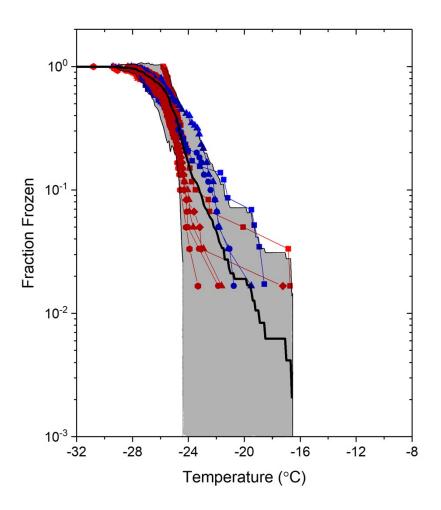
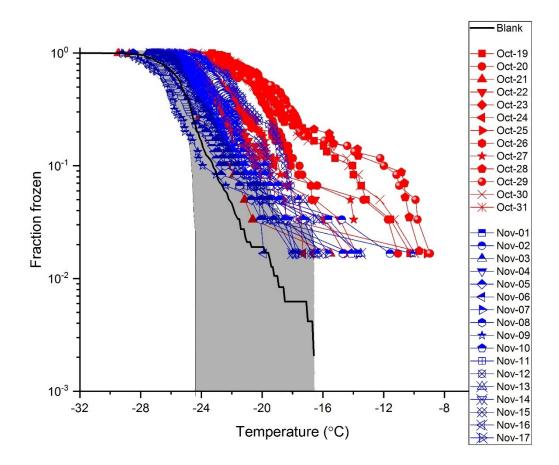

## **Supporting Information**

Jingwei Yun<sup>1</sup>, Erin Evoy<sup>1</sup>, Soleil Worthy<sup>1</sup>, Melody Fraser<sup>2</sup>, Daniel Veber<sup>2</sup>, Andrew Platt<sup>2</sup>, Kevin Rawlings<sup>2</sup>, Sangeeta Sharma<sup>2</sup>, Richard Leaitch<sup>2</sup>, Allan Bertram<sup>1</sup>


<sup>1</sup>Department of Chemistry, University of British Columbia, Vancouver, BC, V6T1Z1, Canada

<sup>2</sup>Climate Research Division, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada


The supporting information file includes 12 pages, 5 tables, and 4 figures.



**Figure S1.** The time series of meteorology data at Alert during the campaign. Panel (a): Precipitation. Panel (b): Ambient temperature. Panel (c): Relative humidity. Panel (d): wind speed. Panel (e): wind direction. The meteorology data were retrieved from the Environment Canada website, <a href="http://climate.weather.gc.ca/">http://climate.weather.gc.ca/</a>.



**Figure S2.** The fraction of frozen droplets as a function of temperature for the blanks (8 trials). Red symbols (5 trials) correspond to extracted solutions from the clean filters using Milli-Q water and blue symbols (3 trials) correspond to  $0.05 \text{ M} (\text{NH}_4)_2\text{SO}_4$  solutions prepared with Milli-Q water. The freezing data for the  $0.05 \text{ M} (\text{NH}_4)_2\text{SO}_4$  trials was corrected for freezing point depression caused by the salt using the method described in Section 2.3 of the main text. The black solid line is the average of the 8 trials and the shaded region corresponds to two times the standard deviations of the blanks from the 8 trials.



**Figure S3.** The fraction of frozen droplets for the 30 samples collected in the Arctic during October and November. Also included is the average of the blanks and two times the standard deviations of the blanks from the 8 trials. The black solid line is the average of the 8 trials and the shaded region corresponds to two times the standard deviations of the blanks from the 8 trials.

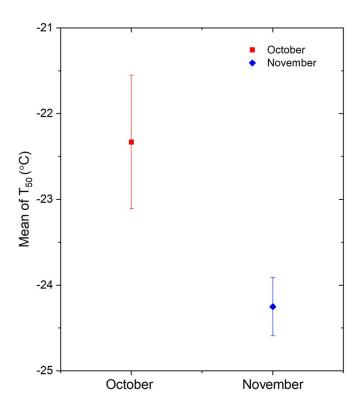



Figure S4. The mean of  $T_{50}$ , the freezing temperature at which 50% of droplets froze, for October samples and November samples. The error bars are the 83% confidence intervals. Two datasets are statistically different the 95% confidence level if their 83% confidence intervals do not overlap (Goldstein and Healy, 2009).

