Supporting Information

Tuning Metal Single-Atoms Embedded in N_xC_y Moiety Toward High-Performance Electrocatalysis

Miran Ha^{1,2†}, Dong Yeon Kim^{1†}, Muhammad Umer^{1†}, Vladislav Gladkikh¹, Chang Woo Myung^{*1,3} and Kwang S. Kim^{*1}

¹Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.

²Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.

³Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom.

†Equal contribution

*E-mail: cwm31@cam.ac.uk (C.W.M.), kimks@unist.ac.kr (K.S.K.)

Supplementary Note:

Charateristic in Co K-edge XANES of Co-NnCm-CN

The Co K-edge XANES of Co $-N_nC_m-G_N$ (see Figure 4 for clear image) show edge shifts to the higher energy than Co bulk, while giving a rising pre-edge. Co atoms on single vacancy sites have +1 oxidation state so that the Co K-edge XANES of Co-N_{n=0-3}C_{3-n}-G_N have higher edge energy than their bulk in XANES. Co–N₃–G_N shows a distinctive pattern different from other structures. This comes from weak metal-ligand interaction between Co and N atoms. The p-d hybridization occurs readily in tetrahedral symmetry structures. The weak metal-ligand interaction leads to weak splitting and occupies p orbitals of hybridized p-d orbitals. As a result, 1s electron excitations to 3d orbitals in Co-N₃-G_N increase, giving intense pre-edge in the XANES spectra. In the systems including C atoms, the metal-ligand interaction becomes stronger. Therefore, the p orbitals in hybridized d-p orbitals are in higher energy levels and so they are not occupied. Then 1s electron excites mainly to 4p orbitals which give sharp rising peaks. Meanwhile, all Co-N_{n=0-4}C_{4-n}-G_N show similar XANES patterns to each other with the increased edge energy due to 2+ oxidation state. The differences between coordination environments appear in the intensity of the pre-edge peak of XANES in the Co case. The p-d hybridization is not high in square-planar structure, as in Co-N₄-G_N XANES. However, the intensity of the pre-edge peak increases with the increment of C atoms in the structure because C atoms interact with p orbitals of Co atoms with increased p-d hybridization. It is also notable that Co–N₂C₂–G_N and Co–N₂C₂^c–G_N have distinguishable pre-edge structures from each other. These differences could be found in all other TMs in M–N_nC_m–G_N systems shown in the above figure. The pre-edge peaks are usually broader and less intense in 4d (TM)SAs, and additional effects like symmetry and distortion of a structure may affect XANES, which helps in characterizing the coordination environments for each (TM)SA.

Descriptors for classification between good and bad catalysts

In this section we report a supervised machine learning approach to classification of double vacancy configurations into good and bad catalysts.

We searched for a descriptor taking properties of atomic elements constituting the configuration. Namely, we considered valence electrons in the occupied d orbital of the metal element (θ_d) , unpaired valence electrons in the occupied d orbital of the metal element (θ_d^u) , Pauling electronegativity (χ) , the number of carbon (n_c) and nitrogen (n_N) atoms closest to the metallic center, atomic numbers (Z), atomic radius, atomic volume, group, period, dipole polarizability, Mendeleev number, Pettifor number, and first ionization energies. We took these values from the mendeleev python package³. We also considered the products of these properties such $as\chi\theta_d$, $\chi\theta_d^u$, χ^2 , χn_c , χn_N , etc. In addition, we took the Coulomb matrix elements⁴ between the metal site and neighboring carbon or nitrogen atoms as well as between metal and adsorbent atoms (hydrogen or oxygen), and between the adsorbents and the closest non-metal surface atom (carbon or nitrogen). The Coulomb matrix element between two atoms with the atomic numbers Z_1 and Z_2 located at a distance r_{12} from each other is given by the formula

$$CM = \frac{Z_1 Z_2}{r_{12}} \tag{1}$$

We considered the following machine learning algorithms: Gaussian naïve Bayes, logistic regression, k-nearest neighbors, radius neighbors classifier, support vector classifier, neural network, and decision trees as well as the following ensemble methods: random forest, extremely randomized trees, and gradient boosting. Before feeding into the learning algorithms, the feature columns were normalized to have zero mean and unit variance. The hyper-parameters search and the model performance estimation was done using the Monte-Carlo cross validation⁵. The data samples were randomly split 100 times into different training (85%) and test (15%) sets using stratified splitting for which we employed the StratifiedShuffleSplit

object from the scikit-learn library⁶ in python. This library was used for all data analysis computations in this section. The best hyper-parameters were found using an exhaustive search implemented in GridSearchCV. The Area Under the Receiver Operating Characteristic Curve (ROC AUC)⁷ was chosen as the optimization metrics. The mean and standard deviation of the ROC AUC among 100 splits were calculated with the cross_val_score object.

We found that descriptors that give the best ROC AUC are composed of Coulomb matrix elements and the first ionization energy, I_1 of the transition metal. In order to get the actual distances r_{12} between atoms for the Coulomb matrix elements, DFT calculations must be done for geometry optimization. However, desirable descriptors for high-throughput exploration of catalytic configurations are those that do not require DFT calculations. We therefore replaced the actual distances r_{12} by sums of the covalent radii of the corresponding atoms taken from the mendeleev python package. We also compared the results for these descriptors with the descriptors containing the actual DFT-optimized distances. The details are given in the following subsections.

(i) Descriptors for HER

The configurations are classified as good catalysts are those with $|\Delta G|$ close to zero, and bad catalysts are those with $|\Delta G|$ far from zero. We choose the threshold to be 0.2. Therefore, we classify all configurations into two classes, class 1: $|\Delta G| \leq 0.2$, and class 0: $|\Delta G| > 0.2$. Our data set consists of 438 double-vacancy configurations. A configuration is formed by one of thirty different transition metals from Sc through Hg. For each metallic center sitting in the middle of a double vacancy, there are six possible arrangements of its four closest neighbors, where each neighbor can be either carbon or nitrogen. Besides that, configurations differ based on to which atom the hydrogen binds.

Our descriptor is a 9-dimensional vector given by the following components:

$$d = (CM_{UL}, CM_{UR}, CM_{LR}, CM_{LL}, CM_{HC}, CM_{HN}, CM_{ULLR}, CM_{URLL}, I_1)$$

$$(2)$$

where CM_{UL} , CM_{UR} , CM_{LR} , CM_{LL} are the Coulomb matrix elements between the metallic center and the upper-left, upper-right, lower-right, lower-left atoms, closest to the metal (**Figure S19**). The distances r_{12} in these elements are approximated by the sums of the covalent radii of the corresponding atoms. The other Coulomb matrix elements are as follows:

$$CM_{HC} = \frac{Z_H Z_C}{\sqrt{(r_C + r_M)^2 + (r_H + r_M)^2}}$$
(3)

$$CM_{HN} = \frac{Z_H Z_N}{\sqrt{(r_N + r_M)^2 + (r_H + r_M)^2}}$$
(4)

$$CM_{ULLR} = \frac{Z_{UL}Z_{LR}}{r_{UL} + 2r_M + r_{LR}}$$
(5)

$$CM_{URLL} = \frac{Z_{UR}Z_{LL}}{r_{UR} + 2r_M + r_{LL}} \tag{6}$$

where Z_i is the atomic number of the atom *i*; the subscript *M* refers to the metallic center, and the subscripts *UL*, *LR*, *UR*, *LL* refer to the upper-left, upper-right, lower-right, lower-left atoms, closest to the metal. This means that CM_{HC} approximates the Coulomb matrix element between the hydrogen and carbon atoms, CM_{HN} – between hydrogen and nitrogen atoms, CM_{ULLR} and CM_{URLL} between atoms situated diagonally around the metallic center. The descriptor based on the DFT-optimized distances is a 7-dimensional vector given by

$$d = (CM_1, CM_2, CM_3, CM_4, CM_{HM}, CM_H, I_1)$$
(7)

where $CM_1, ..., CM_4$ are the Coulomb matrix elements between the transition metal and the neighboring carbon and nitrogen atoms sorted according to the distance in an ascending order; CM_{HM} is the Coulomb matrix element between the transition metal and hydrogen; CM_H is the Coulomb matrix element between hydrogen and the closest non-metal (carbon or nitrogen); I_1 is the first ionization energy of the transition metal. The values of the ROC AUC for different machine learning algorithms for both descriptors are reported in **Figure S20a** and **Table S32**. The best algorithm working with the descriptor based on elemental properties is random forest for which we got ROC AUC = 0.79. In the case of the DFT-optimized descriptor, the best

algorithm is found to be the k-nearest neighbors for which we got ROC AUC = 0.91. The Receiver Operating Characteristic curve for the best classifiers (random forest in the case of elemental properties, and k-nearest neighbors in the case of DFT-optimized geometry) are shown in **Figure S20a**. We performed principal component analysis (PCA) on both descriptors. The cumulative explained variance ratio as a function of the number of principal components is shown in **Figure S21a**. We see from the Figure that almost all the variance in the data is explained by 5 principal components for both descriptors.

(ii) Descriptors for OER, and ORR

The configurations are classified as good catalysts are those with the over-potential η between 0 and 1. Therefore, we classify all configurations into two classes, class 1: $\eta \leq 1$, and class 0: $\eta > 1$. Our data set consists of 210 double-vacancy configurations. A configuration is formed by one of thirty different transition metals from Sc through Hg. For each metallic center sitting in the middle of a double vacancy, we have its closest neighbors either four carbon atoms, four nitrogen atoms, or two carbons and two nitrogens in a trans configuration. Our descriptor is a 9-dimensional vector given by the following components:

$$d = (CM_{UL}, CM_{UR}, CM_{LR}, CM_{LL}, CM_{OC}, CM_{ON}, CM_{ULLR}, CM_{URLL}, I_1)$$
(8)

where CM_{UL} , CM_{UR} , CM_{LR} , CM_{LL} are the Coulomb matrix elements between the metallic center and the upper-left, upper-right, lower-right, lower-left atoms, closest to the metal (**Figure S19**). The distances r_{12} in these elements are approximated by the sums of the covalent radii of the corresponding atoms. The other Coulomb matrix elements are as follows:

$$CM_{OC} = \frac{Z_O Z_C}{\sqrt{(r_C + r_M)^2 + (r_O + r_M)^2}}$$
(9)

$$CM_{ON} = \frac{Z_O Z_N}{\sqrt{(r_N + r_M)^2 + (r_O + r_M)^2}}$$
(10)

 CM_{OC} approximates the Coulomb matrix element between the oxygen and carbon atoms, CM_{ON} – between oxygen and nitrogen atoms. The elements CM_{ULLR} and CM_{URLL} between atoms situated diagonally around the metallic center were described in the previous subsection.

Here we consider three descriptors based on the DFT-optimized geometries. When only one oxygen atom adsorbed, the descriptor consists of the first ionization energy of the transition metal, I_1 , and two Coulomb matrix elements – between the oxygen atom and the metallic center, and between oxygen, and the closest non-metal (carbon or nitrogen). The second descriptor is built from the first one with the addition of the Coulomb matrix elements for the system where one oxygen and one hydrogen atoms are adsorbed. It consists of eight components: three from the previous descriptor, and five related to the system with O and H adsorbed, namely, the Coulomb matrix elements between O and the metal, between H and the metal, between O/H and the closest non-metal, and between O and H. The third descriptor is built from the previous one with the addition of the Coulomb matrix elements for the two oxygen and one hydrogen atoms are adsorbed. It consists of 17 components: Coulomb matrix elements between each atom in the OOH configuration, between each O, O, H, and the metallic center, and between each O, O, H, and the closest non-metal. The values of the ROC AUC for different machine learning algorithms for all descriptors are reported in **Figure S20b & Table S33** for the OER and **Figure S20c & Table S34** for the ORR.

The best algorithm working with the descriptor based on elemental properties for both OER and ORR is random forest for which we got ROC AUC = 0.87 in the case of OER, and 0.81 in the case of ORR. For the three DFT-optimized descriptors, the best algorithm is also random forest for both OER and ORR. The Receiver Operating Characteristic curve for the best classifier (random forest) are shown in the **Figure S20b** for OER, and **Figure S20c** for ORR. The cumulative explained variance ratio as a function of the number of principal components is shown in the **Figure S21b**. We see from the Figure that, as in the case or HER, almost all

the variance in the data is explained by 5 principal components for the descriptors based on elemental properties.

Supplementary Figures

Figure S1. Possible vacant sites and eleven pyridinic/graphitic configurations of $Zr-(N_{n=0-4}C_{4-n}, N_{n=0-3}C_{3-n})$ -G_N. The Zr atom (purple) is located somewhat above the graphene sheet due to its large atomic radius.

Figure S2. Configurations of N-doped ($N_{n=0-4}C_{4-n}$, $N_{n=0-3}C_{3-n}$)- G_N pyrrolic graphene systems and their Pt-embedding structures. Pt-embeddings in C₄ and N₁C₃ pyrrolic defect sites are not stable. The defect formation energy (E_f), Pt-SA embedding energy (E_{emb}), Pt-SA stability over metal cohesion ($E_{emb/coh}$) in pyrrolic systems are given as a table below the figure (energies in eV). These pyrrolic data against the pyridinic data (**Tables S5-S7**) indicate that the pyridinic defect sites are preferred over the pyrrolic ones in G_N/Gr .

Figure S3. Off-plane distances (Å) of various (TM)SAs for M-(Nn=0-4C4-n, Nn=0-3C3-n)-GN. Some unstabilities (in yellow bar) are shown for a few cases of Hg (and Cd). See Table S8 for details. Perfect planar structures before adsorption are found for divacant moieties M-Nn=0-4C4-n-GN [(Mn, Fe, Co), Ni, Cu, (Zn); (Rh, Pd), Ag, (Cd); (Pt), Au, (Hg)]. Metals (Mn), {Fe}, Ni, Cu, (Zn, Ag, Cd), Au, and Hg are in plane of M-C4-GN; (Fe), Co, Ni, Cu, Pd, Ag, (Pt) and Au are in plane of M-N2C2-GN; (Cr), Mo, Fe, Co, Ni, (Cu, Zn, Tc, Ru), Rh, Pd, (Re, Os, Ir), Pt, and Au are in plane of M-N4-GN. Here, (TM)SAs are in plane regardless of H-adsorption, while "()" denotes the non-planar case upon H-adsorption. Among $-N_nC_m$ moieties, the $-N_4$ moiety tends to have more planar structures for various elements. However, many of the metal elements M in -NnCn-GN are not in a plane but are located slightly off the plane. Upon adsorbing H, the planarity tends to be further weakened. For all M-N_mC_n-G_N systems, $d^{1}s^{2}$ -series {La(5d¹6s²), Y(4d¹5s²), Sc(3d¹4s²)} and $d^{2}s^{2}$ -series {Hf(5d²6s²), Zr(4d²5s²), Ti(3d²4s²)} tend to very strongly favor SA-embedding. The strength of SA-embedding in M-N₂C₂ systems is in the following order: {Pt(4d⁹6s¹), $Pd(4d^{10}), Mn(3d^24s^2)$: very strong, { $Au(5d^{10}6s^1), Ir(5d^76s^1), Rh(4d^85s^1), Zn(3d^{10}4s^2), Ni(3d^84s^2), Cr(3d^54s^1), V(3d^34s^2)$ }: strong, { $Ta(5d^36s^2)$, $Tc(4d^55s^2)$, $Nb(4d^35s^2)$, $Cu(3d^{10}4s^1)$, $Co(3d^74s^2)$, $Fe(3d^64s^2)$ }: moderate, { $Cd(4d^{10}5s^2)$, $Ag(4d^{10}5s^1)$, $Ag(4d^{10}5s^2)$, Ag(4dRu(4d⁷5s¹), Mo(4d⁵5s¹)}: weak (which indicates significant clustering into NPs). In the case of N₂C₂, the (TM)SA stability over the TM cohesion (*E*_{emb/coh} in eV) shows the trend in the order Mn, Sc, Y (-5.2~-4.3: very strong stability) > Ti, Zr, Hf (~-3.8: strong) > Ni, Pt, Pd, Zn, Cu (-3.4~-3.0: somewhat strong) > V, Co, Fe, Cr, Rh, Ir, Ta, Nb (-2.8~-2.2: moderate) > Ru, Cd, Ag, Mo (-1.7~-1.2: somewhat weak) > Os, W, Re, Tc (-0.9~-0.4: weak stability). In some systems, Cd and Hg are not embedded because of their low stabilities.

