 1H, CH-Tol), 6.83 - 6.77 (m, 1H, CH-naph), 6.80 - 6.75 (m, 1H, CH-naph), 6.77 - 6.72 (m, 1H, CH-Ar), 6.67 (d, J = 7.2 Hz, 1H, CH-naph), 4.65 (hept, J = 6.8 Hz, 1H, CH-iPr), 3.81 (hept, J = 6.8 Hz, 1H, CH-iPr), 3.11 (hept, J = 6.8 Hz, 1H, CH-iPr), 3.03 (hept, J = 6.8 Hz, 1H, CH-iPr), 1.89 (s, 3H, CH3-Tol), 1.58 (d, J = 6.9 Hz, 3H, CH3-iPr), 1.57 (d, J = 6.7 Hz, 3H, CH3-iPr), 1.42 (d, J = 6.7 Hz, 3H, CH3-iPr), 1.18 (d, J = 6.8 Hz, 3H, CH3-iPr), 1.14 (d, J = 6.9 Hz, 3H, CH3-iPr), 1.10 (d, J = 6.8 Hz, 3H, CH3-iPr), 1.00 (d, J = 6.7 Hz, 3H, CH3-iPr), -0.16 (d, J = 6.8 Hz, 3H, CH3-iPr). ¹³C NMR (101 MHz, C₆D₆) 180.9 (N=C-Se), 178.3 (C=NAr), 153.2 (C-Tol), 146.0 (C-Ar), 144.9 (C-naph), 143.4 (C-Ar), 143.3 (C-Ar), 142.4 (C-naph), 142.3 (C-naph), 139.2 (C-Ar), 136.7 (C-Ar), 131.1 (Cnaph), 130.5 (C-Ar), 129.6 (CH-Tol), 129.3, 129.2 (CH-Ar), 127.3 (CH-naph), 126.3 (CH-naph), 125.0 (CH-Tol), 125.0 (CH-Ar), 124.3 (CH-naph), 123.8 (CH-Ar), 123.7 (CH-naph), 123.4 (CHnaph), 123.1 (CH-Ar), 122.9 (CH-Ar), 122.1 (CH-Ar), 119.4 (CH-naph), 81.5 (C-N(H)), 29.2 (CHiPr), 28.9 (CH-iPr), 27.7 (CH-iPr), 27.2 (CH-iPr), 26.2 (CH3-iPr), 26.0 (CH3-iPr), 25.6 (CH3-iPr), 25.0 (CH3-iPr), 24.5 (CH3-iPr), 24.2 (CH3-iPr), 23.9 (CH3-iPr), 20.9 (CH3-iPr), 18.3 (CH3-Tol). ¹⁵N NMR (40.55 MHz, C₆D₆, indirect observation) 70.6. ⁷⁷Se NMR (76 MHz, C₆D₆) 57.5.

Reaction of [(dpp-bian)GaNa(DME)₂] with 1-isoselenocyanato-2-methoxybenzene.

0.213 g (1.0 mmol) of Ph(OMe)NCSe was added to a solution of $[(dpp-bian)GaNa(DME)_3]$ (1 mmol) in DME (15 ml). Solution color changed to green. Within 15 min yellow-green needle crystals of **5** precipitated. Yield 0.86 g, 83%. IR (nujol, cm⁻¹): 463 VW, 548 VW, 594 W, 721 M, 750 M, 760 M, 770 M, 787 M, 802 W, 820 W, 835 W, 926 W, 936 W, 1038 W, 1082 W, 1113 W, 1142 VW, 1192 W, 1252 W, 1275 W, 1321 M, 1350 W, 1364 M, 1503 W, 1539 M, 1591 W. Elemental analysis $C_{104}H_{160}Ga_2N_4Na_2O_{16}Se_2$ (2065.74), calc. C 60.47, H 7.81, N 2.71 %; found C 60.77, H 7.54, N 2.51 %.

Reaction of $[(dpp-bian)GaNa(DME)_2]$ with 2,3-dimethyl-1,3-butadiene and 1-isoselenocyanato-2-methoxybenzene.

0.082 g (1 mmol) of 2,3-dimethyl-1,3-butadiene was added to a yellow-green solution of 1 mmol of $[(dpp-bian)GaNa(DME)_2]$ in 5 ml of DME. The resulting mixture was heated within 4 hours at 80 °C. No visible changes were observed. Solution of 0.212 g (1 mmol) of 1-isoselenocyanato-2-methoxybenzene in 3 ml of DME was added to the mixture. The mixture was left unshaken for 2 days. That resulted in mixture of orange crystals and brown crystals, that were manually separated in glovebox and identified by X-ray diffraction analysis as compound **2** and compound **6** correspondingly. Total yield was 0.290 g.

Reaction of digallane [(dpp-bian)Ga–Ga(dpp-bian)] with 2,3-dimethyl-1,3-butadiene. 0.164 g (2.0 mmol) of 2,3-dimethyl-1,3-butadiene was added to a solution of 1 mmol of digallane in 10 ml of toluene. The vessel was sealed and was heated for 48h at 120 °C. Solution color changed to brown. All volatiles were removed in vacuum. The residue was dissolved in 5 ml of DME. Concentration to 2 ml gave brown crystals of compound **6**. Yield 0.352 g, 54%. IR (cm⁻¹) 455 w, 546 w, 615 w, 633 w, 669 w, 768 s, 785 w, 804 m, 820 m, 874 w, 891 w, 938 w, 1038 w, 1057 w, 1084 w, 1107 w, 1136 m, 1161 w, 1186 m, 1211 w, 1256 m, 1325 m, 1362 m, 1543 m. EPR (THF, 295 K) $a_i(2\times^{14}N) = 0.51$, $a_i(^{69}Ga) = 1.85$, $a_i(^{71}Ga) = 2.34$, $a_i(4\times^{1}H) = 0.11$ mT, g = 2.0025. Elemental analysis $C_{42}H_{50}N_2Ga$ (652.56), calc. C 77.30, H 7.27, N 4.29 %; found C 77.09, H 7.44, N 4.44 %.

Reaction of [(dpp-bian)GaNa(DME)₂] with 2,3-dimethyl-1,3-butadiene. 0.164 g (2.0 mmol) of 1,3-dimethylbutadiene was added to a solution of [(dpp-bian)GaNa(DME)₂] (1 mmol) in DME (10 ml). It was heated up at 80°C for 1 day. Slow concentration gave dark green crystals of compound **9**. Yield 0.446 g, 47 %. IR (nujol, cm⁻¹): 463 VW, 517 W, 550 VW, 613 W, 625 W, 646 W, 683 W, 748 W, 766 S, 799 M, 810 M, 839 W, 858 S, 876 W, 893 M, 926 M, 936 M, 959 W, 997 W, 1019 M, 1030 M, 1084 VS, 1105 S, 1123 S, 1134 M, 1159 W, 1177 S, 1190 M, 1210 W, 1217 W, 1260 M, 1319 S, 1343 VS, 1428 VS, 1518 S, 1588 W. ¹H NMR (400 MHz, THF-d₈, 223

K): 7.05 – 6.84 (m, 6H, CH-Ar), 6.57 – 6.40 (m, 4H, CH-naph), 5.46 (d, J = 6.6 Hz, 2H, CH-naph), 4.09 (hept, J = 6.8 Hz, 4H, CH-iPr), 1.62 (s, 6H, CH3-diene), 1.13 (d, J = 6.9 Hz, 12H, CH3-iPr), 1.05 (d, J = 6.9 Hz, 12H, CH3-iPr), 0.75 (s, 4H, CH2-diene). ¹³C NMR (75 MHz, THF-d₈, 298 K): 136.3 (C-naph), 131.7 (C-diene), 126.9 (C-naph), 126.5 (CH-naph), 126.1 (CH-naph), 125.5 (C-Ar), 125.3 (C-Ar), 123.9 (CH-Ar), 123.3 (CH-naph), 122.0 (C-Ar), 121.5 (CH-naph), 119.0 (CH-Ar), 27.0 (CH-iPr), 24.7 (CH3-iPr), 24.2 (CH3-iPr), 21.2 (CH3-diene). Elemental analysis $C_{54}H_{80}GaN_2NaO_6$ (945.93), calc. C 68.56, H 8.52, N 2.96 %; found C 68.81, H 8.25, N 3.20 %.

