Supporting Information for

Nearly one-fold enhancement in photoluminescence quantum

yield for isostructural zero-dimensional hybrid antimony(III)

bromides by supramolecular interactions adjustment

Ying-Chen Peng,^{a,c} Sheng-Hua Zhou,^{a,c} Jian-Ce Jin,^{a,c} Qi Gu,^{a,c} Ting-Hui Zhuang,^a Liao-Kuo Gong,^a Ze-Ping Wang,^a Ke-Zhao Du,^{b*} Xiao-Ying Huang^{a,c*}

^a State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.

^b College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.

^c University of Chinese Academy of Sciences, Beijing, 100049, China.

	1·EtOH-Br	1·MeCN-Br		
CCDC number	218160	218161		
Empirical formula	$C_{42}H_{46}Br_5OP_2Sb$	$C_{42}H_{43}Br_5NP_2Sb$		
Formula weight	1150.03	1145.01		
Temperature/K	293(2)	295(2)		
Wavelength/Å	0.71073	0.71073		
Crystal system	Monoclinic	Monoclinic		
Space group	C2/c	C2/c		
a/Å	22.569(2)	22.833(2)		
b/Å	16.6933(16)	16.9477(14)		
c/Å	13.6310(12)	13.4634(12)		
$\alpha^{\prime \circ}$	90	90		
$eta /^{\circ}$	120.949(8)	121.633(8)		
$\gamma/^{\circ}$	90	90		
Volume/Å ³	4404.4(8)	4435.9(7)		
Ζ	4	4		
$ ho_{ m calc}~ m g/cm^3$	1.734	1.715		
Absorption coefficient/mm ⁻¹	5.266	5.227		
<i>F</i> (000)	2248	2232		
Crystal size/mm ³	0.600×0.400×0.400	0.200×0.180×0.150		
Theta range for data	2 440 20 702	2 005 20 015		
collection /°	2.440-29.783	2.095-29.815		
Limiting indiago	-31<= <i>h</i> <=28, -23<=k<=19, -	-29<= <i>h</i> <=31, -23<= <i>k</i> <=23, -		
Limiting marces	18<= <i>l</i> <=17	16<= <i>l</i> <=17		
Reflections collected/ unique	$12260/5226 [R_{int} = 0.0473]$	$25127/5748 [R_{int} = 0.0523]$		
Completeness to theta	25.242, 99.9 %	25.242, 100.0 %		
Abcomption composition	Semi-empirical from	Semi-empirical from		
Absorption correction	equivalents	equivalents		
Max. transmission	1.00000	1.00000		
Min. transmission	0.27236	0.19319		
Definement method	Full-matrix least-squares on	Full-matrix least-squares on		
Kennement method	F^2	F^2		
Data/restraints/parameters	5226/2/248	5748/0/247		
Goodness-of-fit on F^2	1.004	1.015		
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0435, wR_2 = 0.0769$	$R_1 = 0.0367, wR_2 = 0.0679$		
Final R indexes [all data]	$R_1 = 0.0776, wR_2 = 0.0903$	$R_1 = 0.0866, wR_2 = 0.0845$		
Extinction coefficient	0.00106(5)	n/a		
Largest diff. peak and hole/e	0.760/ 0.014	0.614/ 0.780		
Å-3	0./07/-0.714	0.014/-0./07		

Table S1. Crystal data and structure refinement for [EtPPh₃]₂[SbBr₅]·EtOH (1·EtOH-Br) at 293 K and [EtPPh₃]₂[SbBr₅]·MeCN (1·MeCN-Br) at 295 K.

 $[\mathbf{a}] R_1 = \sum \|F_{o}| - |F_{c}|| / \sum |F_{o}|, [\mathbf{b}] wR_2 = [\sum w(F_{o}^2 - F_{c}^2)^2 / \sum w(F_{o}^2)^2]^{1/2}$

Figure S1. *ORTEP* drawings (50% ellipsoid probability) of the asymmetric units of [EtPPh₃]₂[SbBr₅]·EtOH (**1·EtOH-Br**) at 293 K (**a**) and [EtPPh₃]₂[SbBr₅]·MeCN (**1·MeCN-Br**) at 295 K (**b**).

Table S2. Selected bond lengths (Å) and bond angles (°) for [EtPPh₃]₂[SbBr₅]·EtOH (**1**·EtOH-Br) at 293 K and [EtPPh₃]₂[SbBr₅]·MeCN (**1**·MeCN-Br) at 295 K.