Figure S4. Off-plane distances (Å) of various (TM)SAs for the pristine (black), H-adsorbed (blue) and O-adsorbed (red) $M-(N_{n=0-4}C_{4-n}, N_{n=0-3}C_{3-n})-G_N$. Some unstabilities (in yellow bar) are shown for a few cases of Hg (and Cd). See **Tables S8 & S10** for details. Fe-C₄ is an exceptional case that is non-planar without H but is pseudo-planar with a distorted structure upon H-adsorption.

Figure S5. Magnetization color map of (TM)SAs in $M-N_nC_m-G_N$. Most TM elements show no magnetization, while Cr, Mn, Mo, Re and these neigboring elements show strong magnetization. The metal elements in di-vacancy sites tend to have less magnetization than those in mono-vacancy sites, and more N-doped systems tend to have rather stronger magnetization. See the TM(SA)s magnetization before/after H–adsorption (**Table S15/S16**) and after *O/*OH/*OOH-adsorption (**Table S17**). "*" in the figure denotes an unstable state.

Figure S6. Magnetization of (TM)SAs in $M-N_nC_m-G_N$. Representation in drop-lines. The magnetization of (TM)SAs changes according to the coordination environment and reflects their unfilled orbital state (see the examples in **Fig. 4** and **Figure S8**).

Figure S7. Magnetization of (TM)SAs before (black) and after H/O-adsorption (blue/red) on $M-N_nC_m-G_N$. See the TM(SA)s magnetization before/after H–adsorption (**Table S15/16**) and after *O/*OH/*OOH-adsorption (**Table S17**). The significant changes in magnetization before/after intermediate adsorption are often noted in 3d transition metals.

Figure S8. Projected density of states (PDOS) of pristine (PDOS-P), H-adsorbed (PDOS-H), and Oadsorbed (PDOS-O) $M-N_2C_2-G_N$ (a-c) and $M-N_3-G_N$ systems (d-f). a,d, Case for M=V [early transition metal d³], b,e, Case for M=Ni [square planar d⁸; 16 electron rule]. c,f, Case for M=Zn [group 12; fully occupied d orbital d¹⁰]. The major-spin (positive) and minor-spin (negative) PDOS of M(d orbitals) are plotted in each upper box, and those of M(s, p orbitals) and C, N and H are plotted in each lower box. (Ni, Zn)-N₂C₂-G_N have planar structures, while V-N₂C₂-G_N has a non-planar structure. See the text for the planar d⁴+dsp² electron configuration favoring the 16-electron rule and the octahedral sp³d² electron configuration favoring the 18-electron rule in the Ni case.

Figure S9. Calculated transition metal K-edge X-ray adsorption near edge structure (XANES) of M-N_nC_m-G_N. The XANES for TM in mono-vacancy site (n+m=3) are in each upper thin black box; those in di-vacancy sites (n+m=4) are in each lower thick blue box. The major difference between coordination environments can be noted at the pre-edge peak.

Figure S10. Electrical conductivity (σ) of M–N_nC_m–G_N before (black) and after (blue) Hadsorption with respect to the σ of 2.1% N-doped Gr (σ^{o} ; $\sigma^{o}/\sigma(Gr) = ~7 \times 10^{2}$). The σ 's are calculated from the band structures. Assuming the scattering rates (τ) of M–N_nC_m–G_N being similar to that of G_N (the experimental value of ~100 fs)¹, the $\sigma(M-N_nC_m-G_N)/\sigma^{o}$ values are reported in **Tables S18-S19**. Overall, among the divalent N_nC_{4-n} moities, the N₂C₂ moiety tends to show high conductivity for most of TM(SA)s embedded in G_N.

Figure S11. Geometries and band structures before/after H-adsorption. a, Ni–N₂C₂–G_N, b, Pd–N₂C₂–G_N, and c, Pt–N₂C₂–G_N. Ni (dark green), Pd (dark grey), Pt (silver), and G_N (C: brown, N: blue). Black and cyan lines of band structures are major and minor spin components, respectively. The electrical conductivities are calculated from the band structures. These systems are not conductive in their pristine structure due to (very) small band gaps near E_F but become conductive after H-adsorption with one conducting channel at the Fermi level.

Figure S12. Electrical conductivity (σ) of M–N_nC_m–G_N after HO/O/HOO-adsorption with respect to 2.1 % N-doped Gr (σ° where $\sigma^{\circ}/\sigma(Gr) = -7 \times 10^2$) "*" denotes an unstable state. The conductivity is reduced after the HO/O/HOO-adsorption in most cases. The $\sigma(M-N_nC_m-G_N)/\sigma^{\circ}$ values are reported in **Tables S19** (See **Fig. 5** for the upon H-adsorption).

Figure S13. Kubas type HER. a, Volmer-type and b, 2nd H adsorbed conformations of the selected M–N₂C₂–G_N systems and (c) adsorption free energies (eV) per H of 1st H (ΔG_{H^*}), Kubas-type H₂ ($\Delta G_{2H^*/2}^{Kubas}$), and 2nd H ($\Delta G_{2nd-H^*} = 2 \times \Delta G_{2H^*/2}^{Kubas} - \Delta G_{H^*}$) (see **Table S23** for details). Free energies are referenced to gaseous $\frac{1}{2}$ H₂(g) in equilibrium with a solvated proton at the standard condition. When 2nd H adsorbs as Kubas type, the free energy tends to increase because it is generally more difficult to let 2nd H adsorbed on an active metal site as compared with 1st H. However, a few cases show decreased free energies. For example, Ru shows that $\Delta G_{2H*/2}^{Kubas}$ is lower than ΔG_{H*} , which is exceptional. Ru (4d⁷5s¹) in Ru–N₂C₂–G_N along with 4 pairs of two electrons (d^2 sp hybrid orbitals) from –(N₂C₂), fills 16 electrons in total; it has 17 electrons upon H-adsorption, and then fully occupied 18 electrons upon 2nd H-adsorption. Thus, the 2^{nd} H-adsorption stabilizes the Ru–N₂C₂–G_N system significantly, explaining its particular stability over 1st H-adsorption. Similarly, Tc also shows a similar trend. However, both cases are not effective Kubas systems, because two H atoms attached on Ru is somewhat too far away (>1.6 Å) from each other to form a H₂ molecule easily. The effective Kubas type 2^{nd} H, which is located very close to 1st H, would help in higher turnover frequency. In the case of (Fe,Co)-N₂C₂-G_N, the Kubas reaction helps in accelerating H₂-desorption with $\Delta G_{2H*/2}^{Kubas} = 0.18 \text{ eV per H atom.}$

Figure S14. PDOS for a, pristine, b, 1H-adsorbed and **c**, 2H-adsorbed Ru-N₂C₂-G_N. The halffilled antibonding state in 1H adsorbed Ru-N₂C₂-G_N makes ΔG_{H*} higher than $\Delta G_{2H*/2}^{Kubas}$. In Ru-N₂C₂-G_N, the unfilled d_{yz} orbital and antibonding d_{xz} orbital are hybridized. When the first H adsorbs on Ru-N₂C₂-G_N, H interacts with the antibonding d_{xz} state and fills this state by half. After that, the second H interacts with the unfilled d_{yz} state and it breaks the hybridization of unfilled d_{yz} orbital and antibonding d_{xz} orbital. Then, the d orbitals in bonding state are filled with 18 electrons in 2H-adsorbed Ru-N₂C₂-G_N.

Figure S15. Pourbaix diagram of M-C₄. The pourbaix diagrams are obtained using the Gibbs free energies of each intermediates on metal site at given U and pH. The grey dashed line represent the equilibrium potential for OER/ORR. The intermediates (*O-*OH, *O-*O, *O-*OOH) in path-II are also considered for Re and Os-C₄ (See **Method** for details). Intermediates are not stable in La-C₄. The *O is expected to form on the active site in most of M-C₄ systems in a 0.7–1.4 V range.

Figure S16. Pourbaix diagram of M-N₂C₂. The pourbaix diagrams are obtained using the Gibbs free energies of each intermediates on metal site at given U and pH. The grey dashed line represent the equilibrium potential for OER/ORR. The intermediates (*O-*OH, *O-*O, *O-*OOH) in path-II are also considered for Fe, Mo, Tc, Ru, Ta, W, Re, and Os-N₂C₂ (See **Methods** for details). Intermdediates are not stable in La-N₂C₂. The *O is expected to form on the active site in most of M-N₂C₂ systems in a 0.7–1.4 V range.

Figure S17. Pourbaix diagram of M-N₄. The pourbaix diagrams are obtained using the Gibbs free energies of each intermediate on a metal site at given U and pH. The grey dashed line represents the equilibrium potential for OER/ORR. The intermediates (*O-*OH, *O-*O, *O-*OOH) in path-II are also considered for V, Nb, Mo, Tc, Ru, Ta, Re, and Os-N₄ (See **Methods** for details). Intermediates are not stable in La-N₄ and Hg-N₄ is not stable. The *O is expected to form on the active site in most of M-N₄ systems in a 0.7–1.4 V range. For the M-N₄ systems following path-II, The *O formation at the *O-M site is expected in the same range.

Figure S18. Comparison of predictive accuracy of various machine learning models trained with different descriptors for predicting the overpotentials of HER, OER and ORR. Mean and standard deviation values of the Area Under the Receiver Operating Characteristic Curve (ROC AUC) for different machine learning methods.

Figure S19. Atom positions used for the Coulomb marix. The atomic positions of upper-left (UL), upper-right (UR), lower-right (LR), and lower-left (LL).

Figure S20. Receiver operating characteristic (ROC) curve for different classifiers. The mean ROC are calculated among curves for 100 random splits into the training and validation sets for predicting the overpotentials of (a) HER, (b) OER and (c) ORR.

Figure S21. Cumulative explained variance ratios as a function of the number of principal components. a, HER: best classifiers (random forest in the case of elemental properties, and k-nearest neighbors in the case of DFT-optimized geometry). b, OER and ORR: best classifier (random forest).

Supplementary Tables

Transition	_exn	E ^{DFT} E-coh										
Metal	E_{-coh}^{exp}	PBE	PBE+TS	RPBE	RPBE+TS	RPBE(U)+TS	AVG ^b					
Sc HCP	3.90	4.14 [0.24]	5.07 [1.17]	3.76 [-0.14]	4.64 [0.74]	4.01 [0.11]	4.33 [0.43]					
Ti ^{hCP}	4.84	5.42 [0.58]	6.53 [1.69]	4.93 [0.09]	6.01 [1.17]	4.46 [-0.38]	5.23 [0.39]					
$\mathbf{V}^{ ext{ BCC}}$	5.30	5.38 [0.08]	6.55 [1.25]	4.86 [-0.44]	6.02 [0.72]	3.93 [-1.37]	4.98 [-0.32]					
Cr BCC	4.09	4.05 [-0.04]	5.42 [1.33]	3.47 [-0.62]	4.81 [0.72]	2.26 [-1.83]	3.54 [-0.55]					
Fe ^{BCC}	4.28	4.86 [0.58]	5.77 [1.49]	4.25 [-0.03]	5.13 [0.85]	3.35 [-0.93]	4.24 [-0.04]					
Co ^{hCP}	4.43	5.15 [0.72]	5.97 [1.54]	4.57 [0.14]	5.38 [0.95]	3.54 [-0.89]	4.46 [0.03]					
Ni FCC	4.44	4.79 [0.35]	5.78 [1.34]	4.21 [-0.23]	5.17 [0.73]	3.91 [-0.53]	4.54 [0.10]					
Cu FCC	3.48	3.49 [0.01]	4.10 [0.62]	3.01 [-0.47]	3.59 [0.11]	3.18 [-0.30]	3.39 [-0.09]					
Zn HCP	1.35	1.09 [-0.26]	1.51 [0.16]	0.72 [-0.63]	1.12 [-0.23]	1.11 [-0.24]	1.11 [-0.24]					
Y HCP	4.39	4.17 [-0.22]	4.95 [0.56]	3.78 [-0.61]	4.53 [0.14]	4.53 [0.14]	4.53 [0.14]					
$\mathbf{Zr}^{\mathrm{HCP}}$	6.29	6.20 [-0.09]	7.36 [1.07]	5.74 [-0.55]	6.87 [0.58]	6.87 [0.58]	6.87 [0.58]					
Nb ^{BCC}	7.44	7.00 [-0.44]	8.39 [0.95]	6.40 [-1.04]	7.76 [0.32]	7.76 [0.32]	7.76 [0.32]					
Mo ^{BCC}	6.80 6.26 [-0.54]		7.71 [0.91]	5.61 [-1.19]	7.04 [0.24]	7.04 [0.24]	7.04 [0.24]					
Tc ^{HCP}	7.13	6.92 [-0.21]	9.15 [2.02]	6.22 [-0.91]	8.41 [1.28]	8.41 [1.28]	8.41 [1.28]					
Ru HCP	6.74	6.75 [0.01]	7.80 [1.06]	6.00 [-0.74]	7.02 [0.28]	7.02 [0.28]	7.02 [0.28]					
Rh FCC	5.72	5.75 [0.03]	6.54 [0.82]	5.03 [-0.69] 5.80 [0.08]		5.80 [0.08]	5.80 [0.08]					
Pd FCC	3.90	3.73 [-0.17]	4.00 [0.10]	3.11 [-0.79]	3.37 [-0.53]	3.37 [-0.53]	3.37 [-0.53]					
Ag ^{FCC}	2.94	2.52 [-0.42]	2.97 [0.03]	2.01 [-0.93]	2.43 [-0.51]	2.43 [-0.51]	2.43 [-0.51]					
Cd^{HCP}	1.16	0.72 [-0.44]	1.11 [-0.05]	0.33 [-0.83]	0.70 [-0.46]	0.70 [-0.46]	0.70 [-0.46]					
Hf ^{HCP}	6.42	6.43 [0.01]	7.50 [1.08]	5.92 [-0.50]	6.96 [0.54]	6.96 [0.54]	6.96 [0.54]					
Ta ^{BCC}	8.09	8.12 [0.03]	9.25 [1.16]	7.49 [-0.60]	8.60 [0.51]	8.60 [0.51]	8.60 [0.51]					
$\mathbf{W}^{ ext{ BCC}}$	8.79	8.84 [0.05]	9.99 [1.20]	8.10 [-0.69]	9.23 [0.44]	9.23 [0.44]	9.23 [0.44]					
Re ^{HCP}	8.02	7.76 [-0.26]	8.82 [0.80]	7.00 [-1.02]	8.05 [0.03]	8.05 [0.03]	8.05 [0.03]					
Os ^{HCP}	8.17	8.34 [0.17]	9.38 [1.21]	7.58 [-0.59]	8.62 [0.45]	8.62 [0.45]	8.62 [0.45]					
Ir FCC	6.92	7.23 [0.31]	7.79 [0.87]	6.55 [-0.37]	7.10 [0.18]	7.10 [0.18]	7.10 [0.18]					
Pt FCC	5.85	5.49 [-0.36]	6.01 [0.16]	4.80 [-1.05]	5.30 [-0.55]	5.30 [-0.55]	5.30 [-0.55]					
Au FCC	3.81	3.04 [-0.77]	3.42 [-0.39]	2.45 [-1.36]	2.81 [-1.00]	2.81 [-1.00]	2.81 [-1.00]					
M	E	-0.04	0.89	-0.62	0.29	-0.16	0.06					
MA	E	0.27	0.93	0.64	0.53	0.54	0.38					
MS	E	0.12	1.13	0.52	0.39	0.47	0.23					

Table S1. Experimental (E_{coh}^{exp}) and calculated (E_{coh}^{DFT}) cohesive energy (eV) of bulk transition metals. The difference of the calculated cohesive energy from the experimental value $(E_{coh}^{DFT} - E_{coh}^{exp})$ is given in brackets.

ME: mean error, **MAE:** mean absolute error, **MSE:** mean square error. HCP: hexagonal closed packed, BCC: body centered cubic, FCC: face centered cubic. Since Mn and La have quite different crysral structures from other transition metals and Hg is liquid, their direct comparison between experimental and calaculation cohesive energies are not made here. Energy cutoff for Y is used with 600eV due to its low energy maximum of pseudopotential. For covenience's sake (because the cohesive energy is oppositely signed with respect to the formation energy), we define $E_{-coh} \equiv -E_{coh}$ for our further discussion. For the 3d metals in the order of Sc through Zn, the Hubbard U_{eff} are used with 2.11, 2.58, 2.72, 2.79, 3.06, 3.29, 3.42, 3.40, 3.87, and 4.12 eV, according to the literature based on HER study². ^bAverage value of RPBE+TS and RPBE(U)+TS.