Reaction of 6 with sodium. A mixture of 0.219 g (0.33 mmol) of [(dpp-bian)Ga(C6H10)], 0.008 g (0.33 mmol) of sodium in 5 ml of DME was stirred within 24 hours. The metal dissolved, solution color changed to green. Slow concentration gave dark green crystals of compound **9**. Yield 0.284 g, 91%.

Reaction of 9 with 1-isoselenocyanato-2-methoxybenzene.

0.057 g (0.278 mmol) 1-isoselenocyanato-2-methoxybenzene was added to a solution 0.263 g (0.278 mmol) of compound **9** in 5 ml DME. Solution color changed to yellow-brown. After storage for two days at -20 °C, the solution was layered with 5 ml of pentane. This resulted in mixture of two type of crystals: dark needle and orange prisms. After decantation, crystals were divided manually in drybox. Orange crystals of compound **2** were identified by NMR spectra, yield 0.035 g, 15.3 %. Dark crystals were identified by EPR spectra as compound **6**, yield 0.091 g 50.3 %.

Reaction of [(dpp-bian)Mg(THF)₃] with 1-isoselenocyanato-2-methoxybenzene.

 CH3-iPr), 0.83 - 0.78 (m, 9H, CH3-iPr), -0.58 (d, J = 6.7 Hz, 3H, CH3-iPr). Elemental analysis C₆₄H₆₇MgN₇OSe (1053.52), calc. C 72.96, H 6.41, N 9.31 %; found C 72.30, H 6.83, N 9.00 %.

Reaction of [(dpp-bian)Mg(THF)₃] with 1-isoselenocyanato-2-methylbenzene.

0.197 g (1.0 mmol) of 2-MeC₆H₄NCSe was added to a green solution of 0.741 g (1.0 mmol) of [(dpp-bian)Mg(THF)₃] in 10 ml of THF at -20°C. The solution color changed to brown-violet. The solution was concentrated to 2 ml in vacuum. Storage within 30 min at -20°C gave light-yellowgreen crystals of 12. Yield 0.615 g, 61%. IR (nujol, cm⁻¹): 465 VW, 538 W, 600 W, 629 M, 639 W, 666 W, 720 M, 752 VS, 781 S, 829 M, 835 M, 851 W, 901 W, 926 M, 938 M, 984 VW, 1042 M, 1073 S, 1113 S, 1138 M, 1159 W, 1192 M, 1221 M, 1254 M, 1275 W, 1327 M, 1483 M, 1593 S, 1642 S, 1665 S. ¹H NMR (400 MHz, THF-d₈, 243 K) 7.82 (d, J = 8.1 Hz, 1H, CH-Ar), 7.50 (d, J = 8.2 Hz, 1H, CH-Ar), 7.43 – 7.31 (m, 3H, CH-Tol), 7.29 (d, J = 7.9 Hz, 1H, CH-Ar), 7.19 (t, J = 7.7 Hz, 1H, CH-Ar), 7.11 (t, J = 7.7 Hz, 1H, CH-Ar), 7.05 (d, J = 7.5 Hz, 1H, CH-Ar), 6.87 (t, J = 7.1 Hz, 1H, CH-Ar), 6.83 (t, J = 7.1 Hz, 1H, CH-Ar), 6.74 (d, J = 7.4 Hz, 1H, CH-Tol), 6.68 (d, J = 7.4 Hz, 1H, CH-Ar), 6.63 (d, J = 7.3 Hz, 1H, CH-Ar), 6.43 (d, J = 7.2 Hz, 1H, CH-Ar), 6.30 (d, J = 7.1 Hz, 1H, CH-Ar), 5.14 (hept, J = 6.7 Hz, 1H, CH-iPr), 4.11 (hept, J = 6.7 Hz, 1H, CH-iPr), 3.29 (hept, J = 6.7 Hz, 2H, CH-iPr), 1.31 (s, 3H, CH3-Tol), 1.27 (d, J = 6.5 Hz, 3H, CH3-iPr), 1.24 (d, J = 6.9 Hz, 6H, CH3-iPr), 1.22 (d, J = 6.7 Hz, 3H, CH3-iPr), 0.92 (d, J = 6.7 Hz, 3H, CH3-iPr), 0.85 (d, J = 7.1 Hz, 3H, CH3-iPr), 0.83 (d, J = 7.0 Hz, 3H, CH3-iPr), -0.48 (d, J = 6.8 Hz, 3H, CH3-iPr). ¹³C NMR (101 MHz, THF-d₈, 243 K, indirect observation) 154.8 (C-Ar), 154.6 (C-Ar), 151.7 (C-Ar), 149.9 (C-Ar), 149.5 (C-Ar), 145.1 (C-Ar), 144.3 (C-Ar), 141.1 (C-Ar), 138.4 (C-Ar), 129.9 (CH-Ar), 128.4 (CH-Tol), 127.2 (CH-Ar), 125.9 (CH-Tol), 125.7 (CH-Ar), 124.8 (CH-Tol), 124.3 (CH-Ar), 124.2 (CH-Ar), 124 (CH-Tol), 123.7 (CH-Ar), 122.1 (CH-Ar), 121.7 (CH-Ar), 121.5 (CH-Ar), 121.3 (CH-Ar), 119.5 (CH-Ar), 28.1 (CH-iPr), 27.8 (CH-iPr), 27.1 (CH-iPr), 26.2 (CH3-iPr), 25.7 (CH3iPr), 25.2 (CH3-iPr), 24.5 (CH3-iPr), 23.8 (CH3-iPr), 23 (CH3-iPr), 21.7 (CH3-iPr), 17.5 (CH3-Tol). Elemental analysis C₆₀H₇₉MgN₃O₄Se (1009.55), calc. C 71.38, H 7.89, N 4.16 %; found C 70.85, H 8.14, N 3.81 %.

Decomposition of complex 11, formation of complex 13.

0.212 g (1.0 mmol) of 2-(MeO)C₆H₄NCSe was added to a green solution of 0.741 g (1.0 mmol) of $[(dpp-bian)Mg(THF)_3]$ in 10 ml of THF at -20°C. The solution color changed to brown. All volatiles were removed in vacuum. The residue was dissolved in 10 ml of pyridine. The vessel was sealed and left for 24h at room temperature. Solution color changed to bright red and **13** precipitated as red prismatic crystals. Yield 0.256 g, 40%. IR (nujol, cm⁻¹): 515 W, 550 W, 571 W, 629 W, 679 W, 702 M, 721 M, 737 M, 752 M, 772 W, 787 M, 835 W, 926 W, 938 W, 970 W, 1009 W, 1022 W, 1040 M, 1065 W, 1090 W, 1117 W, 1152 W, 1179 W, 1217 W, 1227 W, 1250 W, 1271 W, 1312 W, 1327 M, 1364 M, 1400 W, 1491 M, 1501 M, 1572 M, 1580 M, 1590 M, 1642 M, 1671 M. ¹H

NMR (400 MHz, THF-d₈, 243 K) 8.60 – 8.54 (m, 12H, CH-pyr), 8.52 (d, J = 7.2 Hz, 1H, CH-Ar), 8.07 (d, J = 8.2 Hz, 1H, CH-Ar), 7.77 – 7.70 (m, 6H, CH-pyr), 7.67 (d, J = 7.2 Hz, 2H, CH-Ar), 7.62 (d, J = 7.5 Hz, 3H, CH-Ar), 7.45 (d, J = 8.1 Hz, 1H, CH-Ar), 7.37 – 7.29 (m, 12H, CH-pyr), 7.24 (t, J = 8.1 Hz, 1H, CH-Ar), 7.18 (d, J = 7.7 Hz, 1H, CH-Ar), 6.92 (t, J = 7.6 Hz, 1H, CH-Ar), 6.83 (t, J = 7.6 Hz, 1H, CH-Ar), 6.75 (t, J = 7.9 Hz, 1H, CH-Ar), 6.66 (t, 1H, J = 7.6 Hz, CH-Ar), 6.41 (t, J = 7.7 Hz, 1H, CH-Ar), 5.92 (d, J = 7.3 Hz, 1H, CH-Ar), 3.95 (hept, J = 6.9 Hz, 1H, CH3-iPr), 3.16 (s, 3H, OCH3), 3.07 (hept, J = 6.9 Hz, 1H, CH-iPr), 1.38 (d, J = 6.7 Hz, 3H, CH3-iPr), 0.98 (d, J = 6.5 Hz, 3H, CH3-iPr), 0.81 (d, J = 6.9 Hz, 3H, CH3-iPr), 0.58 (d, J = 6.9 Hz, 3H, CH3-iPr). Elemental analysis $C_{74}H_{70}Mg_2N_6O_2Se_2$ (1281.91), calc. C 69.33, H 5.50, N 6.56 %; found C 68.90, H 5.18, N 6.91 %.