**Table S1.** Compilation of previous studies of the effect of  $^{NH}_{4}^{+}$  at dilute concentrations ( $\leq 0.1$  M) on the freezing properties of different types of mineral dust INPs. In this table,  $^{\Delta T}_{50}$  is the median freezing temperature,  $^{\Delta T}_{onset}$  is the onset freezing temperature,  $^{n}_{m}$  is the number of ice nucleating active sites per gram of materials, and  $^{n}_{s}$  is the number of ice nucleating active sites per surface area of materials.

| INP type             | Freezing             | Ammonium salt                       | Observations                                                                                                                          | References                       |
|----------------------|----------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|                      | temperature<br>range | concentrations                      |                                                                                                                                       |                                  |
| Amorphous<br>silica  | ~ -35 °C             | 0.004 M and<br>0.075 M              | No significant change                                                                                                                 | Kumar et al.<br>(2019a)          |
| Arizona Test         | -20 °C to -<br>10 °C | 0.05 M                              | $\Delta T_{50} \cong +6 \ ^{\circ}\mathrm{C}$                                                                                         | Worthy et al.                    |
| Dust<br>Kaolinite    | -25 °C to -          | 0.05 M                              | $\frac{n_m \text{ increased by a factor of } \sim 20}{\Delta T_{50} \simeq +8 \text{ °C}}$                                            | (2021)<br>Worthy et al.          |
| Raomine              | 10 °C                | 0.05 14                             | = 0 0                                                                                                                                 | (2021)                           |
| K-rich feldspar      | -15 °C to -5<br>°C   | 0.05 M                              | $\frac{n_m \text{ increased by a factor of } \sim 30}{\Delta T_{50} \cong +3 \text{ °C}}$                                             | Worthy et al. (2021)             |
| Montmorillonite      | -15 °C to -5         | 0.05 M                              | $\frac{n_m \text{ increased by a factor of } \sim 10}{\Delta T_{50} \simeq +6 \text{ °C}}$                                            | Worthy et al.                    |
|                      | °C                   |                                     | $n_m$ increased by a factor of ~ 10                                                                                                   | (2021)                           |
| Feldspars            | -35 °C to -<br>20 °C | 7.6 ×10 <sup>-6</sup> M to<br>0.1 M | $\Delta T_{onset} = +1  {}^{\circ}\text{C} \text{ to } +6  {}^{\circ}\text{C}$                                                        | Kumar et al.<br>(2018,<br>2019b) |
| Gibbsite             | <sup>a</sup> N/A     | 0.004 M and<br>0.04 M               | No significant change                                                                                                                 | Kumar et al.,<br>(2019b)         |
| Kaolinite            | -35 °C to -<br>25 °C | 0.00076 M to<br>0.1 M               | $\Delta T_{onset} = +1 \ ^{\circ}C \ \text{to} +3 \ ^{\circ}C$                                                                        | Kumar et al.<br>(2019b)          |
| Micas                | ~ -32 °C             | 0.004 M to 0.1<br>M                 | Ratio of heterogeneous freezing<br>signal to homogeneous freezing<br>signal increased;                                                | Kumar et al.<br>(2019b)          |
| Quartz               | ~ -25 °C             | 0.004 M to 0.1<br>M                 | Ratio of heterogeneous freezing<br>signal to homogeneous freezing<br>signal increased;<br>No significant change in $\Delta T_{onset}$ | Kumar et al.<br>(2019a)          |
| Amorphous<br>silica  | -20 °C to -<br>10 °C | 0.015 M                             | No significant change                                                                                                                 | Whale et al. (2018)              |
| Arizona Test<br>Dust | -20 °C to -5<br>°C   | 0.015 M                             | No significant change                                                                                                                 | Whale et al.<br>(2018)           |
| Feldspars            | -20 °C to -5<br>°C   | 0.00015 M to<br>0.015 M             | $\Delta T_{50} = +1 \ ^{\circ}\text{C} \text{ to } +4 \ ^{\circ}\text{C};$<br>$n_s \text{ increased by a factor of } \sim 10$         | Whale et al.<br>(2018)           |
| Quartz               | -20 °C to -<br>15 °C | 0.015 M                             | $\Delta T_{50} \cong +1.5 \text{ °C}$ $n_s \text{ increased by a factor of ~5}$                                                       | Whale et al. (2018)              |