Transition	Jern			<i>d</i> ^{DFT}			
Metal	ackp	PBE	PBE+TS	RPBE	RPBE+TS	RPBE(U)+TS	AVG
Sc HCP	3.254	3.244 (-0.010)	3.087 (-0.167)	3.286 (0.032)	3.132 (-0.122)	3.211 (-0.043)	3.171 (-0.083)
Ti ^{hCP}	2.897	2.880 (-0.017)	2.789 (-0.108)	2.906 (0.009)	2.813 (-0.084)	2.860 (-0.037)	2.836 (-0.061)
$\mathbf{V}^{ ext{ BCC}}$	2.613	2.595 (-0.018)	2.543 (-0.07)	2.615 (0.002)	2.557 (-0.056)	2.590 (-0.023)	2.574 (-0.039)
Cr ^{BCC}	2.498	2.463 (-0.035)	2.406 (-0.092)	2.482 (-0.016)	2.421 (-0.077)	2.437 (-0.061)	2.429 (-0.069)
Fe BCC	2.460	2.455 (-0.005)	2.412 (-0.048)	2.479 (0.019)	2.431 (-0.029)	2.520 (0.060)	2.476 (0.016)
Co ^{HCP}	2.497	2.476 (-0.021)	2.443 (-0.054)	2.499 (0.002)	2.462 (-0.035)	2.464 (-0.033)	2.463 (-0.034)
Ni FCC	2.493	2.485 (-0.008)	2.418 (-0.075)	2.511 (0.018)	2.438 (-0.055)	2.406 (-0.087)	2.422 (-0.071)
Cu FCC	2.556	2.568 (0.012)	2.505 (-0.051)	2.599 (0.043)	2.533 (-0.023)	2.521 (-0.035)	2.527 (-0.029)
Zn HCP	2.665	2.666 (0.001)	2.603 (-0.062)	2.704 (0.039)	2.639 (-0.026)	2.624 (-0.041)	2.632 (-0.033)
Y HCP	3.556	3.549 (-0.007)	3.403 (-0.153)	3.591 (0.035)	3.453 (-0.103)	3.453 (-0.103)	3.453 (-0.103)
$\mathbf{Zr}^{\mathrm{HCP}}$	3.179	3.184 (0.005)	3.067 (-0.112)	3.207 (0.028)	3.092 (-0.087)	3.092 (-0.087)	3.092 (-0.087)
Nb ^{BCC}	2.859	2.871 (0.012)	2.776 (-0.083)	2.887 (0.028)	2.789 (-0.070)	2.789 (-0.070)	2.789 (-0.070)
Mo ^{bcc}	2.725	2.740 (0.015)	2.672 (-0.053)	2.753 (0.028)	2.683 (-0.042)	2.683 (-0.042)	2.683 (-0.042)
Tc ^{HCP}	2.710	2.718 (0.008)	2.628 (-0.082)	2.730 (0.020)	2.638 (-0.072)	2.638 (-0.072)	2.638 (-0.072)
Ru ^{HCP}	2.650	2.664 (0.014)	2.620 (-0.030)	2.676 (0.026)	2.632 (-0.018)	2.632 (-0.018)	2.632 (-0.018)
Rh FCC	2.539	2.708 (0.169)	2.669 (0.130)	2.727 (0.188)	2.685 (0.146)	2.685 (0.146)	2.685 (0.146)
Pd FCC	2.753	2.786 (0.033)	2.765 (0.012)	(0.012) 2.812 (0.059) 2.790 (0.037)		2.790 (0.037)	2.790 (0.037)
$Ag^{ m FCC}$	2.889	2.928 (0.039)	2.874 (-0.015)	2.977 (0.088)	2.911 (0.022)	2.911 (0.022)	2.911 (0.022)
Cd^{HCP}	2.979	3.040 (0.061)	2.961 (-0.018)	3.097 (0.118)	3.012 (0.033)	3.012 (0.033)	3.012 (0.033)
Hf ^{HCP}	3.131	3.134 (0.003)	3.043 (-0.088)	3.162 (0.031)	3.067 (-0.064)	3.067 (-0.064)	3.067 (-0.064)
Ta ^{BCC}	2.860	2.870 (0.010)	2.803 (-0.057)	2.889 (0.029)	2.817 (-0.043)	2.817 (-0.043)	2.817 (-0.043)
$\mathbf{W}^{ ext{ BCC}}$	2.741	2.760 (0.019)	2.713 (-0.028)	2.770 (0.029)	2.722 (-0.019)	2.722 (-0.019)	2.722 (-0.019)
Re ^{HCP}	2.567	2.752 (0.185)	2.715 (0.148)	2.761 (0.194)	2.725 (0.158)	2.718 (0.151)	2.718 (0.151)
Os ^{HCP}	2.675	2.693 (0.018)	2.661 (-0.014)	2.702 (0.027)	2.670 (-0.005)	2.670 (-0.005)	2.670 (-0.005)
Ir FCC	2.715	2.741 (0.026)	2.719 (0.004)	2.750 (0.035)	2.729 (0.014)	2.729 (0.014)	2.729 (0.014)
Pt FCC	2.772	2.804 (0.032)	2.777 (0.005)	2.819 (0.047)	2.794 (0.022)	2.794 (0.022)	2.794 (0.022)
Au FCC	2.879	2.938 (0.059)	2.906 (0.027)	2.968 (0.089)	2.934 (0.055)	2.934 (0.055)	2.934 (0.055)
M	E	0.0222	-0.0420	0.0461	-0.0201	-0.0125	-0.0163
MA	E	0.0312	0.0662	0.0473	0.0561	0.0529	0.0535
MSE		0.0029	0.0065	0.0046	0.0047	0.0041	0.0042

Table S2. Experimental (d^{exp}) and calculated (d^{DFT}) shortest interatomic distances (Å) of bulk transition metals. The difference from the calculated distance to the experimental value $(d^{DFT}-d^{exp})$ is given in parentheses.

^a See the legend of Table S1.

Numbe r of H (h)	C4	N ₁ C ₃	N ₂ C ₂	N2C2 ^b	N ₂ C ₂ ^c	N ₃ C ₁	N4	C 3	N ₁ C ₂	N ₂ C ₁	N3
0H	8.44	7.96	7.35	7.48	6.44	5.96	4.62	7.54	5.64	5.30	4.09
1H	7.68	5.87	5.14	5.25	5.10	3.70	3.00	5.66	4.78	3.32	1.79
2H	6.67	4.81	3.01	3.14	3.08	2.43	1.69	4.92	2.90	1.97	1.99
3H	4.41	2.52	2.60	2.61	2.25	2.11	2.36	3.15	2.47	2.76	3.08
4 H	2.86	2.93	2.41	2.43	3.17	2.95	3.17	-	-	-	-

Table S3. Vacancy formation energies (Ev in eV) of NnCm-GN by the presence of h H atoms $[E_v = E_{H_h N_n C_m Gr} + n\mu_C - (E_{C_{m+n}Gr} + n\mu_N + h\mu_H).$

In the absence of metal SAs, in general, highly N-doped moieties can be more easily formed. However, the vacancy formation is often preessed through harsh conditions such as high temperature, acid treatment, plasma treatment, laser beam, ultrasonics, etc. Then, even for large energy differences, various possibilities occur, and so diverse structures can be generated. Nevertheless, the H adsorption pheneomena are governed almost by steady state thermodyanamics. Most moieties for N_nC_m - G_N favor to form 2H or 3H adsorbed structures, while C_4 and N_2C_2 favor 4H and N_3 favors 1H.

Table S4. Vacancy formation energies ($\mathbf{E}_{\mathbf{v}}$ in eV) of pyrrolic defect sites in N-doped graphene by the presence of h H atoms [$\mathbf{E}_{\mathbf{v}} = E_{H_h N_n C_m Gr} + n\mu_C - (E_{C_{m+n} Gr} + n\mu_N + h\mu_H)$].

Numbe r of H (h)	C 4	N ₁ C ₃	N_2C_2	$N_2C_2{}^b$	$N_2C_2^c$	N ₃ C ₁	N4	C ₃	N_1C_2	N_2C_1	N_3
0H	-	-	16.09	-	16.08	14.85	13.68	13.89	12.67	11.14	9.94
1H	-	-	13.43	-	13.42	12.18	11.27	11.83	10.03	8.45	7.23
2H	-	-	10.79	-	10.78	9.89	8.92	9.49	7.71	6.73	5.82
3Н	-	-	9.61	-	9.59	8.69	8.17	7.37	6.52	5.97	5.45
4H	-	-	8.51	-	8.57	8.07	7.67	-	-	-	-

In comparison of the formation energies of pyrrolic and pyridinic defect sites, it is easier to form pyridinic defect sites than pyrrolic defect sites. The C_4 , N_1C_3 and $N_2C_2^{b}$ types of pyrrolic defect sites change to pyridinic defect sites by geometry optimization.

Table S5. (**TM**)**SA+vacancy formation energy** [$E_f = E_{MN_n}C_mG_r + n\mu_C - (E_{C_{m+n}Gr} + n\mu_N + \mu_M)$ in eV] for porphyrin type configurations of TM embedded SAC in M-N_nC_m-G_N (n+m= 4: di-vacancy sites, n+m=3: mono-vacancy sites). (RPBE(U)+TS results are in parentheses).

Transitio	C.	N.C.	N.C.	N.C.b	N.C.c	N.C.	NI.	C.	N.C.	N.C.	NI.
n Metal	C4	N1C3	IN2C2	$N_2C_2^{\circ}$	N2C2°	N3C1	1N4	C 3	N_1C_2	N2C1	1N3
Sc	7.07	5.13	3.66	3.72	3.70	2.23	1.22	6.00	4.35	3.52	2.82
	(7.15)	(5.25)	(3.80)	(3.85)	(3.84)	(2.38)	(1.39)	(6.21)	(4.55)	(3.70)	(2.94)
Ti	6.67 (6.55)	5.40	4.16	4.27	4.20	3.36	(2.52)	5.79	5.22	4.61	3.96
V	7.29	6.28	5 21	(4.10)	5 18	(3.02)	3.21	6 56	(3.07)	5 09	(3.05)
•	(6.65)	(5.54)	(4.30)	(4.39)	(4.24)	(3.19)	(1.95)	(6.00)	(4.94)	(4.11)	(3.20)
Cr	7.69	6.66	5.46	5.73	5.54	4.36	3.03	6.56	5.88	5.64	5.40
	(6.58)	(5.26)	(4.04)	(4.23)	(4.05)	(2.70)	(1.21)	(5.52)	(4.55)	(4.08)	(3.48)
Mn	7.81	6.01	5.02	4.93	4.73	3.89	2.92	6.28	6.08	5.62	4.82
Fo	(5.64)	(3.82)	(2.87)	(2.74)	(2.57)	(1.70)	(0.97)	(5.62)	(4.82)	(3.11)	(1.99)
ге	(6.95)	(5.48)	(4.61)	(4 45)	(4.19)	(3 55)	(2.36)	(6.34)	(5.08)	(4.91)	(3.10)
Со	7.31	6.33	5.22	5.07	4.72	3.86	2.82	5.79	5.54	5.31	4.92
	(6.82)	(5.39)	(4.54)	(4.39)	(4.09)	(3.14)	(2.04)	(5.65)	(5.32)	(4.64)	(3.96)
Ni	7.23	5.75	4.66	4.49	4.06	3.42	2.62	6.50	6.05	5.70	5.17
G	(7.24)	(5.78)	(4.42)	(4.29)	(3.87)	(3.10)	(2.19)	(6.19)	(5.54)	(4.95)	(4.39)
Cu	6.84 (6.97)	5.50	5.04	4.78	4.43	4.24	(3.46)	(7.80)	6.64	5.83	4.83
Zn	677	6 16	5.03	(4.04)	4 98	4.24)	2.71	7.88	6 32	(3.03)	3.86
2.11	(6.84)	(6.13)	(4.86)	(5.16)	(4.79)	(3.73)	(2.26)	(7.72)	(6.09)	(4.45)	(3.62)
Y	7.06	5.22	3.72	3.77	3.77	2.25	1.20	6.07	4.43	3.56	2.75
-	1100	0.22	0.72			2120	1.20	0.07		0.00	
Zr	6.73	5.46	4.18	4.29	4.26	3.48	2.85	6.14	5.69	5.25	4.76
Nb	7.45	6.41	5.84	5.85	5.87	5.17	4.71	7.38	6.85	6.58	6.23
Мо	8.18	7.23	6.78	6.80	6.81	6.29	5.79	7.61	7.46	7.31	7.03
Tc	8.61	7.97	7.60	7.64	7.68	7.23	6.51	8.03	7.74	7.59	7.69
Ru	7.43	7.08	6.33	6.80	6.49	6.02	5.24	6.24	6.27	6.30	6.54
Rh	7.13	6.24	5.57	5.83	5.50	4.77	3.74	5.60	5.59	5.83	6.10
Pd	7.14	5.98	5.00	4.74	4.37	3.69	2.88	6.17	5.97	5.44	5.32
Ag	8.36	6.92	6.40	6.09	5.82	5.56	5.58	8.46	6.92	6.20	4.87
Cd	8.53	7.91	6.35	6.91	6.79	5.36	4.09	8.46	*	5.71	4.46
La	4.80	3.14	1.55	1.64	1.58	0.1	-1.03	3.65	2.03	1.11	0.29
Hf	6.82	5.57	4.32	4.40	4.45	3.47	2.73	6.21	5.78	5.32	4.83
Та	7.52	6.53	5.79	5.88	5.88	5.28	4.66	7.56	7.25	6.98	6.71
W	8.41	7.66	7.16	7.15	7.14	6.74	6.31	8.23	8.19	8.13	7.95
Re	8.16	7.65	7.32	7.34	7.40	7.08	6.61	7.95	7.90	7.85	8.22
Os	7.91	7.66	7.11	7.47	7.22	6.81	6.15	7.24	7.41	7.78	8.24
Ir	7.03	6.22	5.67	5.78	5.65	4.95	4.05	5.96	6.23	6.89	7.54
Pt	6.55	5.55	4.84	4.49	4.20	3.68	2.94	6.21	6.41	6.48	6.86
Au	7.02	5.80	5.47	5.08	4.92	4.72	4.99	8.38	7.11	6.17	5.87
Hg	8.12	7.77	7.05	*	7.41	*	*	*	*	*	*

"*" denotes unstable systems.

