Electronic Supplementary Information

Photo-oxidation of pinic acid in the aqueous phase: a mechanistic investigation under acidic and basic pH conditions

Jéssica Vejdani Amorim,^a Xinyang Guo,^a Tania Gautam,^a Rongyan Fang,^a Christian Fotang,^a Florence J. Williams,^b and Ran Zhao^{a*}

^a Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton,

AB, T6G 2G2, CA, rz@ualberta.ca

^b Department of Chemistry, University of Iowa, W285 Chemistry Building, Iowa City, Iowa, 52242-1294, USA

Quantification of Initial PA

The initial concentration of PA was quantified using proton nuclear magnetic resonance (¹H NMR) spectroscopy. The PA stock solution (in H₂O) was diluted by a factor of ten into D₂O, with dimethyl sulfoxide (DMSO, 1.0 mM) added as an internal standard. By relating the peak integration of PA to that of DMSO, the concentration of PA can be determined. The accuracy of quantitative ¹H NMR can be within a few percent. A similar approach to the current method has been utilized by a previous study to quantify reaction products of carbonyl compounds.¹ Dilution in D₂O was necessary to minimize the impact of the H₂O peak appearing at approximately 4.8 ppm.

The ¹H NMR data were acquired on a 700 MHz system equipped with a cold probe and an Agilent 7620 Sample Handling Robot. Simple presat was used for water suppression. Two seconds of saturation were allowed during the relaxation delay before issuing the pulse command, with 20 s relaxation delay and 2 s acquisition (total relaxation time of 22 s). Data were processed with 0.25 Hz of line broadening added to the FID to enhance signal to noise and a digital filter to further remove the residual water peak prior to Fourier transform. The relaxation delay and water suppression were both optimized prior to data acquisition. The spectrum is referenced to DMSO, set to 2.71 ppm. The recorded ¹H NMR spectrum is shown in Fig. S1.

Fig. S1. ¹H NMR spectrum of the PA stock solution diluted in D_2O . DMSO was added as an internal standard. The chemical shifts are shown on the top of the peaks, while the peak integrations are indicated below the x-axis.

DMSO appears as a singlet peak with an integration of 15.74. While numerous PA peaks are detected, we focus on the singlet peak at 1.2 ppm, which is attributed to one of the two (-CH₃) groups on PA. The integration of this peak is 3.00. The concentration of PA can be calculated by Eq. S1:

$$[PA] = [DMSO] x \frac{\frac{I_{PA}}{n_{H, PA}}}{\frac{I_{DMSO}}{n_{H, DMSO}}}$$
 Eq.S1

[DMSO] is the concentration of DMSO added to the solution (1.0 mM). I_{PA} and I_{DMSO} are the integration of peaks for PA and DMSO, respectively. $n_{H,PA}$ and $n_{H,DMSO}$ are numbers of protons responsible for the peaks of interest. In this case, $n_{H,PA} = 3$ (-CH₃ group), and $n_{H,DMSO} = 6$. Note that all the six protons on DMSO are responsible for its singlet peak. Using Eqn S1, the concentration of PA in the solution was calculated to be 0.38 mM, which is translated into 3.8 mM in the PA stock solution. This concentration is used throughout this work for yield determination. The 1H NMR also indicates the absence of other impurities in the stock

solution, except for a peak attributed to formic acid (8.421 ppm). The concentration of formic acid impurities is estimated to be 0.32 mM and is likely present in the D_2O we used to dilute the sample.

Offline (-)ESI-LC-MS for Elemental Analysis of CPA Oxidation Products

MW (g/mol)	[M–H] [.]	Elemental Composition
188	187	$C_{8}H_{12}O_{5}$
198	197	$C_{\scriptscriptstyle 10}H_{\scriptscriptstyle 14}O_{\scriptscriptstyle 4}$
200	199	$C_{10}H_{16}O_{4}$
204	203	$C_{8}H_{12}O_{6}$
214	213	$C_{10}H_{14}O_5$
216	215	$C_{10}H_{16}O_{5}$
232	231	$C_{10}H_{16}O_{6}$
234	233	$C_{10}H_{18}O_6$

Table S1. List of Major CPA OH-oxidation Peaks Detected by (-)ESI–LC–MS.²

Online PILS–MS Analysis of PA

Table S2. Online PILS–MS Instrument's Parameters for the Analysis of PA OH-Oxidation.

Injection flow rate	~18 µL/min	ESI- Capillary voltage	-40 V
Nebulizer gas (air) pressure	20 psi	ESI- Detector Voltage	1270 V
Drying gas (N ₂) pressure	20 psi	ESI+ Shield voltage	+600 V
Drying gas temperature	200°C	ESI+ Capillary voltage	100 V
API housing temperature	50°C	ESI+ Detector voltage	1270 V
Manifold temperature	40°C	ESI- Needle voltage	–3700 V
CID gas	Ar	ESI- Shield voltage	–600 V
CID gas pressure	1.50 mTorr	ESI+ Needle voltage	+4000 V

MS/MS for Structural Confirmation of PA Oxidation Products

The fragmentation spectra of the oxidation products of m/z 155, m/z 187, and m/z 215 are shown in Fig. S2. The product detected as m/z 155 produced an intense fragmentation ion at m/z 111 due to CO₂ elimination (-44 au), which indicates the presence of a carboxylic group. The m/z 187 fragmentation spectrum produced ions of m/z 169 (neutral loss of H₂O) and m/z 143 (CO₂ elimination), and m/z 125 (-62 au, neutral loss of CO₂ and H₂O). By changing the fragmentor voltage from 10 to 20 eV, a fragment ion of m/z 99 (-88 au) was observed, representing the loss of two carboxylic acid functional groups. The m/z 215 fragmentation spectrum produced ions of m/z 197, m/z 173, and m/z 127, representing the loss of H₂O, CO₂ and the presence of up to two carboxylic groups, respectively.

Fig. S2. MS/MS fragmentation spectra of PA oxidation products under uncontrolled pH conditions.

Structures of Surrogates Used for NPA and MBTCA

Fig. S3. Structure of PA oxidation products (a) NPA, and (b) MBTCA, and their respective surrogate compounds (c) PA, and (d) TCA.

References

- Zhao, R.; Lee, A. K. Y.; Soong, R.; Simpson, A. J.; Abbatt, J. P. D. Formation of Aqueous-Phase α-Hydroxyhydroperoxides (α-HHP): Potential Atmospheric Impacts. *Atmospheric Chem. Phys.* 2013, 13 (12), 5857–5872.
- (2) Witkowski, B.; Gierczak, T. Cis-Pinonic Acid Oxidation by Hydroxyl Radicals in the Aqueous Phase under Acidic and Basic Conditions: Kinetics and Mechanism. *Environ. Sci. Technol.* **2017**, *51* (17), 9765–9773.