<sup>a</sup>Not Applicable

Observations INP type Freezing Ammonium salt References temperature concentration range Fungi -20 °C to -10 °C 0.05 M No significant change Worthy et al. (2021)-25 °C to -10 °C No significant change Humic 0.015 M to 0.05 M Whale et al. Substances (2018); Worthy et al., (2021)-10 °C to -5 °C 0.01 M to 0.1 M No significant change Reischel and Leaf-derived INPs Vali (1975) -10 °C to 0 °C 0.05 M No significant change P. syringae Worthy et al. (2021) -20 °C to -15 °C Sea-ice diatom 0.05 M No significant change Worthy et al. exudates (2021)-25 °C to -5 °C Worthy et al. Sea-surface 0.05 M No significant change microlayer (2021) samples -15 °C to -5 °C No significant change Koop and Snowmax  $\leq 0.1 \text{ M}$ Zobrist (2009); Worthy et al. (2021) -15 °C to -5 °C 0.05 M A small decrease in X. campestris Worthy et al.  $\Delta T_{50} \cong -0.43 \pm 0.19$ (2021)°C)

**Table S2.** Compilation of previous studies of the effect of  $^{NH_{4}^{+}}$  at dilute concentrations (< 0.1 M) on the freezing properties of different types of non-mineral dust INPs.  $^{\Delta T_{50}}$  is the median freezing temperature.

| <b>Table S3.</b> Relevant information on the previous measurements of INP concentrations in the Arctic from |
|-------------------------------------------------------------------------------------------------------------|
| ground-based or ship-based platforms shown in Fig.2.                                                        |

| Study                      | Platform | Location                    | Sampling time              |
|----------------------------|----------|-----------------------------|----------------------------|
| Radke et al. (1976)        | Ground   | Utqiaģvik, Alaska, USA      | March, 1970                |
| Fountain and Ohtake        | Ground   | Utqiaģvik, Alaska, USA      | August, 1978 – April, 1979 |
| (1985)                     |          |                             |                            |
| Bigg (1996)                | Ship     | Arctic Ocean                | August – October, 1991     |
| Bigg and Leck (2001)       | Ship     | Arctic Ocean                | July – September, 1996     |
| Conen et al. (2016)        | Ground   | Finnmark, Norway            | July, 2015                 |
| Mason et al. (2016)        | Ground   | Alert, Nunavut, Canada      | March – July, 2014         |
| Creamean et al. (2018)     | Ground   | Oliktok Point, Alaska, USA  | March – May, 2017          |
| Si et al. (2019)           | Ground   | Alert, Nunavut, Canada      | March, 2016                |
| Irish et al. (2019)        | Ship     | Arctic Ocean                | July – August, 2014        |
| Šantl-Temkiv et al. (2019) | Ground   | Villum, Greenland           | August, 2016               |
| Wex et al. (2019)          | Ground   | Alert, Nunavut, Canada      | April, 2015 – April, 2016  |
| Wex et al. (2019)          | Ground   | Utqiaġvik, Alaska, USA      | June, 2012 – June, 2013    |
| Wex et al. (2019)          | Ground   | Villum, Greenland           | January, 2015 – November,  |
|                            |          |                             | 2015                       |
| Wex et al. (2019)          | Ground   | Ny-Ålesund, Norway          | March, 2012, - September,  |
|                            |          |                             | 2012                       |
| Creamean et al. (2019)     | Ship     | Bering Strait, Arctic Ocean | August – September, 2017   |
| Welti et al. (2020)        | Ship     | Arctic Ocean                | July – August, 2001        |
| Hartmann et al. (2020)     | Ship     | Arctic Ocean                | May – July, 2017           |
| Tobo et al. (2019)         | Ground   | Ny-Ålesund, Norway          | July, 2016                 |
| Tobo et al. (2019)         | Ground   | Ny-Ålesund, Norway          | March, 2017                |
| Rinaldi et al. (2021)      | Ground   | Ny-Ålesund, Norway          | April – August, 2018       |