Transitio n	C4	N ₁ C ₃	N ₂ C ₂	N ₂ C ₂ ^b	N ₂ C ₂ ^c	N ₃ C ₁	N4	Сз	N ₁ C ₂	N ₂ C ₁	N 3
Metal	5.05		0.01			0.65		6.50	5 00	- 10	5.00
Sc	-5.97	-1.78	-9.01	-8.32	-7.30	-8.65	-7.92	-6.52	-5.88	-6.40	-5.82
ті	-7.73	-8.87	-9.87	-9.13	-8.16	-8.87	-7.98	-8.09	-6 37	-6 68	-6.04
11	(-6.30)	(-7.40)	(-8.39)	(-7.68)	(-6.73)	(-7.66)	(-6.77)	(-6.59)	(-4.97)	(-5.30)	(-4.80)
V	-7.13	-8.01	-8.84	-8.09	-7.20	-8.02	-7.31	-7.34	-5.89	-6.21	-5.56
	(-5.67)	(-6.65)	(-7.65)	(-6.93)	(-6.04)	(-6.97)	(-6.48)	(-5.80)	(-4.57)	(-5.09)	(-4.72)
Cr	-5.52	-6.42	-7.37	-6.48	-5.63	-6.68	-6.28	-6.13	-4.51	-4.45	-3.41
	(-4.08)	(-5.27)	(-6.25)	(-5.43)	(-4.57)	(-5.79)	(-5.55)	(-4.62)	(-3.30)	(-3.46)	(-2.78)
Mn	-5.03	-6.70	-7.45	-6.92	-6.07	-6.79	-6.03	-6.04	-3.95	-4.11	-3.62
-	(-3.88)	(-5.57)	(-6.28)	(-5.78)	(-4.91)	(-5.65)	(-4.65)	(-3.38)	(-1.88)	(-3.30)	(-3.13)
Fe	-6.10	-/.15	-1.19	-7.33	-6.58	-1.22	-6.5/	-6.92	-5.03	-4.85	-4.03
Ca	(-4.79)	(-0.15)	(-0.70)	(-0.29)	(-3.31)	(-0.05)	(-3.48)	(-4.88)	(-3.28)	(-5.71)	(-5.50)
CO	(-5, 11)	(-6.42)	(-7.02)	(-6.54)	(-5.80)	(-6.62)	-7.00	(-5,77)	-3.42 (-3.80)	(-4.18)	-4.4J (-3.58)
Ni	-6.33	-7.69	-8.54	-8.08	-7.46	-7.98	-7.05	-6.55	-4.70	-4.75	-4.00
1 11	(-5.06)	(-6.40)	(-7.51)	(-7.02)	(-6.40)	(-7.04)	(-6.22)	(-5.60)	(-3.95)	(-4.24)	(-3.52)
Cu	-5.14	-6.36	-6.57	-6.21	-5.52	-5.58	-4.62	-3.55	-2.53	-3.03	-2.75
	(-4.60)	(-5.87)	(-6.09)	(-5.74)	(-5.06)	(-5.17)	(-4.46)	(-3.17)	(-2.27)	(-2.83)	(-2.67)
Zn	-2.74	-3.22	-4.11	-3.19	-2.49	-3.29	-2.90	-1.11	-0.38	-1.64	-1.25
	(-2.66)	(-3.25)	(-4.27)	(-3.34)	(-2.67)	(-3.61)	(-3.34)	(-1.26)	(-0.60)	(-1.93)	(-1.48)
Y	-5.85	-7.57	-8.83	-8.15	-7.11	-8.50	-7.82	-6.33	-5.68	-6.24	-5.77
Zr	-8.53	-9.68	-10.70	-9.98	-8.96	-9.61	-8.51	-8.60	-6.76	-6.89	-6.11
Nb	-8.71	-9.62	-9.94	-9.31	-8.25	-8.83	-7.55	-8.26	-6.49	-6.47	-5.53
Мо	-7.24	-8.07	-8.28	-7.64	-6.58	-6.98	-5.74	-7.30	-5.16	-5.01	-4.00
Tc	-8.20	-8.71	-8.84	-8.17	-7.09	-7.42	-6.40	-8.26	-6.25	-6.10	-4.72
Ru	-7.98	-8.21	-8.72	-7.62	-6.89	-7.23	-6.28	-8.66	-6.33	-5.99	-4.48
Rh	-7.06	-7.82	-8.24	-7.36	-6.65	-7.25	-6.56	-8.07	-5.79	-5.25	-3.69
Pd	-4.62	-5.65	-6.39	-6.02	-5.35	-5.91	-4.98	-5.07	-2.98	-3.21	-2.04
Ag	-2.46	-3.78	-4.05	-3.74	-2.96	-3.10	-1.34	-1.85	-1.09	-1.51	-1.55
Cd	-0.56	-1.06	-2.37	-1.18	-0.26	-1.57	-1.10	-0.11	*	-0.26	-0.24
La	-7.78	-9.31	-10.65	-9.94	-8.95	-10.31	-9.70	-8.40	-7.73	-8.35	-7.88
Hf	-8.53	-9.65	-10.66	-9.96	-8.87	-9.72	-8.73	-8.63	-6.76	-6.92	-6.12
Та	-9.47	-10.34	-10.83	-10.11	-9.07	-9.55	-8.43	-8.92	-6.93	-6.90	-5.89
W	-9.21	-9.84	-10.09	-9.47	-8.44	-8.72	-7.41	-8.88	-6.62	-6.38	-5.27
Re	-8.28	-8.66	-8.75	-8.10	-7.00	-7.20	-5.93	-7.97	-5.73	-5.48	-3.83
Os	-9.10	-9.23	-9.53	-8.54	-7.76	-8.04	-6.96	-9.26	-6.79	-6.12	-4.38
Ir	-8.47	-9.15	-9.46	-8.71	-7.81	-8.38	-7.54	-9.02	-6.45	-5.48	-3.56
Pt	-7.14	-8.02	-8.48	-8.21	-7.45	-7.85	-6.85	-6.97	-4.46	-4.10	-2.44
Au	-4.18	-5.27	-5.37	-5.13	-4.24	-4.33	-2.32	-2.31	-1.28	-1.92	-0.94
Hg	-0.48	-0.70	-1.18	*	0.85	*	*	*	*	*	*

Table S6. Embedding energy [$E_{emb} = E_{M@G^d} - (E_{G^d} + E_M)$ in eV] for configurations of (TM)SA embedded in M-N_nC_m-G_N (G^d denotes graphene with defect). (RPBE(U)+TS results are in parentheses).

"*" denotes unstable systems. It should be noted that among all possible $M-N_nC_m-G_N$ configurations, the cases of $M-N_2C_2-G_N$ are particularly stable with the largest negative embedding energies; thus, the N_2C_2 moiety can be most easily made.

Transitio n Metal	C4	N ₁ C ₃	N ₂ C ₂	N ₂ C ₂ ^b	N ₂ C ₂ ^c	N ₃ C ₁	N4	C ₃	N ₁ C ₂	N ₂ C ₁	N3
Sc	-1.32	-3.14	-4.36	-3.67	-2.65	-4.00	-3.27	-1.87	-1.24	-1.76	-1.18
T *	(-1.24)	(-3.02)	(-4.22)	(-3.55)	(-2.52)	(-3.85)	(-3.11)	(-1.66)	(-1.03)	(-1.58)	(-1.06)
11	(-1.84)	-2.87	-3.80	(-3.13)	(-2.27)	(-3.20)	(-2.31)	(-2.13)	(-0.50)	(-0.84)	(-0.34)
V	-1.11	-1.99	-2.81	-2.07	-1.18	-2.00	-1.29	-1.32	0.13	-0.19	0.46
	(-1.74)	(-2.72)	(-3.72)	(-3.01)	(-2.11)	(-3.04)	(-2.55)	(-1.87)	(-0.64)	(-1.16)	(-0.79)
Cr	-0.70	-1.61	-2.56	-1.67	-0.81	-1.87	-1.47	-1.32	0.30	0.36	1.40
Mn	-0.58	(-3.00)	(-3.98)	(-3.10) -2.47	(-2.51)	(-5.52)	(-5.28)	-1 59	(-1.05) 0.50	(-1.20) 0.34	(-0.32) 0.82
IVIII	(-2.75)	(-4.44)	(-5.15)	(-4.65)	(-3.79)	(-4.52)	(-3.52)	(-2.26)	(-0.76)	(-2.17)	(-2.01)
Fe	-0.97	-2.01	-2.66	-2.20	-1.45	-2.09	-1.44	-1.78	0.10	0.28	1.10
C	(-1.44)	(-2.78)	(-3.41)	(-2.94)	(-2.16)	(-2.68)	(-2.14)	(-1.53)	(0.07)	(-0.36)	(-0.01)
Co	-1.08	-1.94	-2.80	-2.33	(-2.26)	-2.30	(-2.45)	-2.08	-0.04	(-0.64)	(-0.93)
Ni	-1.16	-2.51	-3.37	-2.91	-2.29	-2.80	-1.87	-1.37	0.47	0.42	(-0.04)
	(-1.15)	(-2.48)	(-3.60)	(-3.10)	(-2.49)	(-3.12)	(-2.31)	(-1.69)	(-0.04)	(-0.33)	(0.39)
Cu	-1.55	-2.77	-2.98	-2.62	-1.93	-1.99	-1.03	0.04	1.06	0.56	0.84
Zn	(-1.42)	(-2.69)	(-2.91)	(-2.56)	(-1.88)	(-1.99)	(-1.28)	(0.01)	(0.91)	(0.35)	(0.51)
ZII	(-1.55)	(-2.14)	(-3.16)	(-2.24)	(-1.56)	(-2.50)	(-2.24)	(-0.16)	(0.51)	(-0.83)	(-0.37)
Y	-1.33	-3.05	-4.30	-3.63	-2.59	-3.97	-3.30	-1.80	-1.15	-1.71	-1.25
Zr	-1.66	-2.81	-3.84	-3.11	-2.09	-2.75	-1.64	-1.74	0.11	-0.02	0.76
Nb	-0.94	-1.86	-2.18	-1.54	-0.48	-1.06	0.21	-0.50	1.27	1.30	2.23
Мо	-0.21	-1.04	-1.24	-0.60	0.46	0.06	1.29	-0.27	1.88	2.03	3.03
Тс	0.22	-0.30	-0.42	0.24	1.33	1.00	2.02	0.15	2.16	2.31	3.69
Ru	-0.96	-1.19	-1.69	-0.60	0.13	-0.21	0.74	-1.63	0.69	1.03	2.54
Rh	-1.26	-2.02	-2.45	-1.56	-0.85	-1.45	-0.76	-2.28	0.01	0.55	2.10
Pd	-1.26	-2.29	-3.02	-2.66	-1.98	-2.54	-1.62	-1.71	0.39	0.16	1.33
Ag	-0.03	-1.35	-1.62	-1.31	-0.53	-0.67	1.08	0.58	1.34	0.92	0.88
Cd	0.14	-0.36	-1.67	-0.49	0.43	-0.87	-0.40	0.58	*	0.44	0.46
La	-3.60	-5.13	-6.47	-5.76	-4.77	-6.13	-5.52	-4.22	-3.55	-4.17	-3.70
Hf	-1.57	-2.69	-3.71	-3.00	-1.91	-2.76	-1.77	-1.67	0.20	0.04	0.84
Та	-0.87	-1.73	-2.23	-1.51	-0.47	-0.95	0.17	-0.32	1.67	1.70	2.71
W	0.02	-0.61	-0.86	-0.24	0.79	0.51	1.81	0.35	2.61	2.85	3.96
Re	-0.23	-0.61	-0.70	-0.06	1.04	0.85	2.12	0.08	2.31	2.57	4.22
Os	-0.48	-0.61	-0.91	0.08	0.86	0.58	1.66	-0.64	1.83	2.50	4.24
Ir	-1.37	-2.05	-2.35	-1.61	-0.71	-1.28	-0.44	-1.92	0.65	1.62	3.54
Pt	-1.85	-2.72	-3.19	-2.91	-2.15	-2.55	-1.55	-1.67	0.83	1.20	2.86
Au	-1.37	-2.46	-2.56	-2.31	-1.43	-1.51	0.50	0.51	1.53	0.89	1.88
Hg	-0.28	-0.49	-0.97	*	1.06	*	*	*	*	*	*

Table S7. Stability of (TM)SA-embedding over metal-cohesion $[E_{emb/coh} = E_{M@G^d} - (E_G^d + \mu_M) = E_{emb} - E_{-coh}$ in eV] for M-N_nC_m-G_N {see Figure 3}. (RPBE(U)+TS results are in parentheses).

For covenience's sake (because the cohesive energy is oppositely signed with respect to the formation energy), we define $E_{-coh} \equiv -E_{coh}$ for our further discussion. TM-SAs on di-vacancy sites (N_{n=0-4}C_{4-n}-G_N), in partuclar, in N₂C₂G_N have strongly negative $E_{emb/coh}$, indicating easy formation of SAs over NPs, whereas those on mono-vacancy sites (N_{n=1-3}C_{3-n}-G_N) show instability of SAs over NPs with mostly positive $E_{emb/coh}$, indicating easy formation of NPs over SAs, and those on C₃-G_N show weakly negative $E_{emb/coh}$, indicating some mixtures of SAs and NPs with more SAs than NPs. "*" denotes unstable systems. The red-marked positive values indicate that the SA formation is not favored, but even adsorbed SAs can be readily desorbed which results in NPs aggregation.
Transitio n Metal	C4	N ₁ C ₃	N_2C_2	$N_2C_2^{b}$	$N_2C_2^c$	N ₃ C ₁	N4	C ₃	N_1C_2	N_2C_1	N3
Sc	1.28/1.16	1.11/1.25	1.10/1.05	1.13/1.22	1.12/1.28	1.00/1.15	0.90/1.05	1.94/2.11	1.82/2.17	1.71/1.90	1.67/1.85
Ti	0.93/0.93	0.87/0.96	0.80/0.86	0.88/0.98	0.83/0.99	0.76/0.82	0.68/0.83	1.64/1.98	1.63/1.85	1.61/1.66	1.59/1.71
V	0.78/0.77	0.69/0.61	0.67/0.64	0.82/0.86	0.71/0.85	0.58/0.83	0.65/0.69	1.58/1.72	1.60/1.61	1.57/1.61	1.53/1.63
Cr	0.79/0.72	0.74/0.56	0.66/0.72	0.72/0.80	0.68/0.83	0.54/0.32	0/0.51	1.55/1.72	1.52/1.61	1.44/1.51	1.55/1.54
Mn	0/0.53	0.59/0.43	0.51/0.41	0.57/0.63	0.52/0.44	0/0	0/0	1.45/1.62	1.58/1.42	1.61/1.67	1.69/1.92
Fe	0.63/0	0/0.29	0/0.27	0.20/0.35	0/0.27	0/0.28	0/0	1.38/1.54	1.34/1.37	1.42/1.65	1.51/1.68
Co	0.64/0.49	0/0	0/0	0.31/0.28	0/0	0/0	0/0	1.34/1.48	1.28/1.41	1.34/1.53	1.41/1.63
Ni	0/0	0/0	0/0	0.17/0.24	0/0	0/0	0/0	1.35/1.56	1.37/1.42	1.44/1.59	1.41/1.61
Cu	0/0	0/0	0/0	0.16/0.38	0/0	0/0	0/0.27	1.52/1.80	1.48/1.67	1.56/1.54	1.60/1.81
Zn	0/0.30	0/0.67	0.55/0.55	0.16/1.13	0/0.58	0.45/0.33	0/1.14	1.69/1.99	1.65/1.76	1.57/1.87	1.72/1.82
Y	1.53/1.54	1.40/1.59	1.41/1.37	1.41/1.52	1.41/1.59	1.32/1.67	1.18/1.50	2.15/2.29	2.03/2.22	1.92/2.11	1.89/2.13
Zr	1.24/1.28	1.17/1.40	1.07/1.31	1.13/1.24	1.09/1.38	1.01/1.23	0.97/1.08	1.90/2.26	1.83/2.06	1.82/1.99	1.82/1.88
Nb	0.99/1.10	0.90/1.05	0.86/0.95	0.92/0.95	0.90/1.00	0.80/0.90	0.99/1.09	1.82/2.00	1.82/1.83	1.78/1.97	1.75/1.77
Мо	0.89/0.88	0.82/1.04	0.93/0.90	0.84/1.04	0.95/1.07	0.91/0.92	0.84/0.97	1.77/1.98	1.74/1.81	1.70/1.85	1.65/1.78
Tc	0.91/0.90	0.69/0.99	0.87/0.84	0.74/0.98	0.91/1.09	0.80/0.84	0/0.60	1.70/1.87	1.65/1.75	1.62/1.72	1.58/1.68
Ru	0.91/0.95	0.89/0.99	0.79/0.82	0.93/0.93	0.90/1.04	0.74/0.71	0/0.44	1.65/1.87	1.61/1.65	1.58/1.61	1.54/1.78
Rh	0.85/0.97	0.79/0.93	0.67/0.69	0.74/0.65	0.71/0.88	0/0.37	0/0	1.62/1.74	1.57/1.73	1.62/1.74	1.70/1.87
Pd	0.77/0.62	0.65/0	0/0	0.44/0.55	0/0	0/0.26	0/0	1.61/1.88	1.71/1.74	1.75/1.92	1.85/1.92
Ag	0/0.29	0/0	0/0	0.38/0.70	0/0	0/0	0/1.62	2.15/2.02	2.13/2.05	2.10/2.03	2.10/2.18
Cd	0/1.63	0/1.90	1.29/1.84	1.35/1.70	1.29/1.55	1.26/1.28	1.31/1.67	2.22/2.32	*	2.37/2.34	2.30/2.13
La	1.71/1.76	1.67/1.77	1.64/1.69	1.68/1.24	1.64/1.84	1.57/1.96	1.44/1.82	2.31/2.53	2.20/2.42	2.05/2.29	1.67/2.28
Hf	1.23/1.48	1.16/1.40	1.04/1.27	1.09/1.21	1.06/1.29	1.02/1.23	0.97/1.08	1.87/2.16	1.79/1.96	1.77/1.89	1.75/1.82
Та	1.01/1.14	0.89/1.15	0.89/0.96	0.92/0.99	0.92/1.01	0.74/0.82	0.67/0.71	1.80/1.88	1.80/1.83	1.75/1.86	1.70/1.89
W	0.86/0.85	0.77/0.93	0.72/0.76	0.79/1.06	0.73/0.79	0.91/0.93	0.83/0.85	1.77/1.97	1.74/1.91	1.69/1.80	1.63/1.70
Re	0.92/0.92	0.65/1.07	0.82/0.83	0.68/1.04	0.91/0.93	0.81/0.93	0/0.76	1.71/1.78	1.67/1.74	1.64/1.78	1.60/1.72
Os	0.95/0.94	0.90/1.04	0.81/0.96	0.92/0.97	0.89/0.93	0.74/0.90	0/0.66	1.70/1.76	1.65/1.72	1.61/1.74	1.56/1.71
Ir	0.89/0.88	0.81/1.01	0.69/0.69	0.70/0.80	0.68/0.77	0/0.72	0/0.36	1.65/1.89	1.62/1.78	1.62/1.76	1.66/1.86
Pt	0.76/0.61	0.62/0	0/0.38	0.45/0.62	0/0	0/0.32	0/0	1.65/1.82	1.79/1.79	1.73/1.89	1.79/1.94
Au	0/0	0/0	0/0	0.38/0.67	0/0.33	0/0	0/0	1.87/1.87	1.99/2.07	2.35/2.05	2.13/2.29
Hg	0/0	0/0	1.38/2.09	*	0.23/177	*	*	*	*	*	*