Table S1. NMR assignment table for compound 2.

Atom	Chemical Shift	Atom	Chemical Shift	Atom	Chemical Shift
1 C	83.4	18 C	122.4	33 C	120.5
2 C	178.9	н	7.12	н	6.84
3 C	130.7	19 C	143.4	34 C	121.6
4 C	143.3	20 C	28.6	н	6.84
5 C	133.1	н	4.13	35 C	122.8
6 C	122.8	21 C	23.8	н	7.92
н	6.55	НЗ	1.44	36 C	28.2
7 C	125.9	22 C	146.6	н	2.96
н	7.16	23 C	136.5	37 C	20.7
8 C	128.3	24 C	123.7	Н3	-0.32
н	7.76	н	7.26	38 C	23.7
9 C	143.9	25 C	124.4	Н3	1.23
10 C	122.3	н	7.26	39 C	27.4
н	7.54	26 C	124.5	н	3.07
11 C	126.9	н	7.26	40 C	24.4
н	7.14	27 C	139.2	Н3	1.22
12 C	123.5	28 C	26.7	41 C	23.7
н	6.58	н	3.57	Н3	1.04
13 C	191.0	29 C	24.1	42 C	55.4
14 C	143.8	НЗ	0.85	Н3	3.62
15 C	145.5	30 C	144.2	43 C	24.9
16 C	122.7	31 C	150.4	Н3	0.80
н	6.68	32 C	111.8	44 C	24.4
17 C	123.3	н	6.84	НЗ	1.08
н	6.92				

X-ray Crystal Structure Determination

The X-ray diffraction data were collected on a Bruker D8 Quest Photon II (complexes **2**, **5**, **9**, **11**, **12**), an Oxford Xcalibur Eos (**2-MeOC**₆H₄N=C=Se and **6**) (Mo-K_{α} radiation, ω -scan technique, $\lambda = 0.71073$ Å) and a SuperNova Single source at offset/far Atlas (**13**) (Cu-K_{α} radiation, ω -scan technique, $\lambda = 1.54184$ Å) diffractometers. The intensity data were integrated by SAINT (**5**, **9**, **11** and **12**)^[7] and CrysAlisPro (**2-MeOC**₆H₄N=C=Se, **2**, **6** and **13**)^[8] programs. Absorption corrections were performed using the SADABS (**5**, **9**, **11** and **12**)^[9] program and SCALE3 ABSPACK scaling algorithm (**2-MeOC**₆H₄N=C=Se, **2**, **6** and **13**).^[10] All structures were solved by dual method^[11] and refined on F_{hkl}² using SHELXTL package.^[12] All non-hydrogen atoms were refined anisotropically. All hydrogen atoms, except H(1) in complex **2** and H(20A), H(23A), H(24A,B), H(25A,B) in **6**, were placed in calculated positions and were refined in the riding model (U_{iso}(H) = 1.5U_{eq}(C) for CH₃-groups and U_{iso}(H) = 1.2U_{eq}(C) for other groups). In turn, the listed hydrogen atoms were found from Fourier syntheses of electron density and were refined isotropically. To obtain an adequate geometry of some CH₃-groups in complex **6**, the DFIX instruction was used.

The crystal of **2-MeOC₆H₄N=C=Se** was twinned and therefore, a twin refinement using data in HKLF 5 format was performed (Component 2 rotated by 11.4927% around [-1.00 -0.04 0.07] (reciprocal) or [-0.99 -0.17 -0.01] (direct); BASF 0.11212). There are two uncoordinated disordered DME and THF molecules for each complex molecule in crystals **5** and **12**, respectively. The independent unit cell of complex **11** contains four pyridine molecules, one of which is disordered over two positions. Coordinated molecules of DME (**5**, **9**), THF (**12**), as well as the methyl (**11**) and isopropyl (**12**) groups are disordered in the structures of the corresponding compounds. The disordered fragments in the complexes investigated were modelled and refined with restraints of geometry (DFIX, SADI, FLAT) and thermal parameters (EADP and ISOR). The absolute structure parameter for complex **9** is -0.004(2).^[13] Saturation of the metal coordination sphere (G-parameter) was calculated with Solid-G program.^[14] I/ σ (I) vs resolution and R_{merge} vs resolution plots were generated by Olex2.^[15]

The crystal of complex **11** was a thin plate $(0.20 \times 0.10 \times 0.04$ mm). The crystal also contains disordered solvent molecules. All these factors lead to the fact that the intensity of reflections quickly dies out with an increased resolution (Figures S5 and S6). The data were collected over a full sphere of reciprocal space up to 50° in 20: the individual frames were measured with an ω rotation of 0.3 and an acquisition time 30 s. Increasing the exposure time to obtain an acceptable resolution will result in an inadequately large number of saturated diffraction spots.

The crystal of complex **13** exhibited of reflections, that quickly dies out with an increased resolution. The data were collected over a full sphere of reciprocal space up to 150° in 20: the individual frames were measured with an ω rotation of 1° and an acquisition time 30 s. The chosen strategy of the experiment was the most optimal in terms of balancing too strong reflections ($\theta < 25^{\circ}$) and weak reflections ($\theta > 40^{\circ}$), to prevent missing strong reflections in the

data set because of detector saturation (Figures S7 and S8).

The main crystallographic data and structure refinement details for compounds **2**-**MeOC₆H₄N=C=Se**, **2**, **5**, **6**, **9**, **11**, **12** and **13** are presented in Table S2. The crystallographic data have been deposed in the Cambridge Crystallographic Data Centre under the deposition codes CCDC 2142175 (**2**), 2092322 (**6**), 2127687 (**2-MeOC₆H₄N=C=Se**), 2127688 (**5**), 2127689 (**9**), 2127690 (**11**), 2127691 (**12**) and 2127692 (**13**). These data can also be obtained free of charge at ccdc.cam.ac.uk/structures/ from the Cambridge Crystallographic Data Centre.

Figure S1. Molecular structure (**a**) and dimeric pair (**b**) of **2-MeOC₆H₄N=C=Se**. The probability ellipsoids are drawn at the 30% level. The hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): N(1)-C(8) 1.156(8), N(1)-C(2) 1.368(8), O(1)-C(1) 1.354(7), O(1)-C(7) 1.436(8), Se(1)-C(8) 1.738(7), C(1)-C(2) 1.392(8); N(1)-C(8)-Se(1) 178.7(6), C(8)-N(1)-C(2) 174.5(7), C(1)-O(1)-C(7) 117.8(5).

The molecular structure of **2-MeOC₆H₄N=C=Se** is shown in Figure S1a. The molecule is almost flat. The average deviation of non-hydrogen atoms from the plane is 0.063 Å. The maximum deviation is observed for the selenium atom (0.126 Å). The geometric parameters are in agreement with reported similar structures.^[16] The molecules form a dimeric pairs in a crystal (Fig. S1b). The O...H distance (2.615 Å) is characteristic to regular hydrogen bonds observed in a variety of organic compounds. ^[17]

Figure S2. Molecular structure of **5**. Only one cationic part ($[Na(DME)_3]^+$) of the complex is shown. The probability ellipsoids are drawn at the 30 % level. The hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): Ga(1)-N(1) 1.9350(18), Ga(1)-N(2) 1.9443(17), Ga(1)-Se(1) 2.3557(3), Ga(1)-Se(1') 2.3923(3), N(1)-C(1) 1.379(3), N(2)-C(2) 1.382(3), C(1)-C(2) 1.381(3), N(1)-Ga(1)-N(2) 87.65(7), N(1)-Ga(1)-Se(1) 119.02(5), N(2)-Ga(1)-Se(1) 118.60(5), N(1)-Ga(1)-Se(1') 115.57(6), N(2)-Ga(1)-Se(1') 117.18(5), Se(1)-Ga(1)-Se(1') 100.079(11), Ga(1)-Se(1') 79.922(10). Symmetry transformations used to generate equivalent atoms ('): -x, -y+1, -z+1.