| Collection date of        | Residence over       | Residence over | Residence over | Snow (s) |
|---------------------------|----------------------|----------------|----------------|----------|
| the samples               | land (s)             | sea ice (s)    | Sea (s)        |          |
| October 19 <sup>th</sup>  | 513.33               | 15078.3        | 7204.04        | 14894.8  |
| October 20 <sup>th</sup>  | 1133.96              | 46781.1        | 4055.8         | 24232.5  |
| October 21st              | 154.79               | 76579.4        | 5886.24        | 29009.1  |
| October 22 <sup>nd</sup>  | 326.99               | 40152.7        | 7783.69        | 16190.6  |
| October 23rd              | 31.59                | 77622.3        | 4748.68        | 8489.87  |
| October 24 <sup>th</sup>  | 20.55                | 24062.2        | 2390.79        | 11421.8  |
| October 25 <sup>th</sup>  | 65.59                | 21270.2        | 3353.69        | 35879    |
| October 26 <sup>th</sup>  | 71.94                | 36990.9        | 2438.77        | 32094.6  |
| October 27th              | 16.85                | 30637.1        | 600.07         | 39952.4  |
| October 28th              | 3.05                 | 15228.9        | 385.48         | 37134.8  |
| October 29th              | 726.07               | 22659          | 577.20         | 61923.9  |
| October 30 <sup>th</sup>  | 1065.72              | 27905.5        | 2208.78        | 69060.7  |
| October 31st              | 645.80               | 43054.8        | 6167.5         | 46937.3  |
| November 1 <sup>st</sup>  | 193.51               | 23231.4        | 16735.1        | 20140.4  |
| November 2 <sup>nd</sup>  | 374.33               | 49282.1        | 12775.7        | 13058.1  |
| November 3 <sup>rd</sup>  | 628.16               | 16966          | 12181.8        | 29180.7  |
| November 4 <sup>th</sup>  | 155.14               | 31995.4        | 2944.26        | 19794.5  |
| November 5 <sup>th</sup>  | 8.88                 | 73468.8        | 1865.23        | 37721    |
| November 6 <sup>th</sup>  | 0.0087               | 120622         | 27.62          | 58710.9  |
| November 7 <sup>th</sup>  | 0.3243052            | 94172.4        | 107.14         | 28177.2  |
| November 8 <sup>th</sup>  | 0.005026             | 128938         | 6.39           | 95118.9  |
| November 9 <sup>th</sup>  | 0                    | 154951         | 1.27           | 97707.6  |
| November 10 <sup>th</sup> | 5.72×10-5            | 122226         | 1.16           | 145639   |
| November 11 <sup>st</sup> | 7.57×10-5            | 60350.2        | 133.21         | 37868.3  |
| November 12 <sup>nd</sup> | 0.018                | 75497.6        | 58.15          | 10154.7  |
| November 13rd             | 8.8×10-5             | 54308.4        | 1.73           | 31823.2  |
| November 14 <sup>th</sup> | 8.7×10 <sup>-5</sup> | 19470.1        | 3.41           | 58576.7  |
| November 15 <sup>th</sup> | 0.0015               | 47464.7        | 11.77          | 63784.9  |
| November 16 <sup>th</sup> | 0.28                 | 71579.1        | 10.07          | 41065.1  |
| November 17th             | 4.11                 | 99929.7        | 247.25         | 21651    |

**Table S4.** The residence time that each air mass spent in the 7 days prior to sampling in the footprint layer over a specific surface type (land, sea ice, sea, and snow) for each sample.

**Table S5.** Starting time and ending time of collection for each sample and total volume of air sampled for each sample.