Transitio n Metal	C4	N ₁ C ₃	N_2C_2	$N_2C_2^{b}$	$N_2C_2^c$	N ₃ C ₁	N_4	C ₃	N_1C_2	N_2C_1	N3
Sc	2.05	2.06	2.11	2.03	2.16	1.88	1.87	1.91	1.92	1.90	1.89
Ti	2.03	1.76	1.75	1.75	1.75	1.75	1.75	1.80	1.79	1.78	1.79
v	1.67	1.68	1.69	1.69	1.68	1.70	1.68	1.72	1.72	1.73	1.72
Cr	1.92	2.16	1.63	1.94	1.81	2.09	1.61	1.67	1.67	1.68	1.68
Mn	2.15	2.13	1.85	1.56	2.23	2.22	1.53	1.63	1.61	1.64	1.66
Fe	1.84	2.02	1.97	1.72	2.08	1.72	1.50	1.58	1.57	1.59	1.61
Со	1.74	1.87	1.79	1.67	1.44	1.63	1.45	1.56	1.51	1.54	1.57
Ni	1.82	1.79	1.74	1.72	1.74	1.87	2.20	1.56	1.47	1.48	1.54
Cu	2.03	1.98	1.97	1.88	2.17	2.04	2.18	1.53	1.54	1.49	1.51
Zn	2.19	2.23	2.12	1.92	2.19	2.08	1.56	1.54	1.53	1.54	1.53
Y	2.14	2.14	2.24	2.21	2.33	2.05	2.04	2.06	2.07	2.08	2.07
Zr	1.92	1.91	1.91	1.91	1.91	1.91	1.90	1.97	1.95	1.94	1.94
Nb	1.80	1.82	1.82	1.82	1.82	1.82	1.83	1.87	1.86	1.86	1.85
Мо	1.74	1.76	1.76	1.76	1.76	1.75	1.72	1.80	1.79	1.78	1.77
Tc	1.72	1.68	1.69	1.70	1.66	1.67	1.63	1.75	1.73	1.72	1.71
Ru	1.66	1.62	1.63	1.62	1.61	1.61	1.58	1.70	1.69	1.70	1.67
Rh	1.82	1.82	1.76	1.55	1.54	1.54	1.53	1.69	1.62	1.65	1.65
Pd	2.30	2.12	2.07	1.92	2.20	2.31	2.43	1.70	1.58	1.59	1.57
Ag	2.24	2.24	2.33	1.97	2.38	2.48	1.62	1.66	1.67	1.63	1.62
Cd	1.70	1.69	2.74	2.41	1.70	1.70	1.70	1.69	*	1.69	1.68
La	2.21	2.21	2.42	2.09	2.50	2.21	2.20	2.17	2.16	2.18	2.15
Hf	1.90	1.89	1.89	1.89	1.89	1.89	1.88	1.95	1.94	1.87	1.92
Та	1.80	1.81	1.82	1.81	1.81	1.81	1.80	1.87	1.80	1.85	1.85
W	1.75	1.76	1.76	1.76	1.75	1.75	1.73	1.81	1.79	1.79	1.78
Re	1.72	1.70	1.70	1.71	1.68	1.69	1.65	1.76	1.74	1.73	1.72
Os	1.70	1.65	1.83	1.64	1.63	1.63	1.61	1.71	1.70	1.70	1.69
Ir	1.64	1.59	1.62	1.59	1.57	1.57	1.56	1.69	1.64	1.65	1.64
Pt	1.82	2.33	1.85	1.79	2.42	2.45	2.47	1.69	1.59	1.59	1.59
Au	2.40	2.44	2.48	1.96	2.48	2.47	2.49	1.64	1.64	1.59	1.57
Hg	2.50	2.45	1.65	*	1.64	*	*	*	*	*	*

Table S9. Metal-to-H bond distances (Å) **upon the H adsorption** (For di-vacancy sites, the M-H bond distances are given here only for the global minima configurations).

		C	4		N1C3			N ₂ C ₂				N ₂ C ₂ ^b				
TM	prist/*	*0	*OH	*00H	prist/*	*0	*OH	*00H	prist/*	*0	*OH	*00H	prist/*	*0	*OH	*00H
Sc	1.28/1.62	1.73	1.90	2.02	1.13/1.59	1.75	1.91	2.03	1.10/1.35	1.86	1.93	2.04	1.13/1.40	1.80	1.91	2.03
Ti	0.93/1.09	1.67	1.85	1.92	0.87/1.11	1.66	1.85	1.92	0.80/1.10	1.66	1.84	1.93	0.88/1.12	1.66	1.84	1.92
V	0.78/0.86	1.61	1.80	1.83	0.72/0.83	1.61	1.80	1.86	0.67/0.81	1.61	1.80	1.83	0.82/0.81	1.82	1.81	1.82
Cr	0.79/0.79	1.58	1.77	1.78	0.74/0.85	1.58	1.78	1.74	0.66/0.81	1.59	1.79	1.74	0.72/0.86	1.83	1.82	1.83
Mn	0/0.66	1.58	1.78	1.74	0.59/0.78	1.58	1.82	1.82	0.51/0.76	1.57	1.83	1.83	0.57/0.82	1.57	1.83	1.84
Fe	0.63/0.59	1.57	1.83	1.83	0.04/0.78	1.59	1.85	1.79	0/0.64	1.61	1.80	1.64	0.20/0.77	1.61	1.84	1.86
Со	0.64/0.64	1.61	1.77	1.73	0.01/0.70	1.64	1.79	1.75	0/0.64	1.65	1.84	1.77	0.31/0.66	1.65	1.83	1.82
Ni	0/0.57	1.69	1.84	1.83	0.01/0.65	1.72	1.85	1.86	0/0.58	1.74	1.90	1.93	0.17/0.61	1.75	1.88	1.88
Cu	0/0.55	1.83	1.91	2.08	0.02/0.57	1.88	1.92	1.90	0/0.39	1.92	2.01	2.13	0.16/0.51	1.92	1.91	1.91
Zn	0/0.61	1.95	1.96	2.12	0.12/0.78	1.90	1.93	1.97	0.55/0.89	1.88	1.92	2.04	0.16/1.08	1.88	1.89	1.94
Y	1.53/1.94	1.86	2.05	2.18	1.42/1.88	1.88	2.06	2.19	1.41/1.62	1.94	2.07	2.20	1.41/1.64	1.94	2.06	2.19
Zr	1.24/1.46	1.81	2.00	2.09	1.17/1.54	1.81	1.99	2.08	1.07/1.43	1.80	1.99	2.10	1.13/1.36	1.80	1.97	2.08
Nb	0.99/1.24	1.74	1.94	1.99	0.90/1.24	1.74	1.94	2.01	0.86/1.06	1.74	1.94	2.01	0.92/1.04	1.74	1.91	1.98
Мо	0.89/0.87	1.70	1.91	1.92	0.86/0.95	1.72	1.91	1.92	0.93/1.08	1.96	2.69	2.69	0.84/1.10	1.96	1.92	1.95
Tc	0.91/0.91	1.69	1.90	1.86	0.75/1.05	1.92	1.91	1.97	0.87/1.02	1.97	2.69	2.75	0.74/1.06	1.96	1.91	1.93
Ru	0.91/0.89	1.69	1.89	1.81	0.89/0.98	1.70	1.90	1.77	0.79/0.93	2.22	2.41	2.59	0.93/0.99	1.93	1.94	1.94
Rh	0.85/0.88	1.75	1.91	1.90	0.79/0.97	1.76	1.97	1.91	0.67/0.82	1.79	1.96	1.94	0.74/0.97	1.78	1.96	1.93
Pd	0.77/0.88	1.82	2.01	2.08	0.65/0.92	1.88	1.98	1.99	0/0.80	1.92	2.08	2.12	0.44/0.83	1.91	1.94	1.95
Ag	0/0.89	1.98	2.07	2.13	0.01/1.00	2.03	2.03	1.98	0/0.69	2.14	2.20	2.59	0.38/1.34	1.98	2.05	1.97
Cd	0/1.33	2.06	2.07	2.29	0.02/1.99	2.04	2.04	2.07	1.29/1.70	2.05	2.05	2.10	1.35/1.64	2.03	2.07	2.12
La	1.71/2.39	1.85	2.17	2.30	1.68/1.88	1.88	2.17	2.31	1.64/2.09	1.90	2.20	2.33	1.68/1.89	1.89	2.18	2.31
Hf	1.23/1.38	1.82	1.95	2.06	1.16/1.43	1.82	1.96	2.07	1.04/1.36	1.81	1.95	2.07	1.09/1.25	1.81	1.94	2.06
Та	1.01/1.24	1.77	1.92	1.96	0.90/1.24	1.77	1.94	2.01	0.89/1.10	1.96	2.33	2.40	0.92/1.05	1.95	1.91	1.93
W	0.86/0.78	1.74	1.92	1.99	0.82/0.95	1.75	1.91	1.91	0.72/1.08	1.95	2.78	2.78	0.79/1.11	1.92	1.93	1.91
Re	0.92/0.98	1.96	2.67	2.69	0.72/1.03	1.93	1.92	1.98	0.82/1.02	1.97	2.71	2.77	0.68/1.09	1.96	1.93	1.95
Os	0.95/0.95	2.01	2.63	2.73	0.91/1.01	1.97	1.94	1.97	0.81/0.96	2.19	2.46	2.56	0.92/1.02	1.95	1.94	1.94
Ir	0.89/0.91	1.76	1.95	1.88	0.81/0.98	1.77	1.98	1.85	0.69/0.85	1.80	1.99	1.90	0.70/0.97	1.79	1.97	1.84
Pt	0.76/0.90	1.82	2.02	2.02	0.62/0.93	1.86	1.98	2.06	0/0.71	1.87	2.07	2.12	0.45/0.84	1.89	1.94	1.95
Au	0/0.89	1.96	2.87	3.25	0.01/1.25	1.87	1.98	3.13	0/0.54	2.19	2.28	3.14	0.38/1.48	1.91	1.97	3.38
Hg	0/0.63	2.32	2.32	2.69	0.01/1.43	2.02	2.08	2.23	1.38/1.99	2.02	2.05	2.08	*	*	*	*

Table S10. Off-plane distances (Å) of a (TM)SA embedded M-N_nC_m-G_N graphene systems before/after the *O adsorption ("prist/ *") as OER/ORR reaction intermediates and the bond distances (Å) from metal to *O , *OH and *OOH.

Table S10. Co	ntinued
---------------	---------

		N_2	C ₂ ^c			N3(C_1			N	4	
ТМ	prist/*	*0	*OH	*00H	prist/*	*0	*OH	*OOH	prist/*	*0	*OH	*OOH
Sc	1.12/1.49	1.75	1.92	2.03	1.00/1.28	1.77	1.91	2.03	0.90/1.28	1.76	1.90	2.02
Ti	0.83/1.13	1.66	1.83	1.89	0.76/0.99	1.66	1.83	1.88	0.68/0.93	1.65	1.82	1.86
v	0.74/0.81	1.83	1.83	1.81	0.61/0.78	1.61	1.79	1.78	0.65/0.84	1.88	1.88	1.92
Cr	0.68/0.90	1.84	1.83	1.83	0.54/0.76	1.59	1.81	1.77	0/0.74	1.58	1.86	1.85
Mn	0.52/0.85	1.57	1.86	1.87	0.02/0.74	1.58	1.86	1.89	0/0.79	1.60	1.90	1.93
Fe	0.03/0.83	1.83	1.87	1.77	0.02/0.64	1.63	1.84	1.67	0/0.58	1.66	1.84	1.79
Со	0.22/0.66	1.66	1.83	1.82	0.02/0.57	1.68	1.85	1.83	0/0.75	1.66	1.89	1.92
Ni	0.04/0.71	1.74	1.84	1.85	0.02/0.44	1.80	1.85	1.85	0/0.23	1.95	2.04	2.23
Cu	0.01/0.62	1.89	1.88	1.88	0.02/0.80	1.82	1.89	1.89	0/1.20	1.76	1.97	2.15
Zn	0.02/0.56	1.94	1.89	1.93	0.45/1.14	1.86	1.87	1.95	0/1.01	1.87	1.89	1.94
Y	1.41/1.86	1.86	2.06	2.19	1.32/1.58	1.93	2.06	2.19	1.18/1.56	1.91	2.06	2.18
Zr	1.09/1.59	1.80	1.98	2.08	1.01/1.46	1.80	1.97	2.09	0.97/1.25	1.79	1.95	2.07
Nb	0.90/1.24	1.93	1.95	2.03	0.85/1.04	1.96	1.94	1.98	0.99/1.07	1.75	1.98	2.04
Мо	0.95/1.13	1.97	1.92	1.94	0.91/1.00	1.96	1.92	1.96	0.84/1.04	2.02	2.05	2.00
Te	0.91/1.09	1.98	1.94	1.95	0.80/0.82	1.96	1.91	1.97	0/0.91	2.09	2.14	2.02
Ru	0.90/1.01	1.97	1.95	1.94	0.74/0.85	2.02	1.96	1.92	0/0.67	2.06	2.06	1.94
Rh	0.71/0.97	1.78	1.96	1.92	0.03/0.75	1.81	1.92	1.91	0/0.38	1.85	2.01	2.03
Pd	0.05/0.92	1.91	1.91	1.91	0.03/0.53	1.92	1.91	1.91	0/0.17	2.24	2.29	3.18
Ag	0.03/1.26	1.98	2.03	1.95	0.02/1.45	1.90	1.95	1.94	0/1.73	1.99	2.06	2.11
Cd	0.01/1.61	2.01	2.07	2.10	1.26/1.14	2.06	2.06	2.11	1.31/1.73	2.06	2.08	2.12
La	1.64/1.87	1.87	2.18	2.30	1.57/1.90	1.90	2.19	2.31	1.44/2.04	1.89	2.18	2.31
Hf	1.06/1.53	1.81	1.95	2.07	1.02/1.35	1.80	1.95	2.07	0.97/1.17	1.80	1.93	2.05
Та	0.92/1.25	1.77	1.92	1.78	0.78/1.00	1.94	1.94	2.04	0.67/0.87	1.78	1.98	2.05
W	0.77/0.92	1.93	1.93	1.99	0.91/1.01	0.97	1.92	1.95	0.83/0.98	1.75	1.97	1.98
Re	0.91/1.10	1.99	1.94	1.94	0.81/0.98	1.98	1.92	1.99	0/0.93	2.08	2.11	1.92
Os	0.89/1.04	2.07	1.95	1.93	0.74/0.89	2.08	1.96	1.90	0/0.80	2.08	2.06	1.95
Ir	0.68/0.99	2.04	2.00	1.99	0.02/0.77	1.82	1.93	1.93	0/0.74	1.85	2.01	2.02
Pt	0.04/0.90	1.89	1.91	2.27	0.02/0.49	1.92	1.91	2.21	0/0.08	2.00	2.31	3.45
Au	0.04/1.43	1.90	1.94	2.87	0.02/0.20	1.94	1.94	2.96	0/0.14	2.61	2.49	2.94
Hg	0.03/1.72	1.91	2.05	2.08	*	*	*	*	*	*	*	*

"prist/*" represents "the prstine state without O-adsorption / the O*-adsorbed intermediate state" of the embedded (TM)SA (The values in blue follows path-II shown in Figure 6).