Figure S3. Molecular structure of anion of **9**. The probability ellipsoids are drawn at the 30 % level. The hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): The probability ellipsoids are drawn at the 30 % level. The hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): Ga(1)-N(2) 1.954(2), Ga(1)-N(1) 1.963(2), Ga(1)-C(37) 1.998(3), Ga(1)-C(40) 2.001(3), N(1)-C(1) 1.391(3), N(2)-C(2) 1.387(3), C(1)-C(2) 1.375(3), C(37)-C(38) 1.509(4), C(38)-C(39) 1.348(4), C(39)-C(40) 1.509(4); N(2)-Ga(1)-N(1) 87.28(8), N(2)-Ga(1)-C(37) 123.85(11), N(1)-Ga(1)-C(37) 118.89(11), N(2)-Ga(1)-C(40) 116.36(10), N(1)-Ga(1)-C(40) 122.29(10), C(37)-Ga(1)-C(40) 91.53(12).

Figure S4. Molecular structure of anion of **11**. The probability ellipsoids are drawn at the 30 % level. The hydrogen atoms are omitted for clarity.

Figure S5. Intencity over sigma vs resolution plot for X-ray diffraction analysis of 11.

Figure S6. R_{merge} vs resolution plot for X-ray diffraction analysis of 11.

Figure S7. Intencity over sigma vs resolution plot for X-ray diffraction analysis of 13.

Figure S8. R_{merge} vs resolution plot for X-ray diffraction analysis of 13.

Complex	2-MeOC ₆ H ₄ N=C=Se	2	5
Empirical formula	C ₈ H ₇ NOSe	C ₄₈ H ₅₈ N ₃ NaO ₃ Se	C ₁₀₄ H ₁₆₀ Ga ₂ N ₄ Na ₂ O ₁₆ Se ₂
Formula weight	212.11	826.92	2065.69
Temperature [K]	298(2)	100(2)	100(2)
Crystal system	Monoclinic	Orthorhombic	Monoclinic
Space group	P2 ₁ /n	Pbca	P2 ₁ /c
Unit cell dimensions			
a[Å]	11.1882(8)	10.4126(2)	12.7954(7)
b[Å]	5.1560(4)	21.5074(5)	29.6704(15)
c[Å]	14.7709(11)	39.7104(8)	15.7466(8)
α[°]	90	90	90
β[°]	93.743(6)	90	113.3488(17)
γ[°]	90	90	90
Volume [ų]	850.26(11)	8893.0(4)	5488.6(5)
Z	4	8	2
Calculated density [Mg/m ³]	1.657	1.235	1.250
Absorption coefficient [mm ⁻¹]	4.356	0.897	1.222
F(000)	416	3488	2184
Crystal size [mm ³]	0.72 × 0.58 × 0.40	0.35 × 0.30 × 0.25	0.54 × 0.22 × 0.20
θ [°]	2.215 – 26.024	2.154 – 25.026	2.211 – 29.129
	–13 ≤ h ≤ 13	–12 ≤ h ≤ 12	–17 ≤ h ≤ 17
Index ranges	$-6 \le k \le 6$	–25 ≤ k ≤ 25	$-40 \le k \le 40$
	–18 ≤ I ≤ 18	<i>—</i> 47 ≤ I ≤ 47	–21 ≤ l ≤ 21
Reflections collected / unique	4282 / 4282	105117 / 7854	89307 / 14771
R(int)	0.0573	0.0734	0.0500
Data / restraints / parameters	4282 / 0 / 102	7854 / 0 / 520	14771 / 32 / 665
Final P indiana (IN2aigma(I))	R ₁ =0.0440,	R ₁ =0.0450,	R ₁ =0.0435,
	wR ₂ =0.1589	wR ₂ =0.1023	wR ₂ =0.0963
R indiana (all data)	R ₁ =0.0768,	R ₁ =0.0621,	R ₁ =0.0641,
	wR ₂ =0.1690	wR ₂ =0.1109	wR ₂ =0.1051
S	1.012	1.039	1.036
Largest diff. peak and hole [e/Å ³]	0.452/-0.450	0.954/-0.499	1.056/-0.632

Table S2. Crystallographic data and refinement details for compounds $2-MeOC_6H_4N=C=Se, 2, 5, C_1 + C_2 +$

6, 9, 11, 12 and 1	13.
--------------------	-----

Complex	6	9	11
Empirical formula	$C_{42}H_{50}GaN_2$	C ₅₄ H ₈₀ GaN ₂ NaO ₆	C ₆₄ H ₆₇ MgN ₇ OSe
Formula weight	652.56	945.91	1053.51
Temperature [K]	100(2)	100(2)	100(2)
Crystal system	Orthorhombic	Orthorhombic	Monoclinic
Space group	Pnma	$P2_{1}2_{1}2_{1}$	P21/c
Unit cell dimensions			
a[Å]	18.7199(5)	13.0889(4)	22.435(3)
b[Å]	18.2981(5)	19.0945(6)	22.776(3)
c[Å]	10.5069(3)	21.5669(7)	22.188(3)
α[°]	90	90	90
β[°]	90	90	104.728(4)
γ[°]	90	90	90
Volume [ų]	3599.00(17)	5390.1(3)	10965(3)
Z	4	4	8
Calculated density [Mg/m ³]	1.204	1.166	1.276
Absorption coefficient [mm ⁻¹]	0.795	0.566	0.746
F(000)	1388	2032	4432
Crystal size [mm ³]	0.52 × 0.36 × 0.20	0.50 × 0.32 × 0.27	0.20 × 0.10 × 0.04
θ [°]	2.915 – 29.997	2.133 – 30.998	1.891 – 25.026
	–21 ≤ h ≤ 26	–18 ≤ h ≤ 18	–26 ≤ h ≤ 26
Index ranges	–25 ≤ k ≤ 19	–27 ≤ k ≤ 27	–27 ≤ k ≤ 27
	–14 ≤ I ≤ 13	–31 ≤ ≤ 31	–26 ≤ l ≤ 26
Reflections collected / unique	17522 / 5401	95204 / 17170	116500 / 19353
R(int)	0.0345	0.0558	0.1883
Data / restraints / parameters	5401 / 6 / 238	17170 / 8 / 607	19353 / 200 / 1335
Final R indices [1>2sigma(1)]	R ₁ =0.0386,	R ₁ =0.0446,	R ₁ =0.1361,
	wR ₂ =0.0906	wR ₂ =0.0851	wR ₂ =0.3464
R indicos (all data)	R ₁ =0.0657,	R ₁ =0.0668,	R ₁ =0.2098,
	wR ₂ =0.0987	wR ₂ =0.0926	wR ₂ =0.3959
S	1.033	1.037	1.058
Largest diff. peak and hole [e/ų]	0.536/-0.399	0.449/-0.634	4.551/-1.533

Table S2. Continued. Crystallographic data and refinement details for compounds 2-

MeOC₆H₄N=C=Se, 2, 5, 6, 9, 11, 12 and 13.

Table	S2.	Continued.	Crystallographic	data	and	refinement	details	for	compounds	2-
-------	-----	------------	------------------	------	-----	------------	---------	-----	-----------	----

MeOC₆H₄N=C=Se, 2, 5, 6, 9, 11, 12 and 13.