1·EtOH-Br		1 · MeCN-Br	
Sb(1)-Br(1)	2.5174(8)	Sb(1)-Br(1)	2.5196(7)
Sb(1)-Br(3)#1	2.7716(5)	Sb(1)-Br(3)	2.7643(5)
Sb(1)-Br(3)	2.7717(5)	Sb(1)-Br(3)#1	2.7644(5)
Sb(1)-Br(2)	2.7769(5)	Sb(1)-Br(2)#1	2.7753(5)
Sb(1)-Br(2)#1	2.7770(5)	Sb(1)-Br(2)	2.7754(5)
Br(1)-Sb(1)-Br(3)#1	91.620(13)	Br(1)-Sb(1)-Br(3)	90.797(12)
Br(1)-Sb(1)-Br(3)	91.619(13)	Br(1)-Sb(1)-Br(3)#1	90.797(12)
Br(3)#1-Sb(1)-Br(3)	176.76(3)	Br(3)-Sb(1)-Br(3)#1	178.41(2)
Br(1)-Sb(1)-Br(2)	88.363(12)	Br(1)-Sb(1)-Br(2)#1	89.004(11)
Br(3)#1-Sb(1)-Br(2)	91.329(17)	Br(3)-Sb(1)-Br(2)#1	91.453(16)
Br(3)-Sb(1)-Br(2)	88.764(17)	Br(3)#1-Sb(1)-Br(2)#1	88.576(16)
Br(1)-Sb(1)-Br(2)#1	88.362(12)	Br(1)-Sb(1)-Br(2)	89.003(11)
Br(3)#1-Sb(1)-Br(2)#1	88.764(17)	Br(3)-Sb(1)-Br(2)	88.575(16)
Br(3)-Sb(1)-Br(2)#1	91.328(17)	Br(3)#1-Sb(1)-Br(2)	91.451(17)
Br(2)-Sb(1)-Br(2)#1	176.73(2)	Br(2)#1-Sb(1)-Br(2)	178.01(2)

Symmetry transformations used to generate equivalent atoms: #1 - x + 1, y, -z + 3/2

Figure S2. Simulated and experimental (including freshly prepared samples, samples staying for 30 days, samples after heating for desolvation and solvent-loss samples after staying for 48 hours) PXRD patterns of **1**•**EtOH-Br** and **1**•**MeCN-Br** at RT.

Figure S3. TG curves of 1. EtOH-Br (a) and 1. MeCN-Br (b).

Figure S4. TG curves of 1-Br from heating 1·EtOH-Br (a) and 1·MeCN-Br (b). TG curves for the 1-Br samples from heating 1·EtOH-Br (c) and 1·MeCN-Br (d) being re-tested after 48 hours in ventilation closet.

Figure S5. The Commission Internationale del'Eclairage (CIE) (1931) chromaticity coordinates of **1**•**EtOH-Br** (**a**) and **1**•**MeCN-Br** (**b**).

Figure S6. PLQY of 1. EtOH-Br and 1. MeCN-Br.

Table S3. The fitting parameters in the function based on the time-resolved PL spectra data of 1·EtOH-Br and 1·MeCN-Br.

	1·EtOH-Br	1·MeCN-Br
Function	$I = A_1 exp(-t/T_1) + A_2 exp(-t/T_2)$	$+ y_0$
A_1	0.88356 ± 0.01532	0.90798 ± 0.06392
A_2	0.02505 ± 0.0153	0.11026 ± 0.06443
T_1	0.41182 ± 0.00486	0.2398 ± 0.00715
T_2	1.18908 ± 0.45274	0.46035 ± 0.10426
\mathcal{Y}_0	$6.08584 \text{E-4} \pm 6060066 \text{E-4}$	$4.91358\text{E-}4 \pm 6.1821\text{E-}4$
Adj. R Square	0.99778	0.99804

Figure S7. UV-vis spectra of 1-Br from heating 1. EtOH-Br and 1. MeCN-Br, respectively.

Figure S8. Steady-state PLE and PL spectra of 1-Br (emission peak at 660 nm) under 419 nm excitation at RT (a). The CIE chromaticity coordinate of 1-Br (b). Time-resolved PL decay curves of 1-Br at RT (c). PLQY of 1-Br (d).

Table S4. The fitting parameters in the function based on the time-resolved PL spectra data of 1

 Br.

	1-Br
Function	
A_1	0.37742 ± 0.0753
A_2	0.59393 ± 0.0759
T_1	0.23815 ± 0.01537
T_2	0.41233 ± 0.01364
\mathcal{Y}_0	$0.00104 \pm 1.836\text{E-4}$
Adj. R Square	0.99782

Figure S9. The steady-state PLE and PL spectra of **1**•**EtOH-Cl** (emission peak at 597 nm) and **1**•**MeCN-Cl** (emission peak at 634 nm) under excitation of 350 and 365 nm at RT, respectively.

Figure S10. PLQY of 1. EtOH-Cl and 1. MeCN-Cl.

Figure S11. The XEL spectra of 1. EtOH-Cl and 1. MeCN-Cl.

Figure S12. The first Brillouin zone with high symmetry points of 1. MeCN-Br.

Figure S13. Diagrams of supramolecular structures of **1**•**EtOH-Br** (**a**) and **1**•**MeCN-Br** (**b**). Black ball, Sb; light orange ball, Br; blue ball, N; red ball, O; dark gray ball, C; light gray ball, H.