Transitio n	C4	N ₁ C ₃	N ₂ C ₂	N ₂ C ₂ ^b	N ₂ C ₂ ^c	N ₃ C ₁	N4	C3	N ₁ C ₂	N ₂ C ₁	N3
Metal		-	-	-	_	-	-	-	-	-	-
Sc	-0.50	-2.57	-0.57	-0.59	-0.64	-0.74	-1.09	-0.52	-0.62	-1.07	-1.07
7 .	(-0.41)	(-1.80)	(-0.55)	(-0.50)	(-0.56)	(-0.66)	(-0.89)	(-0.52)	(-0.59)	(-0.47)	(-1.20)
Ti	-1.02	-3.22	-1.35	-1.39	-3.25	-2.76	-1.95	-0.95	-1.31	-1./1	-1.82
V	-2.91	(-2.01)	(-0.92)	(-0.99)	(-2.20)	(-1.42)	(-1.00)	-1 18	(-1.04)	(-1.24)	(-1.29)
v	(-1,73)	(-1.64)	(-0.91)	(-1.49)	(-1.77)	(-1.24)	(-0.04)	(-0.80)	(-0.73)	(-0.64)	-1.00 (-0.95)
Cr	-1.61	-1.61	-0.63	-1.52	-1.96	-0.63	-1.12	-0.61	-0.80	-0.96	-0.96
U.	(-0.26)	(-0.10)	(-0.33)	(-1.26)	(-0.12)	(-0.90)	(-0.93)	(-0.02)	(-0.64)	(-0.67)	(-0.83)
Mn	-2.57	-1.11	-1.16	-1.27	-1.38	-1.09	-0.87	-1.00	-1.29	-1.17	-1.17
	(-1.86)	(-1.00)	(-0.46)	(-0.77)	(-0.88)	(-0.56)	(-0.41)	(-1.46)	(-0.81)	(-0.62)	(-0.70)
Fe	-2.57	-2.48	-1.80	-2.42	-2.40	-1.97	-1.36	-1.56	-1.72	-1.78	-1.78
	(-1.88)	(-1.12)	(-0.96)	(-1.03)	(-1.06)	(-0.93)	(-0.29)	(-0.94)	(-0.55)	(-0.92)	(-1.34)
Со	-1.81	-2.85	-2.00	-2.60	-2.48	-2.06	-1.33	-1.81	-1.76	-1.81	-1.81
	(-2.18)	(-1.59)	(-1.44)	(-1.63)	(-1.59)	(-1.32)	(-0.53)	(-1.41)	(-1.38)	(-1.28)	(-1.80)
Ni	-3.12	-2.45	-1.27	-2.17	-2.21	-1.75	-0.54	-1.72	-2.38	-2.58	-2.58
C	(-2.57)	(-2.19)	(-1.50)	(-1.64)	(-1.52)	(-1.35)	(-0.44)	(-0.99)	(-1.31)	(-1.46)	(-1.85)
Cu	(-1.54)	(-1.18)	(-1.37)	(-1.20)	(-1.50)	(-1, 11)	-0.43	(-1, 13)	-1.55	-1.72	-1.72
Zn	-0.20	-0.19	-0.17	0.00	-0.14	-0.24	-0.23	-0.56	-0.54	-0.56	-0.56
2/11	(-0.21)	(-0.20)	(-0.17)	(-0.03)	(-0.14)	(-0.20)	(-0.17)	(-0.51)	(-0.48)	(-0.49)	(-0.66)
v	-0.36	_0.30	-0.50	_0.49	-0.55	-0.61	_0.80	-2.54	-0.55	-0.96	-0.96
1	-0.50	-0.57	-0.50	-0.42	-0.55	-0.01	-0.07	-2.34	-0.55	-0.90	-0.90
Zr	-0.88	-3.41	-1.29	-1.27	-3.34	-1.73	-2.14	-2.76	-3.03	-3.76	-3.76
Nb	-1.58	-1.75	-2.20	-2.16	-3.11	-2.38	-2.63	-3.14	-1.78	-3.53	-3.53
Мо	-2.85	-1.94	-1.74	-1.62	-1.80	-2.61	-2.74	-2.05	-2.42	-2.42	-2.42
Tc	-3.13	-3.64	-4.13	-3.63	-4.41	-4.74	-4.53	-2.54	-2.99	-3.45	-3.45
Ru	-2.41	-2.92	-2.82	-3.33	-3.21	-3.13	-2.84	-1.66	-2.41	-2.57	-2.57
Rh	-2.20	-2.76	-1.98	-2.99	-2.54	-2.72	-1.76	-2.06	-2.06	-2.25	-2.25
Pd	-0.97	-1.88	-1.66	-1.65	-1.54	-1.42	-0.58	-1.43	-1.40	-1.13	-1.13
Ag	-1.32	-0.70	-0.64	-0.50	-0.60	-0.49	-1.30	-0.97	-1.12	-1.12	-1.12
Cd	-0.44	-0.37	-0.27	-0.48	-0.50	-0.43	-0.48	-0.44	*	-0.54	-0.54
La	-0.29	-0.29	-0.30	-0.28	0.07	-2.13	-0.56	-0.32	-0.35	-1.89	-1.89
Hf	-0.96	-1.28	-1.37	-1.43	-3.28	-1.81	-2.04	-0.85	-1.62	-3.44	-3.44
Та	-2.20	-3.80	-2.70	-2.81	-2.82	-3.04	-3.09	-2.16	-2.62	-4.06	-4.06
W	-3.23	-3.70	-3.70	-3.87	-4.30	-4.17	-4.49	-2.69	-3.35	-3.78	-3.78
Re	-2.52	-2.92	-3.55	-3.85	-3.83	-4.24	-4.38	-2.19	-2.59	-3.36	-3.36
Os	-3.67	-4.27	-4.42	-4.76	-4.66	-4.74	-4.22	-2.82	-3.64	-4.51	-4.51
Ir	-3.65	-3.41	-3.23	-3.27	-3.33	-2.82	-2.25	-3.29	-3.84	-4.40	-4.40
Pt	-2.24	-2.86	-1.55	-2.28	-1.38	-2.05	-0.97	-3.46	-3.49	-3.60	-3.60
Au	-0.80	-0.71	-0.91	-0.80	-0.96	-0.66	-0.78	-2.47	-2.55	-2.00	-2.00
Hg	-0.13	-0.13	-0.13	*	-0.13	*	*	*	*	*	*

Table S11. Clinging energies (E_{2M} in eV) of 2nd (TM)SA attached to 1st (TM)SA in SAC [$E_{2M} = E_{M_2G^d} - (E_{MG^d} + E_M)$] for M-N_nC_m-G_N. (RPBE(U)+TS results are in parentheses).^a

^aZn, Cd, and Hg have small negative E_{2M} , compared with other metal atoms. "*" denotes unstable systems.

Table S12. Stability of clinging energies ($E_{2M/coh}$ in eV) of 2nd (TM)SA attached to 1st SAC TM (E_{2M}) over metal cohesion (E_{coh}) for M-N_nC_m-G_N, which is related to SAs' aggregation into cluster, consistent with 16 vs 18 electron rules. (RPBE(U)+TS results are in parentheses).^a

Transitio	a	NG		Ngh	NGG			a	NG	NG	NT
n Metal	C4	N ₁ C ₃	N_2C_2	$N_2C_2^{b}$	$N_2C_2^c$	N ₃ C ₁	N4	C3	N_1C_2	N_2C_1	N 3
Sc	4.15	2.08	4.08	4.06	4.00	3.90	3.55	4.12	4.03	3.57	3.57
	(3.61)	(2.22)	(3.46)	(3.52)	(3.45)	(3.36)	(3.12)	(3.50)	(3.42)	(3.13)	(2.82)
Ti	4.99	2.79	4.65	4.62	2.76	3.24	4.06	5.05	4.69	4.30	4.18
	(3.74)	(2.45)	(3.53)	(3.47)	(2.25)	(3.04)	(3.45)	(3.75)	(3.42)	(3.22)	(3.17)
V	3.11	3.18	3.57	3.11	3.75	3.60	4.39	4.85	4.75	4.15	4.15
C	(2.20)	(2.29)	(3.02)	(2.44)	(2.16)	(2.69)	(3.89)	(3.13)	(3.19)	(3.29)	(2.98)
Cr	(2.01)	3.21	4.18	3.29	2.85	4.18 (1.37)	3.69	(2, 25)	4.02	3.85	3.85 (1.44)
Mn	(2.01)	3 34	3 29	(1.00)	(2.14)	3 36	3.58	3.45	3.16	3.28	3.28
17111	(-0.73)	(0.12)	(0.66)	(0.35)	(0.25)	(0.57)	(0.72)	(-0.34)	(0.32)	(0.50)	(0.42)
Fe	2.56	2.65	3.33	2.71	2.73	3.16	3.78	3.57	3.42	3.35	3.35
	(1.46)	(2.22)	(2.38)	(2.32)	(2.29)	(2.42)	(3.06)	(2.40)	(2.80)	(2.42)	(2.01)
Со	3.57	2.53	3.38	2.77	2.90	3.32	4.05	3.57	3.62	3.57	3.57
	(1.36)	(1.95)	(2.10)	(1.91)	(1.95)	(2.22)	(3.01)	(2.13)	(2.16)	(2.26)	(1.74)
Ni	2.05	2.72	3.90	3.00	2.96	3.42	4.63	3.46	2.79	2.59	2.59
~	(1.35)	(1.72)	(2.41)	(2.27)	(2.39)	(2.56)	(3.47)	(2.93)	(2.61)	(2.45)	(2.06)
Cu	1.98	2.41	2.22	2.39	2.29	2.30	3.16	2.18	2.24	1.87	1.87
7	(1.64)	(2.13)	(1.95)	(2.13)	(2.03)	(2.07)	(2.86)	(2.05)	(2.12)	(1.72)	(2.11)
Zn	(0.92)	(0.93)	(0.94)	1.12	0.98	(0.90)	(0.89	(0.50)	(0.58)	(0.50)	(0.50)
v	(0.50)	(0.50)	(0.94)	(1.08)	2.09	2.02	2.64	1.09	2.07	2.57	2.57
1	4.10	4.15	4.02	4.04	3.98	5.92	3.04	1.98	5.97	3.57	3.57
Zr	5.98	3.45	5.58	5.60	3.53	5.13	4.72	4.11	3.84	3.10	3.10
Nb	6.18	6.02	5.56	5.60	4.66	5.38	5.13	4.62	5.99	4.23	4.23
Мо	4.19	5.09	5.30	5.41	5.24	4.43	4.30	4.99	4.61	4.62	4.62
Tc	5.84	5.33	4.83	4.78	4.56	4.22	4.44	6.42	5.98	5.51	5.51
Ru	4.61	4.10	4.20	3.69	3.81	3.90	4.18	5.36	4.61	4.45	4.45
Rh	3.59	3.04	3.82	2.81	3.26	3.07	4.03	3.74	3.73	3.54	3.54
Pd	2.39	1.48	1.70	1.71	1.83	1.94	2.79	1.93	1.96	2.24	2.24
Ag	1.11	1.72	1.79	1.93	1.83	1.94	1.13	1.45	1.31	1.31	1.31
Cd	0.26	0.33	0.43	0.21	0.20	0.27	0.22	0.25	*	0.16	0.16
La	3.89	3.89	3.88	3.90	4.25	2.05	3.62	3.86	3.83	2.29	2.29
Hf	6.00	5.68	5.58	5.53	3.68	5.15	4.92	6.11	5.34	3.52	3.52
Та	6.40	4.80	5.90	5.79	5.79	5.56	5.51	6.44	5.98	4.54	4.54
W	6.00	5.53	5.53	5.35	4.93	5.06	4.74	6.54	5.87	5.45	5.45
Re	5.52	5.13	4.50	4.20	4.21	3.80	3.67	5.86	5.46	4.68	4.68
Os	4.95	4.35	4.20	3.86	3.96	3.88	4.40	5.80	4.98	4.11	4.11
Ir	3.45	3.69	3.87	3.83	3.77	4.28	4.85	3.81	3.26	2.70	2.70
Pt	3.06	2.44	3.75	3.02	3.92	3.25	4.32	1.84	1.81	1.69	1.69
Au	2.02	2.10	1.91	2.02	1.85	2.16	2.03	0.34	0.27	0.82	0.82
Hg	0.08	0.08	0.08	*	0.08	*	*	*	*	*	*

^a Cd, Hg, Zn / Ag, Au, Pd have rather very-small / small $E_{2M/coh}$, which help form these NPs easily. Cu and Mn have moderate values, while others have large values (> 3eV). "*" denotes unstable systems.

Transitio n	C4	N ₁ C ₃	N ₂ C ₂	N ₂ C ₂ ^b	N ₂ C ₂ ^c	N ₃ C ₁	N4	С3	N ₁ C ₂	N ₂ C ₁	N 3
Metal	1.64	1.02	0.62	0.04	1.20	0.75	0.00	1.40	1.77	1.40	1.60
Sc	-1.04	(-1.03)	-0.63	-0.86	(-1.20)	-0.75	-0.99	-1.40 (-1.53)	-1.07 (-1.74)	-1.49	-1.09 (-1.73)
Ti	-0.77	-0.20	0.30	-0.07	-0.55	-0.20	-0.65	-0.59	-1.45	-1.29	-1.61
	(-0.71)	(-0.16)	(0.33)	(-0.02)	(-0.54)	(-0.03)	(-0.48)	(-0.56)	(-1.37)	(-1.21)	(-1.46)
V	-0.63	-0.19	0.23	-0.15	-0.59	-0.18	-0.54	-0.52	-1.25	-1.09	-1.41
	(-0.31)	(0.18)	(0.68)	(0.32)	(-0.12)	(0.34)	(0.09)	(-0.24)	(-0.86)	(-0.60)	(-0.78)
Cr	-0.56	-0.11	0.37	-0.08	-0.50	0.03	-0.18	-0.25	-1.06	-1.09	-1.61
	(0.00)	(-0.59)	(1.08)	(0.67)	(0.24)	(0.85)	(0.73)	(0.27)	(-0.39)	(-0.31)	(-0.65)
Mn	-0.90	-0.06	0.31	0.04	-0.38	-0.02	-0.40	-0.39	-1.44	-1.36	-1.60
E	(0.18)	(1.03)	(1.39)	(1.14)	(0.70)	(1.07)	(0.57)	(-0.06)	(-0.81)	(-0.11)	(-0.19)
ге	(0.03)	(0.94)	(1.25)	(1.02)	(0.63)	(0.89)	(0.62)	(0.32)	(-0.30)	(-0.27)	(-0.44)
Co	0.26	0.69	1.12	0.88	0.54	0.90	0.56	0.76	-0.26	-0.30	-0.74
00	(0.51)	(1.16)	(1.46)	(1.22)	(0.85)	(1.26)	(0.95)	(0.83)	(-0.15)	(0.04)	(-0.26)
Ni	0.32	1.00	1.42	1.19	0.89	1.14	0.68	0.43	-0.50	-0.47	-0.85
	(0.32)	(0.98)	(1.54)	(1.29)	(0.98)	(1.30)	(0.89)	(0.58)	(-0.24)	(-0.09)	(-0.46)
Cu	1.11	1.72	1.83	1.65	1.30	1.34	0.86	0.32	-0.19	0.06	-0.08
	(1.05)	(1.68)	(1.80)	(1.62)	(1.28)	(1.34)	(0.98)	(0.34)	(-0.12)	(0.17)	(0.08)
Zn	0.05	0.29	0.73	0.28	-0.07	0.33	0.13	-0.76	-1.13	-0.50	-0.69
	(0.01)	(0.31)	(0.82)	(0.36)	(0.02)	(0.49)	(0.36)	(-0.68)	(-1.01)	(-0.35)	(-0.57)
Y	-1.93	-1.35	-0.94	-1.16	-1.51	-1.05	-1.27	-1.77	-1.99	-1.80	-1.95
Zr	-1.03	-0.75	-0.49	-0.67	-0.93	-0.76	-1.04	-1.02	-1.48	-1.44	-1.64
Nb	-0.79	-0.48	-0.37	-0.59	-0.94	-0.75	-1.17	-0.93	-1.52	-1.53	-1.84
Мо	-0.13	0.15	0.21	0.00	-0.35	-0.22	-0.63	-0.11	-0.83	-0.88	-1.21
Tc	0.29	0.55	0.61	0.28	-0.26	-0.10	-0.61	0.32	-0.68	-0.75	-1.45
Ru	0.94	1.05	1.31	0.76	0.39	0.57	0.09	1.28	0.12	-0.05	-0.81
Rh	1.23	1.61	1.82	1.38	1.03	1.33	0.98	1.74	0.60	0.32	-0.45
Pd	1.58	2.09	2.46	2.28	1.94	2.22	1.76	1.80	0.76	0.87	0.29
Ag	0.83	2.15	2.42	2.11	1.33	1.47	-0.28	0.22	-0.54	-0.12	-0.08
Cd	-0.47	-0.22	0.43	-0.16	-0.62	0.03	-0.20	-0.70	*	-0.62	-0.63
La	-1.18	-0.67	-0.22	-0.46	-0.79	-0.34	-0.54	-0.97	-1.20	-0.99	-1.15
Hf	-1.16	-0.88	-0.62	-0.80	-1.07	-0.86	-1.11	-1.13	-1.60	-1.56	-1.76
Та	-0.31	-0.02	0.14	-0.10	-0.44	-0.28	-0.66	-0.49	-1.16	-1.17	-1.50
W	0.09	0.30	0.39	0.18	-0.16	-0.07	-0.50	-0.02	-0.77	-0.85	-1.22
Re	0.38	0.50	0.53	0.32	-0.05	0.02	-0.41	0.27	-0.47	-0.56	-1.11
Os	0.90	0.92	0.95	0.83	0.73	0.77	0.63	0.92	0.61	0.53	0.31
Ir	1.62	1.84	1.94	1.70	1.40	1.59	1.31	1.80	0.94	0.62	-0.02
Pt	2.10	2.54	2.77	2.63	2.26	2.45	1.96	2.01	0.76	0.58	-0.25
Au	1.96	2.32	2.35	2.27	1.98	2.00	1.33	1.33	0.99	1.20	0.87
Hg	1.07	1.29	1.76	*	-0.26	*	*	*	*	*	*

Table S13. Dissolution potential U_{ds} [= U_{dis}° (bulk metal) – $E_{emb/coh}$ / ene in eV] for configurations of (TM)SA embedded in M-N_nC_m-G_N (G^d denotes graphene with defect). (RPBE(U)+TS results are in parentheses).