Complex	12	13
Empirical formula	$C_{60}H_{79}MgN_3O_4Se$	$C_{74}H_{70}Mg_2N_6O_2Se_2$
Formula weight	1009.53	1281.90
Temperature [K]	100(2)	150(2)
Crystal system	Monoclinic	Triclinic
Space group	P2 ₁ /n	P-1
Unit cell dimensions		
a[Å]	12.9342(9)	13.5189(9)
b[Å]	24.5967(17)	14.4611(11)
c[Å]	17.0576(12)	18.747(2)
α[°]	90	76.429(8)
β[°]	93.274(2)	72.949(8)
γ[°]	90	63.250(7)
Volume [ų]	5417.8(7)	3106.2(5)
Z	4	2
Calculated density [Mg/m ³]	1.238	1.371
Absorption coefficient [mm ⁻¹]	0.753	2.097
F(000)	2152	1328
Crystal size [mm ³]	0.33 × 0.17 × 0.04	0.20 × 0.15 × 0.10
θ[°]	2.043 - 26.372	2.483 - 74.102
	–15 ≤ h ≤ 16	–11 ≤ h ≤ 16
Index ranges	$-30 \le k \le 30$	–15 ≤ k ≤ 17
	–21 ≤ I ≤ 21	–23 ≤ ≤ 22
Reflections collected / unique	67800 / 11079	22759 / 12208
R(int)	0.1008	0.1419
Data / restraints / parameters	11079 / 274 / 688	12208 / 0 / 785
Final R indices [I>2sigma(I)]	R ₁ =0.0754,	R ₁ =0.0756,
	wR ₂ =0.1667	wR ₂ =0.1166
Pindiago (all data)	R ₁ =0.1170,	R ₁ =0.1874,
	wR ₂ =0.1832	wR ₂ =0.1735
S	1.029	1.006
Largest diff. peak and hole [e/ų]	1.384/-0.793	0.924/-0.832

Angle [°]	2	Angle [°]	6
N(1)-Na(1)-O(1)	118.51(9)	N(1)-Ga(1)-N(1')	84.43(7)
N(1)-Na(1)-O(2)	137.26(9)	N(1)-Ga(1)-C(20)	119.94(6)
N(1)-Na(1)-O(3)	90.94(9)	N(1)-Ga(1)-C(23)	120.91(5)
N(1)-Na(1)-N(2)	70.82(8)	C(20)-Ga(1)-C(23)	93.72(10)
N(1)-Na(1)-N(3)	58.55(8)	Angle [°]	12
N(2)-Na(1)-O(1)	124.90(9)	N(1)-Mg(1)-O(1)	179.3(11)
N(2)-Na(1)-O(2)	92.86(9)	N(1)-Mg(1)-O(2)	95.76(13)
N(2)-Na(1)-O(3)	133.22(10)	N(1)-Mg(1)-N(2)	82.03(13)
N(2)-Na(1)-N(3)	84.39(8)	N(1)-Mg(1)-Se(1)	86.40(10)
N(3)-Na(1)-O(1)	64.44(7)	N(2)-Mg(1)-O(1)	97.3(10)
N(3)-Na(1)-O(2)	161.67(10)	N(2)-Mg(1)-O(2)	143.15(13)
N(3)-Na(1)-O(3)	122.85(10)	N(2)-Mg(1)-Se(1)	89.91(9)
O(1)-Na(1)-O(2)	103.37(9)	O(1)-Mg(1)-Se(1)	93.4(6)
O(1)-Na(1)-O(3)	101.78(9)	O(1)-Mg(1)-O(2)	84.9(10)
O(2)-Na(1)-O(3)	71.58(10)	O(2)-Mg(1)-Se(1)	126.80(10)
C(37)-N(3)-C(38)	125.1(3)	C(37)-N(3)-C(38)	124.9(4)
N(3)-C(37)-Se(1)	130.3(2)	N(3)-C(37)-Se(1)	126.9(3)
Angle [°]	13	Angle [°]	13
N(1)-Mg(1)-N(2)	83.9(3)	N(3)-Mg(2)-N(4)	83.5(2)
N(1)-Mg(1)-O(1)	74.4(2)	N(3)-Mg(2)-O(2)	74.4(2)
N(2)-Mg(1)-O(1)	146.1(2)	N(4)-Mg(2)-O(2)	144.9(3)
N(1)-Mg(1)-N(5)	137.0(3)	N(3)-Mg(2)-N(6)	143.3(3)
N(2)-Mg(1)-N(5)	97.2(3)	N(4)-Mg(2)-N(6)	99.2(2)
O(1)-Mg(1)-N(5)	82.4(2)	N(6)-Mg(2)-O(2)	83.8(2)
N(1)-Mg(1)-Se(2)	114.44(19)	N(3)-Mg(2)-Se(1)	114.7(2)
N(2)-Mg(1)-Se(2)	117.58(18)	N(4)-Mg(2)-Se(1)	113.6(2)
O(1)-Mg(1)-Se(2)	95.19(17)	O(2)-Mg(2)-Se(1)	100.44(16)
N(5)-Mg(1)-Se(2)	103.1(2)	N(6)-Mg(2)-Se(1)	97.9(2)
N(1)-C(1)-Se(1)	121.3(6)	N(3)-C(33)-Se(2)	122.2(6)

Table S3. Selected angles [°] in compounds 2, 6, 12 and 13.

Figure S9. ¹H NMR spectrum of compound 2 in THF-d₈.

Figure S10. ¹³C NMR spectrum of compound 2 in THF-d₈.

Figure S11. DEPT135 NMR spectrum of compound 2 in THF-d₈.

Figure S12. ¹H-¹H COSY NMR spectrum of compound 2 in THF-d₈.

Figure S13. ¹H-¹³C HSQC NMR spectrum of compound 2 in THF-d₈.

Figure S14. ¹H-¹³C HMBC NMR spectrum of compound 2 in THF-d₈.

Figure S15. ¹H-¹⁵N HSQC NMR spectrum of compound 2 in THF-d₈.

Figure S16. ⁷⁷Se NMR spectrum of compound 2 in C₆D₆.

Figure S17. ¹H NMR spectrum of compound 3 in C_6D_6 .

Figure S18. ¹³C NMR spectrum of compound 3 in C_6D_6 .

Figure S19. DEPT135 NMR spectrum of compound 3 in C_6D_6 .

Figure S20. ¹H-¹H COSY NMR spectrum of compound 3 in C₆D₆.

Figure S21. ¹H-¹³C HSQC NMR spectrum of compound 3 in C₆D₆.

Figure S22. ¹H-¹³C HMBC NMR spectrum of compound **3** in C₆D₆.

Figure S23. ¹H-¹³C HMBC NMR spectrum of compound **3** in C₆D₆.

Figure S24. ¹H-¹⁵N HSQC NMR spectrum of compound 3 in C₆D₆.

Figure S25. ¹H NMR spectrum of compound 9 in THF-d₈.

Figure S26. ¹³C NMR spectrum of compound 9 in THF-d₈.

Figure S27. ¹H NMR spectrum of compound 11 in THF-d₈.

Figure S28. ¹H NMR spectrum of compound **12** in THF-d₈.

Figure S29. ¹H-¹H COSY NMR spectrum of compound 12 in THF-d₈.

Figure S30. $^{1}H^{-13}C$ HSQC NMR spectrum of compound 12 in THF-d₈.

32

Figure S32. ¹H NMR spectrum of compound 13 in THF-d₈.

Figure S33. ¹H-¹H COSY NMR spectrum of compound **13** in THF-d₈.

DFT computations

The full geometry optimization of all model structures was carried out at the B3LYP/6-31G* level of theory with the help of Gaussian-09 program package.^[18] The spin restricted approximation for the model structures with closed electron shells and unrestricted method for the model structures with open electron shells were employed. No symmetry restrictions have been applied during the geometry optimization procedure in all cases. The Hessian matrices were calculated analytically for all optimized model structures to prove the location of correct minimum on the potential energy surface (no imaginary frequencies were found in all cases, except transition state 2TS, which is featuring only one imaginary frequency (the saddle point) and to estimate the thermodynamic parameters, the latter being calculated at 298.150 K and 1 atm. The Fuzzy bond order analysis^[19] and QTAIM analysis^[20] were performed by using the Multiwfn program (version 3.7)^[21] and AIMALL.^[22] Poincare-Hopf relationship was satisfied during the QTAIM analysis, and all critical points were successfully found. The natural bond orbital (NBO) analysis was carried out in accordance with the methodology proposed by Weinhold et al.^[23] The low magnitude of the electron density (0.006-0.035 a.u.), positive values of the Laplacian of electron density (0.016-0.116 a.u.), and zero or very close to zero positive energy density (0.000-0.005 a.u.) in the found bond critical points (3, -1) were typical for closed shell contacts (noncovalent interactions).^[24] The balance between the Lagrangian kinetic energy $G(\mathbf{r})$ and potential energy density $V(\mathbf{r})$ at the bond critical points (3, -1) revealed that a covalent contribution in all these contacts was absent.^[25] Strength of Na…O, Na…N, N-H…N, and C-H…Se contacts in the optimized equilibrium model structure 2H and transition state 2TS was estimated on the basis of the empirical correlation between the interaction energy and the potential energy density of electrons at the bond critical points (3, -1) proposed by Espinosa at al for hydrogen bonds.^[26] The molecular orbitals were plotted in the Chemcraft program (http://www.chemcraftprog.com). The Cartesian atomic coordinates for all optimized equilibrium model structures are presented in the attached xyz-file.