Table	S5.	Hydrogen	bonds	for	[EtPPh ₃] ₂ [SbBr ₅]·EtOH	(1·EtOH-Br)	at	293	K	and
[EtPPh	3]2[St	Br ₅]·MeCN	(1·MeC	CN-B	r) at 295 K.					

)				
D-H···A	d(D-H)	$d(H \cdots A)$	$d(D \cdots A)$	<(DHA)	
1·EtOH-Br					
C(2)-H(2)···Br(2)#2	0.93	3.03	3.929(5)	163.1	
C(18)-H(18)····Br(2)#3	0.93	2.97	3.876(5)	163.7	
C(19)-H(19A)····Br(2)#2	0.97	2.96	3.786(4)	144.1	
$O(1^a)-H(1A^a)\cdots Br(3)$	0.82	2.81	3.498(9)	143.4	
Symmetry transformations used to g	enerate equiva	lent atoms: #1 ·	x+1, y, -z+3/2, z	#2 <i>x</i> , - <i>y</i> +1, <i>z</i> -	
1/2, #3 - <i>x</i> +3/2, <i>y</i> +1/2, - <i>z</i> +3/2					
1 · MeCN-Br					
C(2)-H(2)···Br(2)#2	0.93	3.02	3.915(4)	161.9	
C(6)-H(6)…N(1^a)#3	0.93	2.63	3.191(14)	119.3	
C(18)-H(18)Br(2)#4	0.93	3.00	3.905(4)	164.5	
C(19)-H(19A)····Br(2)#2	0.97	3.04	3.860(4)	142.7	
C(22^a)-H(22B^a)Br(1)#4	0.96	2.89	3.689(16)	141.5	
Symmetry transformations used to generate equivalent atoms: #1 -x+1, y, -z+3/2, #2 x+1/2, y-					
1/2, z, #3 -x+3/2, -y+3/2, -z+1, #4 -x+1, -y+1, -z+1, #5 -x+1, y, -z+1/2					

Figure S14. Hydrogen bonds of **1**•**EtOH-Cl** (**a**) and **1**•**MeCN-Cl** (**b**). Black ball, Sb; green ball, Cl; blue ball, N; red ball, O; dark gray ball, C; light gray ball, H. Turquoise dotted lines represent hydrogen bonds.

Table S6. Hydrogen	bonds for 1. EtOH-Cl at	t 293 K and 1·MeCN-Cl at 295 K.
--------------------	-------------------------	---------------------------------

, , ,						
D-H···A	d(D-H)	$d(H \cdots A)$	$d(D \cdots A)$	<(DHA)		
1·EtOH-Cl						
C(2)-H(2)····Cl(2)#2	0.93	2.89	3.789(4)	162.7		
C(18)-H(18)····Cl(2)#3	0.93	2.83	3.729(4)	162.2		
C(19)-H(19A)····Cl(2)#2	0.97	2.85	3.670(4)	142.2		
$O(1^a)-H(1A^a)\cdots Cl(3)$	0.85	2.71	3.440(8)	144.5		
Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z, #2 -x+2,-y+1,-						
<i>z</i> +1						
1 · MeCN-Cl						
C(2)-H(2)····Cl(2)#2	0.93	2.90	3.803(3)	163.1		
C(6)-H(6)…N(1^a)#3	0.93	2.67	3.190(13)	116.2		
C(18)-H(18)····Cl(2)#4	0.93	2.86	3.761(3)	163.7		
C(19)-H(19A)····Cl(2)#2	0.97	2.93	3.737(3)	141.4		
Symmetry transformations used to generate equivalent atoms: $#1 - x + 1, y, -z + 3/2, #2 + 1/2, y$ -						
1/2, <i>z</i> , #3 - <i>x</i> +3/2,- <i>y</i> +3/2,- <i>z</i> +1,#4 - <i>x</i> +1,- <i>y</i> +1,- <i>z</i> +1						

Figure S15. The Hirshfeld d_{norm} surfaces of inorganic part with all interactions for 1·EtOH-Br (a)

and $1 \cdot MeCN-Br(b)$. The highlights in red represent closer distances and stronger interactions while white and blue highlights refer to longer distances and weak interactions.

Figure S16. The 2D fingerprint plots for 1·EtOH-Br and 1·MeCN-Br. All weak interactions for 1·EtOH-Br (a) and 1·MeCN-Br (c) are 100%. The contribution of Br…H hydrogen bonds is 95.2% and 93.3% for 1·EtOH-Br (b) and 1·MeCN-Br (d), respectively.

Figure S17. The Hirshfeld d_{norm} surfaces of inorganic part with all interactions for 1·EtOH-Cl (a) and 1·MeCN-Cl (b). The highlights in red represent closer distances and stronger interactions while white and blue highlights refer to longer distances and weak interactions.

Figure S18. The 2D fingerprint plots for 1·EtOH-Cl and 1·MeCN-Cl. All weak interactions for 1·EtOH-Cl (a) and 1·MeCN-Cl (c) are 100%. The contribution of Cl…H hydrogen bonds is 95.3% and 94.3% for 1·EtOH-Cl (b) and 1·MeCN-Cl (d), respectively.