(TM)SA Systems	Unaggregatable Indissoluble	Unaggregatable Dissoluble	Aggregatable Indissoluble	Aggregatable Dissoluble
C4	16	11	2	1
N_1C_3	21	9	-	-
N_2C_2	24	6	-	-
$N_2C_2^b$	12	15	3	-
N ₂ C ₂ ^c	12	10	2	6
N ₃ C ₁	16	8	2	4
N4	12	7	3	8
C ₃	10	12	5	3
N_1C_2	-	9	7	14
N_2C_1	1	11	7	11
N3	-	10	4	16
Total	124	108	35	63

Table S14. Classification of 330 possible stabilities ag	gainst (TM)SA-aggregation/dissolution for different M-
N _n C _m -G _N template types in combination of 30 different	(TM)SAs into four different categrories.

Transitio											
n Metal	C4	N ₁ C ₃	N_2C_2	$N_2C_2^b$	N ₂ C ₂ ^c	N ₃ C ₁	N4	C ₃	N ₁ C ₂	N_2C_1	N 3
Sc	0.8/0	0/0	0/0	0/0	0/0	0/0	0/0	0	1.0	0	0.5
	(0.4/0)	(0/0)	(0/0)	(0/0)	(0/0)	(0/0)	(0/0)	(0)	(0)	(0.3)	(0.7)
Ti	0/0	0/0	0/0	0/0 (0.3/0)	0/0	0.8/0	1.4/0.6		0.7	1.6	2.0
V	0.9/0	1 3/0	1 2/0 7	(0.3/0) 1 2/0 7	1 1/0 6	(1.0/0) 2.0/1.0	(1.5/1.0) 3 0/2 0	1.0	2.0	2.6	2.6
v	(0.9/0)	(2.0/0)	(1.6/1.3)	(1.6/1.3)	(1.6/1.5)	(2.0/1.0)	(3.0/2.0)	(1.0)	(2.0)	(2.9)	(2.9)
Cr	1.9/3.0	2.9/3.4	2.6/3.1	3.1/1.6	3.5/3.0	3.2/3.9	4.0/3.0	2.0	3.0	2.5	4.3
-	(2.0/3.0)	(3.0/4.0)	(2.7/3.4)	(3.5/2.7)	(3.9/3.3)	(3.7/4.0)	(4.0/3.0)	(2.0)	(3.0)	(3.9)	(4.4)
Mn	4.4/3.9	4.0/3.1	3.7/3.4	3.6/2.9	3.5/4.0	3.8/3.1	3.0/2.0	3.0	4.0	4.5	5.3
Б.	(4.4/4.0)	(4.0/3.4)	(4.0/4.4)	(3.9/3.3)	(3.8/4.0)	(4.0/5.0)	(3.0/2.0)	(1.0)	(2.0)	(5.0)	(5.6)
re	(2 2/3 0)	(3.0/2.0)	(3.0/3.0)	(3.0/2.0)	(2.9/3.0)	(3.0/2.0)	(2.0/1.0)	(20)	(3.0)	(4.0)	(4.5)
Co	1.1/1.4	2.0/1.0	1.2/0	1.2/0	1.0/0	0.9/0.8	0.9/0	1.0	0	1.0	2.3
CU	(1.2/2.0)	(2.0/1.0)	(1.1/1.1)	(1.8/1.0)	(1.0/2.0)	(1.1/1.0)	(1.0/0)	(1.0)	(2.0)	(1.0)	(2.5)
Ni	0/0	0.7/0	0/0	0/0	0/0	0/0	0/0	0	1.0	2.0	1.6
	(1.0/0)	(1.0/0)	(0/0)	(0/0)	(0/0)	(0/0)	(0/0)	(0)	(1.0)	(2.0)	(1.7)
Cu	0/0	0/0	0/0	0/0	0/0	0.1/0	1.0/0	1.0	0	1.0	0
-	(0/0)	(0/0)	(0/0)	(0/0)	(0/0)	(0/0)	(1.0/0.1)	(1.0)	(0)	(1.0)	(0)
Zn	(0/0)	(0.1/0)	(0/0)	(0/1.0)	(0/0)	(0/0)	(0/0)	(1.2)	(D)	(D)	(0.6)
Y	0.8/0	0/0	0/0	0/0	0/0	0/0	0/0	0	0	0	0.8
-	0.00	0.10	0/0	0.10	0/0	0.10	0.010	0	0	, a	0.0
Zr	0/0	0/0	0/0	0/0	0/0	0.4/0	0.8/0	0	0	1.3	1.9
Nb	0.3/0	0/0	0.7/0	1.0/0	0.8/0	1.6/0.9	2.2/1.1	1.0	2.0	2.2	2.4
Мо	0.5/0.9	1.0/1.1	2.0/0	1.7/1.0	1.8/1.0	2.8/2.0	3.7/2.5	2.0	2.8	2.1	1.0
Tc	1.0/1.0	0/1.0	1.9/1.0	0.1/0	3.0/2.0	0.3/1.0	3.0/2.0	1.0	0	1.0	0.6
Ru	0/0	0/0	0/1.7	1.9/0.9	2.0/1.0	1.0/0	1.9/0.8	0	1.0	0	0
Rh	0.9/0	0/0.9	0/0	1.0/0	1.0/0	0/0	0/0	1.0	0	1.0	2.0
Pd	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0	1.0	0	1.0
Ag	0/0	0/0	0/0	0/0	0/0	0/0	0/0	1.0	0	1.0	0
Cd	0/0	0/0	0/0	0/1.0	1.5/1.0	0/0	0/0	2.0	*	0.3	0.6
La	0/0	0/0.9	0/0	0/0	0/0	0/1.9	0/0	0	0	0	0
Hf	0/0	0/0	0/0	0/0	0/0	0.7/0.7	1.0/0	0	0	1.1	2.0
Та	0.7/0	0/0	0.9/0	1.0/0	0.9/0	1.5/1.9	1.0/0	0.9	1.9	2.3	1.9
W	0/0	1.0/0.7	1.9/1.0	1.9/1.0	1.9/1.0	2.9/1.0	2.1/1.0	2.0	2.6	2.0	1.0
Re	1.0/0	0/0	2.7/2.0	0.8/0	3.0/2.0	3.9/0	3.0/2.0	1.0	0	1.0	0.9
Os	0/0	0/0	0.2/0.9	1.4/0	2.0/1.0	1.0/0.4	0/1.0	0	1.0	0	0
Ir	0/0	0/1.0	0/0	0/0	0/0	0/0	0.6/0	1.0	0	0.9	1.6
Pt	0/0	0.3/0	0/0	0/0	0/0	0/0	0/0	0	1.0	0	1.1
Au	0/0	0/0	0/0	0/0	0/0	0/0	0/0	1.0	0	0.4	0
Hg	0/0	0/0	0/1.0	*	0/1.0	*	*	*	*	*	*

Table S15. Magnetization (μ in Bohr) before/after hydrogen adsorption for M-N_nC_m-G_N. (RPBE(U)+TS results are given for 3d metals).

	C ₄					Ň	V_1C_3			Ν	V_2C_2			Ν	$_{2}C_{2}^{b}$	
IM	prist	*0	*OH	*00H	prist	*0	*OH	*OOH	prist	*0	*OH	*OOH	prist	*0	*OH	*OOH
Sc	0.8	0.9	2.0	0.0	0.0	0.0	1.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0
	(0.4)	(0.9)	(2.0)	(2.0)	(0.0)	(0.0)	(1.0)	(1.0)	(0.0)	(1.0)	(0.0)	(0.0)	(0.0)	(1.0)	(0.0)	(0.0)
Ti	0.0	1.3	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
v	0.9	0.0	0.0	0.0	1.3	0.0	0.6	0.6	1.2	0.0	1.0	1.0	0.0	0.0	0.3	0.6
·	(0.9)	(0.0)	(0.0)	(0.0)	(2.0)	(0.0)	(1.0)	(1.0)	(1.6)	(0.0)	(1.3)	(1.4)	(0.0)	(1.0)	(1.3)	(1.8)
Cr	1.9	0.9	1.1	1.0	2.9	1.0	1.8	1.9	2.6	1.1	1.6	2.2	1.1	1.3	2.5	2.5
	(2.0)	(1.0)	(1.6)	(1.1)	(3.0)	(1.0)	(1.9)	(2.0)	(2.7)	(1.2)	(2.5)	(2.5)	(1.2)	(2.0)	(2.9)	(3.0)
Mn	4.4	1.0	1.9	1.5	4.0	1.0	2.8	2.8	3.7	0.0	2.1	2.1	3.6	0.0	2.7	2.3
Fo	(4.4)	(1.2)	(2.1)	(2.3)	(4.0)	(0.0)	(2.9)	(2.9)	(4.0)	(0.0)	(3.5)	(3.4)	(3.9)	(0.0)	(3.6)	(3.0)
re	(2.2)	(0.0)	(2.9)	(2.9)	(3.0)	(1.0)	(3.9)	(1.9)	(3.0)	(1.5)	(3.2)	(2.5)	(3.0)	(1.8)	(3.3)	(2.7)
Со	1.1	0.2	0.0	0.0	2.0	1.8	1.0	1.0	1.2	1.4	2.0	0.0	1.2	1.9	1.9	1.9
	(1.2)	(1.0)	(1.5)	(0.9)	(2.0)	(1.9)	(1.0)	(1.0)	(1.1)	(2.8)	(2.0)	(1.9)	(1.8)	(2.6)	(2.0)	(1.9)
Ni	0.0	1.2	0.0	0.0	0.7	2.4	0.0	0.0	0.0	2.0	1.0	1.0	0.0	2.0	0.5	0.9
C	(1.0)	(1.3)	(1.0)	(0.0)	(1.0)	(2.6)	(0.0)	(0.0)	(0.0)	(2.0)	(0.9)	(0.9)	(0.0)	(2.0)	(0.9)	(0.9)
Cu	(0,0)	(1.8)	(0.4)	(0.9)	(0,0)	(1.8)	(0.8)	(0.8)	(0,0)	(1.0)	(0,0)	(0,0)	(0,0)	(1.1)	(0,0)	(0.2)
Zn	0.0	1.3	0.3	0.6	0.1	1.0	0.0	0.0	0.0	2.0	1.0	1.0	0.0	2.0	1.0	1.0
	(0.0)	(1.4)	(0.4)	(0.6)	(0.7)	(1.0)	(0.0)	(0.0)	(0.0)	(2.0)	(1.0)	(1.0)	(0.0)	(2.0)	(1.0)	(1.0)
Y	0.0	0.9	2.0	0.0	0.0	0.0	1.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0
Zr	0.0	0.1	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nb	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	0.0	0.0	0.0	1.0	0.0	0.0	0.0
Мо	0.5	0.0	1.0	1.0	1.0	0.0	1.2	1.1	1.1	0.0	1.0	1.0	1.1	0.0	1.0	1.0
Tc	1.0	0.9	1.1	1.1	0.1	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Ru	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
Rh	0.9	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0	1.0	0.0	0.0
Pd	0.0	0.0	0.9	0.0	0.0	1.0	0.0	0.0	0.0	2.0	0.5	0.5	0.0	1.8	0.5	0.8
Ag	0.0	1.1	0.0	0.0	0.0	2.0	1.0	0.9	0.0	1.1	0.0	0.5	0.0	1.0	0.0	0.7
Cd	0.0	2.0	1.0	0.6	0.0	1.0	0.0	0.0	0.0	2.0	1.0	1.0	0.0	0.0	1.0	1.0
La	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.9	0.0	1.0	0.0	0.0	0.0	1.7	0.0	0.0
Hf	0.0	0.5	0.0	0.0	0.0	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Та	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
W	0.0	0.0	0.0	0.0	1.0	0.0	1.1	1.1	1.0	0.0	1.0	1.0	1.0	0.0	0.8	0.8
Re	1.0	0.7	0.2	0.5	0.9	0.0	1.0	1.0	0.2	0.7	0.0	0.0	0.3	0.8	0.2	0.1
Os	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.5	0.0	0.0	0.0	0.0
Ir	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0
Pt	0.0	0.0	0.8	0.0	0.3	1.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	1.9	0.0	0.0
Au	0.0	1.1	0.0	0.9	0.0	0.0	0.0	0.9	0.0	1.1	0.0	0.7	0.0	0.9	0.0	0.8
Hg	0.0	1.4	0.3	0.7	0.0	1.0	0.0	0.0	0.0	1.9	1.0	1.0	*	*	*	*

Table S16. Magnetization (µ in Bohr) before "prist" and after adsorption of *O, *OH and *OOH for M-N_nC_m-G_N in the absence of solvent. (RPBE(U)+TS results are given for 3d metals).

Table S16. Continued...