| Collection date of the           | Starting time | Ending time | Total volume (L) |
|----------------------------------|---------------|-------------|------------------|
| samples                          | -             | -           |                  |
| October 19th, 2018               | 2:18pm        | 2:18pm      | 17280            |
| October 20 <sup>th</sup> , 2018  | 2:26pm        | 2:26pm      | 17280            |
| October 21 <sup>st</sup> , 2018  | 2:56pm        | 2:56pm      | 17280            |
| October 22 <sup>nd</sup> , 2018  | 3:00pm        | 3:00pm      | 17280            |
| October 23 <sup>rd</sup> , 2018  | 3:10pm        | 3:10pm      | 17280            |
| October 24 <sup>th</sup> , 2018  | 3:20pm        | 3:20pm      | 17280            |
| October 25 <sup>th</sup> , 2018  | 3:27pm        | 3:27pm      | 17280            |
| October 26 <sup>th</sup> , 2018  | 3:38pm        | 3:38pm      | 17280            |
| October 27th, 2018               | 3:44pm        | 3:44pm      | 17280            |
| October 28 <sup>th</sup> , 2018  | 3:51pm        | 3:51pm      | 17280            |
| October 29 <sup>th</sup> , 2018  | 3:57pm        | 3:57pm      | 17280            |
| October 30 <sup>th</sup> , 2018  | 4:03pm        | 4:03pm      | 17280            |
| October 31st, 2018               | 4:09pm        | 4:09pm      | 17280            |
| November 1 <sup>st</sup> , 2018  | 4:16pm        | 4:16pm      | 17280            |
| November 2 <sup>nd</sup> , 2018  | 4:22pm        | 4:03pm      | 17052            |
| November 3 <sup>rd</sup> , 2018  | 4:16pm        | 3:16pm      | 16560            |
| November 4 <sup>th</sup> , 2018  | 3:27pm        | 3:27pm      | 17280            |
| November 5 <sup>th</sup> , 2018  | 3:34pm        | 3:34pm      | 17280            |
| November 6 <sup>th</sup> , 2018  | 3:42pm        | 3:42pm      | 17280            |
| November 7th, 2018               | 3:48pm        | 3:48pm      | 17280            |
| November 8 <sup>th</sup> , 2018  | 3:54pm        | 2:54pm      | 16560            |
| November 9 <sup>th</sup> , 2018  | 3:05pm        | 3:05pm      | 17280            |
| November 10 <sup>th</sup> , 2018 | 3:14pm        | 3:14pm      | 17280            |
| November 11 <sup>st</sup> , 2018 | 3:20pm        | 3:20pm      | 17280            |
| November 12 <sup>nd</sup> , 2018 | 3:25pm        | 3:25pm      | 17280            |
| November 13 <sup>rd</sup> , 2018 | 3:37pm        | 3:37pm      | 17280            |
| November 14 <sup>th</sup> , 2018 | 3:42pm        | 3:42pm      | 17280            |
| November 15 <sup>th</sup> , 2018 | 3:49pm        | 3:49pm      | 17280            |
| November 16 <sup>th</sup> , 2018 | 3:58pm        | 3:58pm      | 17280            |
| November 17 <sup>th</sup> , 2018 | 4:03pm        | 9:41am      | 12696            |

## Reference

Bigg, E. K. (1996) 'Ice forming nuclei in the high Arctic', *Tellus B: Chemical and Physical Meterology*, 48(2), pp. 223–233.

Bigg, E. K. and Leck, C. (2001) 'Cloud-active particles over the central Arctic Ocean', *Journal of Geophysical Research Atmospheres*, 106(D23), pp. 32155–32166. doi: 10.1029/1999JD901152.

Conen, F., Stopelli, E. and Zimmermann, L. (2016) 'Clues that decaying leaves enrich Arctic air with ice nucleating particles', *Atmospheric Environment*. Elsevier Ltd, 129, pp. 91–94. doi: 10.1016/j.atmosenv.2016.01.027.

Creamean, J. M. et al. (2018) 'Marine and terrestrial influences on ice nucleating particles during continuous springtime measurements in an Arctic oilfield location', *Atmospheric Chemistry and Physics*, 18(24), pp. 18023–18042. doi: 10.5194/acp-18-18023-2018.

Creamean, J. M. et al. (2019) 'Ice Nucleating Particles Carried From Below a Phytoplankton Bloom to the Arctic Atmosphere', *Geophysical Research Letters*, 46(14), pp. 8572–8581. doi: 10.1029/2019GL083039.

Fountain, A. G. and Ohtake, T. (1985) 'Concentrations and Source Areas of Ice Nuclei in the Alaskan Atmosphere', *Journal of Climate and Applied Meteorology*, pp. 377–382. doi: 10.1175/1520-0450(1985)024<0377:casaoi>2.0.co;2.

Goldstein, H. and Healy, M. J. R. (2009) 'The Graphical Presentation of a Collection of Means', *Royal Statistical Society*, 158(1), pp. 175–177. doi: 10.2307/2983411.

Hartmann, M. et al. (2020) 'Terrestrial or marine? – Indications towards the origin of Ice Nucleating Particles during melt season in the European Arctic up to 83.7° N', *Atmospheric Chemistry and Physics Discussions*, (November), pp. 1–35. doi: 10.5194/acp-2020-1211.