Table S4. Optimized structures of model compounds and transition states labelled with selected interatomic distances.

Table S5. Calculated total energies, enthalpies, Gibbs free energies (in Hartree), and entropies (in cal/mol•K) for optimized equilibrium model structures (E, H, G, and S, respectively).

Model structure	E	Н	G	S
2-MeOC ₆ H ₄ N=C=Se	-2838.39818795	-2838.253013	-2838.302162	103.444
2-MeC ₆ H₄N=C=Se	-2763.19563292	-2763.056370	-2763.104185	100.633
1H	-2135.74334265	-2134.725341	-2134.874936	314.849
2H	-3663.11303010	-3662.250839	-3662.377524	266.632
7H	-6856.96612148	-6855.538721	-6855.726863	395.977
6H	-4815.71376240	-4814.688796	-4814.843236	325.047
8H	-3428.44642514	-3427.735169	-3427.847044	235.461
[(dpp-bian) ⁻¹ Na ⁺¹]	-1667.79445912	-1667.084844	-1667.198309	238.806
butadiene_s-cis	-234.609493459	-234.462008	-234.496619	72.846
2TS	-4815.68268470	-4814.659925	-4814.814991	326.364
1H_DME	-1977.27786527	-1976.401617	-1976.534478	279.629
4H	-3428.50412322	-3427.795394	-3427.906825	234.525
9H	-3663.16967834	-3662.309290	-3662.431951	258.160
10H	-2402.99563490	-2401.908334	-2402.057037	312.972
11H	-5040.63663056	-5039.584653	-5039.739011	324.873
13H	-8540.28507657	-8538.934638	-8539.136493	424.840
2H_Se-isomer	-4815.72874359	-4814.703749	-4814.858304	325.290
2H_Se-isomer2	-4815.72110146	-4814.695999	-4814.850540	325.258
2H_Se-isomer_TS	-4815.68871713	-4814.666130	-4814.822319	328.727
3H	-4740.52756135	-4739.508306	-4739.661343	322.094
3H_N-isomer	-4740.50111737	-4739.482224	-4739.634126	319.704
3TS	-4740.48852064	-4739.471922	-4739.628167	328.846
3H_N-isomer_TS	-4740.47188806	-4739.455389	-4739.609644	324.658

kcal/mol).	
Hypothetical transformation	ΔG
7H → 2 8H	20.6
7H + 2 butadiene_s-cis → 2 6H	-21.9
8H + butadiene_s-cis → 6H	-21.2
1H_DME + 2-MeOC ₆ H ₄ N=C=Se \rightarrow 2TS	13.6*
1H_DME + 2-MeOC ₆ H ₄ N=C=Se \rightarrow 2H	-4.1
4H + butadiene_s-cis \rightarrow 9H	-17.9
1H_DME + 2-MeC ₆ H ₄ N=C=Se \rightarrow 3H	-14.2
1H_DME + 2-MeC ₆ H ₄ N=C=Se \rightarrow 3TS	6.6*
1H_DME + 2-MeC ₆ H ₄ N=C=Se \rightarrow 3H_N-isomer	2.8
$1\text{H}_\text{DME} + 2\text{-MeC}_{6}\text{H}_{4}\text{N}\text{=}\text{C}\text{=}\text{Se} \rightarrow 3\text{H}_\text{N}\text{-}\text{isomer}_\text{TS}$	18.2*

Table S6. Calculated values of Gibbs free energies of hypothetical transformations (ΔG , in kcal/mol)

* In fact, this is activation barrier.

Table S7. Frontier molecular orbitals of model compounds

Table S8. Values of the density of all electrons $-\rho(\mathbf{r})$, Laplacian of electron density $-\nabla^2\rho(\mathbf{r})$ and appropriate λ_2 eigenvalues, energy density $-H_b$, potential energy density $-V(\mathbf{r})$, and Lagrangian kinetic energy $-G(\mathbf{r})$ (a.u.) at the bond critical points (3, -1), corresponding to six formal coordination bonds involving Na cation, intramolecular hydrogen bonds N–H…N and C–H…Se in the optimized equilibrium model structure **2H** as well as estimated strengths E_{int} (kcal/mol) of these noncovalent interactions.

Contact*	ρ(r)	$ abla^2 ho(\mathbf{r})$	λ ₂	H _b	V(r)	G(r)	E _{int} = -V(r)/2
Na1⋯O5 2.510 Å	0.013	0.072	-0.013	0.003	-0.013	0.015	4.1
Na1⋯O4 2.493 Å	0.013	0.074	-0.013	0.003	-0.013	0.016	4.1
Na1…O3 2.387 Å	0.017	0.100	-0.017	0.004	-0.017	0.021	5.3
Na1…N9 2.468 Å	0.018	0.093	-0.018	0.004	-0.016	0.020	5.0
Na1…N8 2.406 Å	0.020	0.112	-0.020	0.005	-0.019	0.023	6.0
Na1…N6 2.805 Å	0.008	0.038	-0.008	0.001	-0.007	0.008	2.2
N6–H7⋯N9 1.919 Å	0.035	0.116	-0.035	0.000	-0.030	0.030	9.4
C76–H77…Se2 2.756 Å	0.012	0.035	-0.012	0.001	-0.007	0.008	2.2
C88–H89…Se2 2.888 Å	0.011	0.038	-0.011	0.002	-0.006	0.008	1.9

* The numeration of atoms corresponds to their ordering in the attached xyz-file for optimized equilibrium model structure **2H**.

Figure S34. Molecular graph from QTAIM analysis of optimized equilibrium model structure **2H**. Bond critical points (3, -1) are shown in green.

Table S9. Values of the density of all electrons – $\rho(\mathbf{r})$, Laplacian of electron density – $\nabla^2 \rho(\mathbf{r})$ and appropriate λ_2 eigenvalues, energy density – H_b, potential energy density – V(\mathbf{r}), and Lagrangian kinetic energy – G(\mathbf{r}) (a.u.) at the bond critical points (3, –1), corresponding to Na…O and Na…N noncovalent attractive interactions in the optimized equilibrium model structure **2TS** as well as estimated strengths E_{int} (kcal/mol) of these noncovalent interactions.

Contact*	ρ(r)	$ abla^2 ho(\mathbf{r})$	λ ₂	H _b	V(r)	G(r)	E _{int} = -V(r)/2
Na1…O99 2.596 Å	0.010	0.055	-0.010	0.002	-0.010	0.012	3.1
Na1⋯O90 2.548 Å	0.012	0.064	-0.012	0.002	-0.012	0.014	3.8
Na1⋯O81 2.421 Å	0.016	0.091	-0.016	0.003	-0.016	0.019	5.0
Na1⋯N2 2.341 Å	0.024	0.137	-0.024	0.006	-0.023	0.029	7.2
Na1⋯N3 2.474 Å	0.018	0.091	-0.018	0.004	-0.016	0.019	5.0
N102…H4 2.099 Å	0.023	0.073	-0.023	0.000	-0.017	0.018	5.3
C8…Se98 3.348 Å	0.010	0.028	-0.010	0.001	-0.005	0.006	1.6
C97…C6 2.730 Å	0.023	0.042	-0.023	0.001	-0.009	0.010	2.8

The numeration of atoms corresponds to their ordering in the attached xyz-file for optimized equilibrium model structure **2TS**.

Figure S35. Molecular graph from QTAIM analysis of optimized equilibrium model structure **2TS**. Bond critical points (3, -1) are shown in green.

Table S10. Values of the density of all electrons $-\rho(\mathbf{r})$, Laplacian of electron density $-\nabla^2\rho(\mathbf{r})$ and appropriate λ_2 eigenvalues, energy density $-H_b$, potential energy density $-V(\mathbf{r})$, and Lagrangian kinetic energy $-G(\mathbf{r})$ (a.u.) at the bond critical points (3, -1), corresponding to Na…O and Na…N noncovalent attractive interactions in the optimized equilibrium model structure **2H_se-isomer** as well as estimated strengths E_{int} (kcal/mol) of these noncovalent interactions.

