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1. tgBoost model

1.1 Comparison with extrapolated Tg from viscosity measurements

Rothfuss and Petters (1) derived Tg for atmospherically-relevant organic compounds by 

viscosity measurements followed by extrapolation using the Vogel-Fulcher-Tammann (VFT) 

equation. Tg of these compounds are also available in the dataset in Koop et al. (2). Figure S1 

shows the correlation plots between: a) Tg experimental measurements (2) and predictions from 

the tgBoost model, b) Tg extrapolated from viscosity measurements (1) and predictions from 

the tgBoost model, and c) Tg experimental measurements (2) and Tg extrapolated from viscosity 

measurement (1). As shown in Fig. S1a, the tgBoost model reproduces experimental Tg very 

well, while there are some deviations for extrapolated Tg from viscosity measurements (Fig. 

S1b), reflecting differences between extrapolated and measured values (Fig. S1c). It is worth 

noting that Tg has been extrapolated from viscosity measurements where the experimental 

measurements were very low in viscosity value (i.e.,  < 10 Pa s, which is very far from the 

glassy state with  = 1012 Pa s) for a number of species. In this case, it is difficult to accurately 

estimate Tg by extrapolation of viscosity measurements using the VFT equation.

1.2 Comparison of tgBoost predictions to Tg estimations from O:C and C0

Li et al. (3) developed Tg parameterizations based on molecular O:C ratio and C0. They 

compared their Tg predictions with Tg estimated through the Boyer-Kauzman rule on Tm from 

EPI Suite for compounds in the dataset from Shiraiwa et al. (4). Their estimated absolute mean 

percentage relative error (MPE) (i.e., defined as AAVRE in their study) is 6% with R = 0.96. 

We have compared the Tg predicted by the tgBoost model with Tg estimated through the Boyer-

Kauzman rule (2) on Tm from EPI Suite for compounds in the dataset from Shiraiwa et al. (4). 

Our MPE is 10.6% with R = 0.8. Note that, the C0 used by Li et al. (3) was evaluated using the 

EVAPORATION model by Compernolle et al. (5), and that the Tg values estimated from Tm 

evaluated by EPI Suite were based on the MPBPWIN model. Both MPBPWIN and 

EVAPORATION are QSAR models developed on a mix of experimental measurements and 

model predictions and the models use chemical species boiling points to build their QSAR. 

Both models use a combination of different methods, but they are both using derivations of the 

Antoine equation. As a result, both MPBPWIN and EVAPORATION have predictions 

strongly correlated to boiling point values. These approaches might introduce a correlation bias 

based on the similar estimation methods and linked to the same variable implicitly used for the 

prediction. As a result, even if C0 is suited to predict Tg, there might a correlation bias to account 



when comparing the estimated MPE of the two methods in relation to the Tg estimated from Tm 

evaluated by EPI Suite. 

2. Tm regression models with additional datasets

We have developed two additional Tm regressors using separate datasets to compare the 

performances of molecular embeddings in the Tm regression. The first dataset is the “Bradley 

good melting point dataset” (i.e. Tm-Bradley) which is a highly curated dataset of experimental 

melting points of drug-like compounds (6). The second dataset has been generated using the 

Tm of environmentally relevant compounds by Wei et al. (7) and evaluated using MPBPWIN 

by the EPI Suite Software (8) (i.e. Tm-EPI). The Tm-Bradley dataset contains 3041 entries, 

which is reduced to 3025 compounds after cleaning. The Tm -EPI dataset contains 29488 entries 

and 29487 compounds after cleaning. A summary of the specific datasets used in this study 

and their properties is reported in Table S1. We have developed a Deep Neural Network 

regressor (DNN) for the Tm-Bradley dataset and tested three models (i.e., Random Forest, RF; 

Extreme Gradient Boosting, XGBoost; Deep Neural Network, DNN) for the regression task of 

the Tm-EPI dataset. The best performances of the Tm developed models are reported in Table 

S2.  

The DNN model trained on the Tm-Bradley dataset has a MAE of 32.3 K, slightly above 

the results from the gold standard models for Tm prediction. The model has a positive 

correlation of R = 0.76 and a variance of R2CV = 0.89. It is important to note that the state-of-

the-art models for Tm regression are built on top of very complex architectures such as 

convolutional neural networks (CNN) (9), a combination of a neural network and an associative 

ensemble step (ASNN) (10), and a Gaussian Process with dataset specific embeddings (11). 

No significant difference was observed between the performance of the DNN model developed 

on the Tm-Bradley dataset and the DNN developed on top of the Tm-Tetko dataset with MAE 

= 31.0 K. Remarkably, Tetko et al. measured a similar Root Mean Squared Error (RMSE) for 

ASNN models developed on both the Bradley good melting point dataset and their curated Tm-

Tetko dataset (10,12). These similar performances of the ASNN architecture on the two 

datasets suggest that more complex model architectures are needed to predict with higher 

accuracy the trends from experimental Tm. The Tm regression DNN model developed on the 

Tm-EPI dataset performs really well with an MAE of 12.3 K, a positive correlation of R = 0.94 

and a variance of R2CV = 0.97. This result demonstrates a good performance of molecular 

embeddings in reproducing the algorithm of MPBPWIN, but its predictions remain strongly 

linked to the limitations of the prediction module of the EPI Suite. 
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Figure S1: Correlation plots between a) Tg experimental measurements and predictions from the Tg 
tgBoost model, a) Tg extrapolated from viscosity measurements (Rothfuss and Petters, 2016) and 
predictions from the tgBoost model, and b) Tg experimental measurements and Tg extrapolated from 
viscosity measurement.

Figure S2: SOA compounds from the dataset of Shiraiwa et al. (4) with the 5 highest deviations between 
the Tg predicted by the tgBoost model and the Tg predicted by the MPBPWIN module from the EPI 
Suite.

Figure S3: SOA compounds from the dataset of Shiraiwa et al. (4) with the 5 highest deviations between 
the Tg predicted by the compositional parametrization and the Tg predicted by the MPBPWIN module 
from the EPI Suite.
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Figure S4: Estimated Tg of alkanes and esters as a function of the number of carbon atoms within the 
molecule. The functional groups in ethers are positioned at the end of the alkyl chain.



Table S1: A summary of the datasets used to develop the additional Tm models for comparison 
of molecular embeddings results.

Dataset Name Author Data Initial entries Final entries

Tm -Bradley Bradley et al., (2014) (6) Tm, experimental 3041 3025

Tm -EPI Wei et al., (2012) (7) Tm, EPI Suite estimated 29488 29487

 

Table S2: Comparison of the performances in the regression tasks of developed models on the 
additional Tm datasets.

Dataset Algorithm* MAE (K) RMSE R2
CV R Study

Tm -EPI RF 15.9 25.7 0.90 0.95 This work

XGBoost 20.5 30.4 0.86 0.93 This work

DNN 12.3 19.2 0.94 0.97 This work

Tm -Bradley DNN 31.3 41.9 0.89 0.76 This work

CNN 26.2 35.5 (9) †

ASNN 32.0 (10) †

GPR 28.85 0.78 (11) †

*CNN = Convolutional Neural Network, GPR = Gaussian Process Regression, ASNN = Adversarial Neural Network. † The 

datasets used in these studies are all different variations of the “Bradley Good Melting Points Dataset” from Bradley at al. (6).
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