Irish, V. E. et al. (2019) 'Ice nucleating particles in the marine boundary layer in the Canadian Arctic during summer 2014', *Atmospheric Chemistry and Physics*, 19(2), pp. 1027–1039. doi: 10.5194/acp-19-1027-2019.

Koop, T. and Zobrist, B. (2009) 'Parameterizations for ice nucleation in biological and atmospheric systems', *Physical Chemistry Chemical Physics*, 11(46), pp. 10741–11064. doi: 10.1039/b914289d.

Kumar, A. et al. (2018) 'Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions - Part 1: The K-feldspar microcline', *Atmospheric Chemistry and Physics*, 18(10), pp. 7057–7079. doi: 10.5194/acp-18-7057-2018.

Kumar, A., Marcolli, C. and Peter, T. (2019a) 'Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions-Part 2: Quartz and amorphous silica', *Atmospheric Chemistry and Physics*, 19(9), pp. 6035–6058. doi: 10.5194/acp-19-6035-2019.

Kumar, A., Marcolli, C. and Peter, T. (2019b) 'Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions-Part 3: Aluminosilicates', *Atmospheric Chemistry and Physics*, 19(9), pp. 6059–6084. doi: 10.5194/acp-19-6059-2019.

Mason, R. H. et al. (2016) 'Size-resolved measurements of ice-nucleating particles at six locations in North America and one in Europe', *Atmospheric Chemistry and Physics*, 16(3), pp. 1637–1651. doi: 10.5194/acp-16-1637-2016.

Radke, L. F., Hobbs, P. V. and Pinnons, J. E. (1976) 'Observations of Cloud Condensation Nuclei, Sodium-Containing Particles, Ice Nuclei and the Light-Scattering Coefficient Near Barrow, Alaska', *Journal of Applied Meteorology*, pp. 982–995. doi: 10.1175/1520-0450(1976)015<0982:00ccns>2.0.co;2.

Reischel, M. T. and Vali, G. (1975) 'Freezing Nucleation in Aqueous Electrolytes', *Tellus*, 27(4), pp. 414–427. doi: 10.1111/j.2153-3490.1975.tb01692.x.

Rinaldi, M. et al. (2021) 'Ice-nucleating particle concentration measurements from Ny-Ålesund during the Arctic spring-summer in 2018', *Atmospheric Chemistry and Physics*, 21(19), pp. 14725–14748. doi: 10.5194/acp-21-14725-2021.

Šantl-Temkiv, T. et al. (2019) 'Biogenic Sources of Ice Nucleating Particles at the High Arctic Site Villum Research Station', *Environmental Science & Technology*, 53(18), pp. 10580–10590. doi: 10.1021/acs.est.9b00991.

Si, M. et al. (2019) 'Concentrations, composition, and sources of ice-nucleating particles in the Canadian High Arctic during spring 2016', *Atmospheric Chemistry and Physics*, 19(5), pp. 3007–3024. doi: 10.5194/acp-2018-950.

Tobo, Y. et al. (2019) 'Glacially sourced dust as a potentially significant source of ice nucleating particles', *Nature Geoscience*. Springer US, 12(4), pp. 253–258. doi: 10.1038/s41561-019-0314-x.

Welti, A. et al. (2020) 'Ship-based measurements of ice nuclei concentrations over the Arctic, Atlantic, Pacific and Southern oceans', *Atmospheric Chemistry and Physics*, 20(23), pp. 15191–15206. doi: 10.5194/acp-20-15191-2020.

Wex, H. et al. (2019) 'Annual variability of ice-nucleating particle concentrations at different Arctic locations', *Atmospheric Chemistry and Physics*, 19(7), pp. 5293–5311. doi: 10.5194/acp-19-5293-2019.

Whale, T. et al. (2018) 'The enhancement and suppression of immersion mode heterogeneous ice-nucleation by solutes', *Chemical Science*. Royal Society of Chemistry, 9, pp. 4142–4151. doi: 10.1039/C7SC05421A.

Worthy, S. E. et al. (2021) 'The effect of (NH 4) 2 SO 4 on the freezing properties of nonmineral dust ice nucleating substances of atmospheric relevance', (March), pp. 1–30.