Contact*	ρ(r)	$ abla^2 ho(\mathbf{r})$	λ ₂	H _b	V(r)	G(r)	$E_{int} = -V(\mathbf{r})/2$
Na1…Se109 2.829 Å	0.017	0.073	-0.017	0.002	-0.013	0.016	4.1
H5…Se109 2.313 Å	0.029	0.069	-0.029	-0.002	-0.022	0.019	6.9
Na1⋯N4 2.556 Å	0.014	0.072	-0.014	0.003	-0.012	0.015	3.8
Na1…O3 2.374 Å	0.018	0.105	-0.018	0.004	-0.018	0.022	5.6
Na1…O2 2.380 Å	0.018	0.106	-0.018	0.004	-0.019	0.023	6.0
Na1⋯N6 2.380 Å	0.022	0.122	-0.022	0.005	-0.020	0.025	6.3

* The numeration of atoms corresponds to their ordering in the attached xyz-file for optimized

Figure S36. Molecular graph from QTAIM analysis of optimized equilibrium model structure **2H_Se-isomer_TS**. Bond critical points (3, -1) are shown in green.

Table S11. Values of the density of all electrons $-\rho(\mathbf{r})$, Laplacian of electron density $-\nabla^2\rho(\mathbf{r})$ and appropriate λ_2 eigenvalues, energy density $-H_b$, potential energy density $-V(\mathbf{r})$, and Lagrangian kinetic energy $-G(\mathbf{r})$ (a.u.) at the bond critical points (3, -1), corresponding to Na…O and Na…N noncovalent attractive interactions in the optimized equilibrium model structure **2H_Seisomer_TS** as well as estimated strengths E_{int} (kcal/mol) of these noncovalent interactions.

Contact*	ρ(r)	$ abla^2 ho(\mathbf{r})$	λ ₂	H _b	V(r)	G(r)	E _{int} = -V(r)/2
Na1…Se109 2.891 Å	0.014	0.060	-0.014	0.002	-0.011	0.013	3.5
H5…Se109 2.891 Å	0.022	0.056	-0.022	0.000	-0.015	0.014	4.7
Na1…N4 2.573 Å	0.014	0.067	-0.014	0.002	-0.012	0.014	3.8
Na1⋯O3 2.381 Å	0.018	0.104	-0.018	0.004	-0.018	0.022	5.6
Na1⋯O2 2.444 Å	0.016	0.086	-0.016	0.003	-0.015	0.018	4.7
Na1…N6 2.341 Å	0.024	0.137	-0.024	0.006	-0.023	0.028	7.2

* The numeration of atoms corresponds to their ordering in the attached xyz-file for optimized

equilibrium model structure 2H_Se-isomer_TS.

Figure S37. Molecular graph from QTAIM analysis of optimized equilibrium model structure **2H_se-isomer**. Bond critical points (3, -1) are shown in green.

Table S12. Values of the density of all electrons $-\rho(\mathbf{r})$, Laplacian of electron density $-\nabla^2\rho(\mathbf{r})$ and appropriate λ_2 eigenvalues, energy density $-H_b$, potential energy density $-V(\mathbf{r})$, and Lagrangian kinetic energy $-G(\mathbf{r})$ (a.u.) at the bond critical points (3, -1), corresponding to Na…O and Na…N noncovalent attractive interactions in the optimized equilibrium model structure **3H** as well as estimated strengths E_{int} (kcal/mol) of these noncovalent interactions.

Contact*	ρ(r)	$ abla^2 ho(\mathbf{r})$	λ ₂	H _b	V(r)	G(r)	$E_{int} = -V(\mathbf{r})/2$
Na1…Se109 2.830 Å	0.017	0.073	-0.017	0.002	-0.013	0.016	4.1
H5…Se109 2.310 Å	0.029	0.069	-0.029	-0.002	-0.022	0.019	6.9
Na1⋯N4 2.552 Å	0.014	0.073	-0.014	0.003	-0.013	0.015	4.1
Na1…O3 2.373 Å	0.018	0.105	-0.018	0.004	-0.018	0.022	5.6
Na1…O2 2.372 Å	0.019	0.109	-0.019	0.004	-0.019	0.023	6.0
Na1…N6 2.386 Å	0.021	0.120	-0.021	0.005	-0.020	0.025	6.3

* The numeration of atoms corresponds to their ordering in the attached xyz-file for optimized equilibrium model structure **3H**.

Figure S38. Molecular graph from QTAIM analysis of optimized equilibrium model structure **3H**. Bond critical points (3, -1) are shown in green.

Table S13. Values of the density of all electrons $-\rho(\mathbf{r})$, Laplacian of electron density $-\nabla^2\rho(\mathbf{r})$ and appropriate λ_2 eigenvalues, energy density $-H_b$, potential energy density $-V(\mathbf{r})$, and Lagrangian kinetic energy $-G(\mathbf{r})$ (a.u.) at the bond critical points (3, -1), corresponding to Na…O and Na…N noncovalent attractive interactions in the optimized equilibrium model structure **3Ts** as well as estimated strengths E_{int} (kcal/mol) of these noncovalent interactions.

Contact*	ρ(r)	$ abla^2 ho(\mathbf{r})$	λ ₂	H _b	V(r)	G(r)	E _{int} = -V(r)/2
Na1…Se109 3.069 Å	0.009	0.037	-0.009	0.002	-0.006	0.008	1.9
H5…Se109 2.426 Å	0.022	0.057	-0.022	0.000	-0.015	0.015	4.7
Na1⋯N4 2.483 Å	0.018	0.089	-0.018	0.003	-0.016	0.019	5.0
Na1…O3 2.399 Å	0.017	0.098	-0.017	0.004	-0.017	0.021	5.3
Na1⋯O2 2.384 Å	0.018	0.103	-0.018	0.004	-0.018	0.022	5.6
Na1…N6 2.307 Å	0.026	0.153	-0.026	0.006	-0.025	0.032	7.8
C96…C7 2.919 Å	0.016	0.031	-0.016	0.001	-0.005	0.007	1.6

* The numeration of atoms corresponds to their ordering in the attached xyz-file for optimized

Figure S39. Molecular graph from QTAIM analysis of optimized equilibrium model structure **3TS**. Bond critical points (3, -1) are shown in green.

Table S14. Values of the density of all electrons $-\rho(\mathbf{r})$, Laplacian of electron density $-\nabla^2\rho(\mathbf{r})$ and appropriate λ_2 eigenvalues, energy density $-H_b$, potential energy density $-V(\mathbf{r})$, and Lagrangian kinetic energy $-G(\mathbf{r})$ (a.u.) at the bond critical points (3, -1), corresponding to Na…O and Na…N noncovalent attractive interactions in the optimized equilibrium model structure **3H_N-isomer** as well as estimated strengths E_{int} (kcal/mol) of these noncovalent interactions.

Contact*	ρ(r)	$ abla^2 ho(\mathbf{r})$	λ ₂	H _b	V(r)	G(r)	E _{int} = -V(r)/2
Na1⋯O4 2.440 Å	0.016	0.087	-0.016	0.003	-0.016	0.019	5.0
Na1⋯O5 2.430 Å	0.016	0.089	-0.016	0.003	-0.016	0.019	5.0
Na1⋯N9 2.541 Å	0.016	0.076	-0.016	0.003	-0.014	0.016	4.4
Na1⋯N6 2.556 Å	0.014	0.070	-0.014	0.003	-0.012	0.015	3.8
Na1…N8 2.368 Å	0.022	0.126	-0.022	0.005	-0.021	0.026	6.6
H7…N9 1.915 Å	0.036	0.116	-0.036	-0.001	-0.031	0.030	9.7

* The numeration of atoms corresponds to their ordering in the attached xyz-file for optimized equilibrium model structure **3H_N-isomer**.

Figure S40. Molecular graph from QTAIM analysis of optimized equilibrium model structure **3H_N-isomer**. Bond critical points (3, -1) are shown in green.

Table S15. Values of the density of all electrons $-\rho(\mathbf{r})$, Laplacian of electron density $-\nabla^2\rho(\mathbf{r})$ and appropriate λ_2 eigenvalues, energy density $-H_b$, potential energy density $-V(\mathbf{r})$, and Lagrangian kinetic energy $-G(\mathbf{r})$ (a.u.) at the bond critical points (3, -1), corresponding to Na…O and Na…N noncovalent attractive interactions in the optimized equilibrium model structure **3H_N-isomer_TS** as well as estimated strengths E_{int} (kcal/mol) of these noncovalent interactions.

Contact*	ρ(r)	$ abla^2 ho(\mathbf{r})$	λ ₂	H _b	V(r)	G(r)	E _{int} = -V(r)/2
Na1⋯O4 2.382 Å	0.018	0.104	-0.018	0.004	-0.018	0.022	5.6
Na1⋯O5 2.402 Å	0.017	0.097	-0.017	0.004	-0.017	0.021	5.3
Na1⋯N6 2.441 Å	0.020	0.103	-0.020	0.004	-0.018	0.022	5.6
Na1⋯N8 2.313 Å	0.026	0.150	-0.026	0.006	-0.025	0.031	7.8
N9…H7 2.004 Å	0.029	0.084	-0.029	-0.001	-0.022	0.022	6.9
C86…C10 2.502 Å	0.035	0.049	-0.035	-0.002	-0.016	0.014	5.0

* The numeration of atoms corresponds to their ordering in the attached xyz-file for optimized

equilibrium model structure **3H_N-isomer_TS**.

Figure S41. Molecular graph from QTAIM analysis of optimized equilibrium model structure **3H_N-isomer_TS**. Bond critical points (3, -1) are shown in green.

Table S16. Values of the density of all electrons $-\rho(\mathbf{r})$, Laplacian of electron density $-\nabla^2\rho(\mathbf{r})$ and appropriate λ_2 eigenvalues, energy density $-H_b$, potential energy density $-V(\mathbf{r})$, and Lagrangian kinetic energy $-G(\mathbf{r})$ (a.u.) at the bond critical points (3, -1), corresponding to Na…O and Na…N noncovalent attractive interactions in the optimized equilibrium model structure **11H** as well as estimated strengths E_{int} (kcal/mol) of these noncovalent interactions.

Contact*	ρ (r)	$ abla^2 ho(\mathbf{r})$	λ ₂	H _b	V(r)	G(r)	E _{int} = – V(r)/2
Mg1⋯O3 2.426 Å	0.015	0.077	-0.015	0.002	-0.016	0.018	5.0
Mg1⋯N4 2.050 Å	0.046	0.307	-0.046	0.009	-0.059	0.068	18.5
Mg1⋯N5 2.402 Å	0.020	0.098	-0.020	0.002	-0.020	0.022	6.3
Mg1…N6 2.132 Å	0.039	0.240	-0.039	0.007	-0.046	0.053	14.4
Mg1…N7 2.322 Å	0.024	0.128	-0.024	0.004	-0.024	0.028	7.5
Mg1…N8 2.300 Å	0.025	0.137	-0.025	0.004	-0.025	0.030	7.8
Se2…H55 2.946 Å	0.009	0.024	-0.009	0.001	-0.004	0.005	1.3
Se2…H82 3.234 Å	0.006	0.016	-0.006	0.001	-0.002	0.003	0.6
Se2…H88 2.546 Å	0.019	0.056	-0.019	0.001	-0.012	0.013	3.8

^{*} The numeration of atoms corresponds to their ordering in the attached xyz-file for optimized equilibrium model structure **11H**.

Figure S42. Molecular graph from QTAIM analysis of optimized equilibrium model structure **11H**. Bond critical points (3, -1) are shown in green.

Figure S43. Energy profile (kcal/mol) for the reaction of **1H** + 2-MeOC₆H₄N=C=Se.

Figure S44. Energy profile (kcal/mol) for the reaction of $1H + 2-MeC_6H_4N=C=Se$.

Figure S45. Energy profile (kcal/mol) for the reaction of 1H + 2-MeOC₆H₄N=C=Se for formation of $3H_N$ -isomer.

References

- [1] I. L. Fedushkin, A. N. Lukoyanov, A. N. Tishkina, G. K. Fukin, K. A. Lyssenko, M. Hummert, *Chem. Eur. J.* **2010**, *16*, 7563-7571.
- [2] I. L. Fedushkin, V. A. Chudakova, G. K. Fukin, S. Dechert, M. Hummert, H. Schumann, *Russ. Chem. Bull.* **2004**, *53*, 2744-2750.
- [3] a) V. A. Dodonov, W. Chen, Y. Zhao, A. A. Skatova, P. W. Roesky, B. Wu, X. J. Yang, I. L. Fedushkin, *Chem. Eur. J.* **2019**, *25*, 8259-8267; b) W. Zhang, V. A. Dodonov, W. Chen, Y. Zhao, A. A. Skatova, I. L. Fedushkin, P. W. Roesky, B. Wu, X.-J. Yang, *Chem. Eur. J.* **2018**, *24*, 14994-15002.
- [4] I. L. Fedushkin, A. A. Skatova, V. A. Chudakova, G. K. Fukin, S. Dechert, H. Schumann, *Eur. J. Inorg. Chem.* **2003**, 2003, 3336-3346.
- [5] J. Zakrzewski, B. Huras, A. Kiełczewska, Synthesis 2016, 48, 85-96.
- [6] S. Stoll, A. Schweiger, J. Magn. Reson. 2006, 178, 42-55.
- [7] Bruker (2017) SAINT Data Reduction and Correction Program v. 8.38A, Bruker AXS, Madison, Wisconsin, USA.
- [8] Data Collection, Reduction and Correction Program, CrysAlisPro 1.171.40.67a Software Package, Rigaku OD (2019).
- [9] L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Crystallogr. 2015, 48, 3-10.
- [10] R. C. Clark, J. S. Reid, Acta Crystallographica Section A 1995, 51, 887-897.
- [11] G. Sheldrick, Acta Crystallographica Section A 2015, 71, 3-8.
- [12] G. Sheldrick, Acta Crystallographica Section C 2015, 71, 3-8.
- [13] H. Flack, Acta Crystallographica Section A 1983, 39, 876-881.
- [14] Guzei, I.A., Wendt, M. Program Solid-G, UW-Madison, WI, USA, 2004.
- [15] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339-341.
- a) W.-J. Chang, M. V. Kulkarni, C.-M. Sun, *RSC Adv.* 2015, *5*, 97113-97120; b) G. Chennakrishnareddy, G. Nagendra, H. P. Hemantha, U. Das, T. N. Guru Row, V. V. Sureshbabu, *Tetrahedron* 2010, *66*, 6718-6724; c) R. T. Yu, T. Rovis, *J. Am. Chem. Soc.* 2008, *130*, 3262-3263.
- [17] a) S. J. Grabowski, *Tetrahedron* 1998, *54*, 10153-10160; b) L. Lo Presti, R. Soave, R. Destro, *The Journal of Physical Chemistry B* 2006, *110*, 6405-6414.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, in Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT, 2010.

- [19] I. Mayer, P. Salvador, *Chem. Phys. Lett.* **2004**, 383, 368-375.
- [20] R. F. W. Bader, *Chem. Rev.* **1991**, *91*, 893-928.
- [21] T. Lu, F. Chen, *J. Comput. Chem.* **2012**, 33, 580-592.
- [22] T. A. Keith, AIMAII (version 17.11.14), TK Gristmill Software, Overland Park KS, USA, 2017 (aim.tkgristmill.com).
- [23] E. D. Glendening, C. R. Landis, F. Weinhold, *WIREs Computational Molecular Science* **2012**, *2*, 1-42.
- [24] a) V. N. Mikhaylov, V. N. Sorokoumov, K. A. Korvinson, A. S. Novikov, I. A. Balova, *Organometallics* 2016, 35, 1684-1697; b) T. V. Serebryanskaya, A. S. Novikov, P. V. Gushchin, M. Haukka, R. E. Asfin, P. M. Tolstoy, V. Y. Kukushkin, *Physical Chemistry Chemical Physics* 2016, 18, 14104-14112; c) K. I. Kulish, A. S. Novikov, P. M. Tolstoy, D. S. Bolotin, N. A. Bokach, A. A. Zolotarev, V. Y. Kukushkin, *J. Mol. Struct.* 2016, 1111, 142-150; d) A. A. Melekhova, A. S. Novikov, K. V. Luzyanin, N. A. Bokach, G. L. Starova, V. V. Gurzhiy, V. Y. Kukushkin, *Inorg. Chim. Acta* 2015, 434, 31-36; e) A. S. Novikov, M. L. Kuznetsov, A. J. L. Pombeiro, *Chem. Eur. J.* 2013, 19, 2874-2888.
- [25] E. Espinosa, I. Alkorta, J. Elguero, E. Molins, *The Journal of Chemical Physics* **2002**, *117*, 5529-5542.
- [26] E. Espinosa, E. Molins, C. Lecomte, *Chem. Phys. Lett.* **1998**, 285, 170-173.