		Ň	$V_2C_2^c$			Ν	N_3C_1				N ₄	
I M	prist	*0	*OH	*00H	prist	*0	*OH	*OOH	prist	*0	*OH	*OOH
Sc	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0
	(0.0)	(0.9)	(0.0)	(0.0)	(0.0)	(0.2)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)
Ti	0.0	0.1	0.0	0.0	0.8	0.0	0.0	0.0	1.4	0.0	0.0	0.5
	(0.2)	(00)	(0.0)	(0.0)	(1.0)	(0.0)	(0.0)	(0.0)	(1.5)	(0.0)	(1.0)	(1.0)
V	0.0	0.3	0.0	0.1	2.0	0.0	1.0	1.0	1.0	0.6	0.0	0.0
Cr	(0.0)	(1.0)	(2.0)	(2.0)	(2.0)	(1.1)	(1.0)	(1.1)	(1.0)	(1.0)	(0.0)	(0.0)
Cr	(1.5)	(2.0)	(3.0)	(3.0)	(3.7)	(1.0)	(2.1)	(2.1)	(4.0)	(0,0)	(3.0)	(3.0)
Mn	3.5	0.0	3.8	3.6	3.8	0.0	3.1	3.1	3.0	0.8	3.5	3.5
	(3.8)	(0.0)	(4.0)	(3.9)	(4.0)	(0.0)	(3.2)	(3.2)	(3.0)	(1.0)	(3.9)	(3.9)
Fe	0.0	4.0	3.0	1.0	2.4	1.2	2.1	0.0	2.0	2.0	1.0	1.0
	(2.0)	(4.0)	(5.0)	(3.0)	(3.0)	(1.6)	(2.3)	(2.3)	(2.0)	(2.0)	(2.9)	(2.9)
Со	1.0	2.7	2.0	2.0	0.8	2.1	1.0	1.1	0.9	3.0	0.0	1.6
	(1.0)	(2.9)	(2.0)	(2.0)	(1.1)	(2.2)	(1.3)	(1.4)	(1.0)	(3.3)	(1.9)	(2.0)
NI	0.0	2.0	1.0	1.0	0.0	1.1	0.0	0.0	0.0	1.9	0.9	1.0
Cu	(0.0)	(2.0)	0.0	(1.0)	0.0	1.8	0.0	0.2)	(0.0)	(1.9)	(0.9)	(1.0)
Cu	(0.0)	(1.1)	(0.0)	(0.0)	(0.0)	(1.9)	(0.0)	(0.6)	(1.0)	(1.8)	(1.2)	(1.7)
Zn	0.0	0.0	0.8	0.8	0.0	1.0	0.0	0.2	0.0	1.0	0.0	0.0
	(0.0)	(0.0)	(0.9)	(0.8)	(0.0)	(1.0)	(0.0)	(0.2)	(0.0)	(1.0)	(0.0)	(0.0)
Y	0.0	0.0	0.0	0.0	0.0	0.6	0.0	0.0	0.0	0.4	0.0	0.0
Zr	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.8	0.0	0.0	0.0
Nb	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	0.0	0.0	0.0
Мо	1.3	0.0	1.0	1.0	1.0	1.0	1.9	1.5	0.3	0.0	1.0	0.9
Tc	0.0	0.9	2.0	2.0	2.0	0.0	0.9	0.8	0.0	0.6	0.2	0.0
Ru	0.0	0.0	0.8	0.6	1.0	1.0	0.0	0.0	1.8	0.0	1.3	0.0
Rh	1.0	1.0	2.0	0.0	0.0	2.0	0.9	0.9	0.0	1.0	0.0	0.0
Pd	0.0	2.0	1.0	1.0	0.0	1.0	0.0	0.0	0.0	2.0	0.9	0.9
Ag	0.0	1.0	0.0	0.4	0.0	0.5	0.0	0.8	0.7	1.6	0.1	0.0
Cd	0.0	0.0	1.0	0.9	0.0	1.0	0.0	0.0	0.0	0.9	0.0	0.0
La	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
Hf	0.0	0.0	0.0	0.0	0.7	0.0	0.0	0.0	1.0	0.0	0.0	0.0
Та	0.9	0.0	0.0	0.0	1.5	0.0	0.8	0.0	0.0	0.0	0.0	0.0
W	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.3	0.0
Re	0.4	0.0	2.0	2.0	1.0	1.0	0.0	0.6	0.0	0.9	0.4	0.0
Os	0.0	0.0	0.8	0.0	0.0	0.0	1.0	0.4	0.0	0.0	0.0	0.0
Ir	1.0	0.9	0.0	0.0	0.0	0.9	0.0	0.0	0.6	1.0	0.0	0.0
Pt	0.0	2.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.9
Au	0.0	0.9	0.0	0.5	0.0	1.8	0.0	0.9	0.0	1.5	0.4	0.6
Hg	0.0	0.0	1.0	1.0	*	*	*	*	*	*	*	*

"prist" the prstine state without O-adsorption for the embedded (TM)SA (The values in blue follows path-II shown in Figure 6).

C₄ $N_2C_2^b$ N_1C_3 N_2C_2 TM prist *0 *OH *OOH prist *0 *OH *OOH prist *0 *OH *OOH prist *0 *OH *00H 0.0 0.0 1.9 0.0 0.0 0.9 0.0 1.0 0.0 0.0 0.0 1.0 0.9 1.0 0.0 0.0 Sc (0.0)(0.0)(0.9) (1.0) (0.0) (0.0)(1.0) (0.0)(0.0)(0.0)(0.0)(1.9) (0.0)(0.0)(0.9)(1.0)Ti 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 (0.0) (0.0)(0.0)(0.4)(0.0)(0.0)(0.0) (0.0)(0.0)(0.0)(0.0)(0.0)(0.0)(0.0)(0.0)(1.0)V 0.7 0.0 0.6 0.0 0.6 0.5 1.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.3 0.0 (0.9) (0.0)(0.0)(0.0)(1.9)(0.0)(1.0)(1.0)(1.1) (0.4)(1.3) (1.5) (0.0) (1.0) (1.4) (1.9) Cr 1.9 1.0 1.1 1.0 1.1 1.0 1.8 1.9 2.1 1.1 1.6 2.2 1.1 1.4 2.6 2.6 (1.9)(1.0)(1.6) (1.1)(3.0)(1.0)(1.9)(1.9) (2.4) (1.2)(2.5)(2.6) (1.2) (2.0)(2.9) (3.0) 3.9 1.8 2.8 2.8 3.5 2.1 3.5 0.0 3.2 2.3 Mn 2.8 0.0 2.1 1.0 1.9 1.5 (3.7) (3.8) (4.5) (2.2)(2.5)(4.0)(0.0)(2.9)(2.9)(3.7) (0.0)(3.8) (3.8) (0.0)(3.7) (1.4)3.0 0.2 3.8 Fe 3.5 0.0 0.2 2.5 1.6 2.7 1.2 1.1 0.0 2.8 0.9 2.9 2.9 (3.0)(1.0)(3.9) (3.0) (3.3) (2.9) (2.1)(0.6) (2.9)(2.9)(1.9) (3.0)(1.6) (3.2)(2.9)(1.9) 2.0 1.6 1.0 1.0 Со 1.1 0.2 0.0 0.0 1.1 1.7 2.0 0.0 1.2 2.2 1.9 1.9 (1.2)(1.8) (1.4)(0.9)(2.0)(1.9) (1.0)(1.0)(1.1) (2.9) (2.0)(1.9) (2.0)(2.8)(2.9)(1.9) Ni 0.0 1.1 0.0 0.0 0.7 2.3 0.0 0.0 0.0 1.9 0.9 1.0 0.0 1.9 0.0 0.9 (0.3) (1.2)(1.0)(0.0)(0.0)(2.4)(0.0)(0.0)(0.0)(2.0)(0.9)(0.9) (0.0)(2.0)(2.0)(0.9)Cu 0.0 1.9 0.6 1.0 0.0 1.4 0.1 0.8 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 (0.0)(1.4)(0.2)(0.0)(1.0)(0.0)(0.0)(1.9) (0.5) (1.0)(0.8)(0.0)(1.0)(0.0)(0.0)(0.9)0.0 1.1 0.1 0.5 0.4 1.0 0.0 0.0 0.0 2.0 1.0 1.0 0.0 2.0 1.0 1.0 Zn (0.7)(1.0)(0.0)(0.0)(0.0)(2.0)(1.0)(0.0)(1.1)(0.1)(0.5)(0.0)(2.0)(1.0)(1.0)(0.0)Y 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 Zr 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Nb 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.9 0.0 0.0 0.0 1.3 0.0 0.9 1.0 0.0 1.2 1.2 1.1 1.0 1.0 1.1 1.0 1.0 Mo 1.0 0.0 0.0 Tc 0.9 0.9 1.1 1.1 0.1 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.7 1.0 0.0 0.0 0.0 0.0 Ru 0.0 0.0 Rh 0.9 0.0 0.0 0.0 0.0 1.0 0.9 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 Pd 0.0 1.0 0.0 0.0 0.0 0.7 0.0 0.0 0.7 0.4 1.9 0.7 0.0 0.0 0.8 0.9 0.0 0.2 Ag 0.0 0.8 0.0 0.0 1.0 0.8 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.4 Cd 0.0 0.0 1.0 0.5 0.0 0.7 0.0 0.0 0.0 1.9 1.0 1.0 0.0 0.0 1.0 1.0 -La ---------------Hf 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Та 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 W 1.0 0.0 0.5 0.0 1.1 0.0 1.0 1.0 1.0 1.1 0.0 0.8 0.4 0.0 0.0 0.0 Re 0.9 0.0 0.2 0.2 1.0 0.5 0.6 0.9 1.0 1.0 0.6 0.0 0.0 0.8 0.1 0.0 Os 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.8 0.0 0.0 0.0 0.0 Ir 0.0 0.0 0.0 0.0 1.0 0.4 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.8 0.0 1.0 Pt 0.0 0.9 0.0 0.0 0.0 1.8 0.0 0.1 0.0 0.0 0.0 0.0 0.3 0.3 0.0 0.4 Au 0.0 0.9 0.0 0.9 0.0 0.0 0.0 0.9 0.0 1.0 0.0 0.5 0.0 0.6 0.0 0.6 Hg 0.0 1.10.0 0.7 0.0 0.9 0.0 0.0 0.0 1.7 1.0 1.0 * * * *

Table S17. Magnetization (µ in Bohr) before " prist" and after adsorption of *O, *OH and *OOH for M-N_nC_m-G_N in the presence of solvent (dielectric constant 80). (RPBE(U)+TS results are given for 3d metals)

Table S17. Continued...

TNA		Ň	$I_2C_2^c$			Ν	V_3C_1				N ₄	
IN	prist	*0	*OH	*OOH	prist	*0	*OH	*OOH	prist	*0	*OH	*00H
Sc	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)
Ti	0.1	(0,0)	(0,0)	0.0	(0,0)	(0,0)	(0,0)	0.0	0.8	0.0	0.4	0.5
v	0.5	0.6	0.0	0.4	1.3	0.7	1.0	1.0	1.0	0.9	0.0	0.0
	(0.0)	(1.0)	(2.0)	(2.0)	(0.0)	(1.1)	(1.0)	(1.1)	(1.0)	(1.0)	(0.6)	(0.1)
Cr	1.3	1.5	2.8	2.9	3.0	1.0	2.0	2.0	4.0	0.1	3.0	3.0
Mn	(1.4)	(2.0)	(3.0)	(3.0)	(1.8)	(1.0)	(2.1)	(2.2)	(4.0)	(0.0)	(1.0)	(3.0)
IVIII	(3.6)	(0.0)	(4.0)	(3.9)	(3.3)	(0.0)	(3.3)	(3.3)	(3.0)	(1.0)	(3.9)	(3.9)
Fe	0.5	3.9	3.0	1.0	2.4	1.3	2.1	0.0	2.0	2.0	1.0	1.0
_	(2.0)	(4.0)	(5.0)	(3.0)	(4.0)	(2.1)	(2.4)	(2.4)	(2.0)	(2.0)	(4.9)	(3.0)
Со	1.0	2.7	2.0	2.0	0.8	2.1	1.0	1.0	0.9	3.2	0.0	0.0
Ni	0.0	2.0	(2.0)	(2.0)	0.0	(2.2)	0.0	0.0	0.0	3.0	0.8	0.9
111	(0.0)	(2.0)	(1.0)	(1.0)	(0.1)	(1.1)	(0.3)	(0.3)	(0.0)	(1.6)	(0.9)	(0.9)
Cu	0.0	1.0	0.0	0.0	0.0	0.1	0.0	0.0	1.0	1.5	1.1	1.4
7	(0.0)	(1.0)	(0.0)	(0.0)	(0.0)	(2.0)	(0.0)	(0.1)	(1.0)	(1.5)	(1.1)	(1.5)
Zn	(0.0)	(0.0)	(1.0)	(1.0)	(0.0)	(1.0)	(0.0)	(0.0)	(0.0)	(0.7)	(0.0)	(0.0)
Y	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
Zr	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nb	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0	0.0
Мо	1.3	0.0	1.0	1.0	1.0	1.0	1.9	1.8	0.2	0.0	1.0	1.0
Tc	0.0	0.9	2.0	0.0	0.0	0.0	0.9	0.1	0.0	0.0	0.0	0.0
Ru	0.0	0.0	0.7	0.5	1.0	1.0	0.0	0.8	2.0	0.0	0.0	0.0
Rh	1.0	1.0	2.0	0.0	0.0	2.0	0.9	0.9	0.4	1.0	0.0	0.0
Pd	0.0	1.9	1.0	1.0	0.0	1.0	0.0	0.0	0.0	1.2	0.7	0.8
Ag	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.6	0.6	1.1	0.0	0.0
Cd	0.0	0.0	1.0	1.0	0.0	1.0	0.0	0.0	0.0	0.6	0.0	0.0
La	-	-	-	-	-	-	-	-	-	-	-	-
Hf	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Та	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
W	0.0	0.0	0.9	0.4	1.0	1.0	0.0	0.0	0.7	0.0	0.6	0.0
Re	0.3	0.0	2.0	2.0	0.0	0.0	1.0	0.0	0.0	0.8	0.2	0.2
Os	0.0	0.0	0.8	0.0	0.8	0.8	0.0	1.0	0.0	0.0	0.0	0.0
Ir	1.0	0.7	0.0	0.0	0.0	2.0	1.0	1.0	0.6	1.0	0.0	0.0
Pt	0.0	1.9	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.9	0.7
Au	0.0	0.6	0.0	0.3	0.0	1.4	0.0	0.7	0.0	1.1	0.0	0.4
Hg	0.0	0.0	0.0	1.0	*	*	*	*	*	*	*	*

"prist" the prstine state without O-adsorption for the embedded (TM)SA (The values in blue follows path-II shown in Figure 6). The La calculations were not converged when the solvation effect was taken into account.

Transitio n Metal	C ₄	N ₁ C ₃	N ₂ C ₂	$N_2C_2{}^b$	N ₂ C ₂ ^c	N ₃ C ₁	N4	C ₃	N_1C_2	N_2C_1	N ₃
Sc	0.434	0.001	0.652	0.618	0.489	0.014	0.585	0.594	0.000	0.605	0.701
Ti	0.052	0.304	0.421	0.365	0.261	0.022	0.285	0.002	0.025	0.487	0.680
V	0.094	0.015	0.664	0.524	0.478	0.007	0.007	0.000	0.000	0.067	1.050
Cr	0.028	0.002	0.671	0.371	0.095	0.476	0.008	0.005	0.000	0.049	0.553
Mn	0.488	0.002	0.713	0.540	0.515	0.006	0.010	0.031	0.000	0.020	0.392
Fe	0.499	0.003	0.734	0.631	0.583	0.006	0.008	0.000	0.000	0.004	0.563
Со	0.479	0.003	0.059	0.549	0.000	0.487	0.009	0.015	0.001	0.001	0.581
Ni	0.750	0.017	0.052	0.002	0.000	0.510	0.008	0.000	0.000	0.001	0.786
Cu	0.810	0.002	0.663	0.602	0.551	0.025	0.007	0.003	0.000	0.000	0.000
Zn	0.033	0.261	0.016	0.013	0.001	0.598	0.007	0.365	0.436	0.000	0.402
Y	0.126	0.001	0.641	0.560	0.449	0.017	0.703	0.559	0.000	0.633	0.726
Zr	0.044	0.450	0.006	0.005	0.014	0.482	0.672	0.000	0.535	0.459	0.192
Nb	0.586	0.001	0.296	0.050	0.389	0.324	0.449	0.008	0.005	0.307	0.538
Мо	0.543	0.002	0.023	0.242	0.172	0.174	0.181	0.000	0.167	0.287	0.006
Tc	0.009	0.002	0.239	0.494	0.001	0.119	0.008	0.014	0.000	0.007	0.565
Ru	0.013	0.220	0.047	0.069	0.002	0.009	0.111	0.000	0.033	0.029	0.973
Rh	0.111	0.001	0.687	0.016	0.021	0.000	0.237	0.007	0.000	0.004	0.032
Pd	0.262	0.364	0.044	0.003	0.000	0.520	0.007	0.000	0.001	0.000	0.000
Ag	0.729	0.001	0.714	0.532	0.562	0.007	0.472	0.003	0.000	0.002	0.000
Cd	0.015	0.588	0.016	0.084	0.090	0.576	0.067	0.000	*	0.818	0.239
La	0.185	0.006	0.671	0.601	0.510	0.019	0.907	0.432	0.000	0.959	0.418
Hf	0.038	0.425	0.012	0.008	0.022	0.292	0.712	0.000	0.519	0.511	0.326
Та	0.435	0.007	0.126	0.058	0.135	0.232	0.006	0.037	0.046	0.156	0.184
W	0.012	0.011	0.125	0.125	0.081	0.038	0.064	0.000	0.175	0.044	0.000
Re	0.015	0.021	0.240	0.132	0.003	0.091	0.007	0.024	0.001	0.001	0.760
Os	0.010	0.297	0.132	0.367	0.010	0.036	0.004	0.000	0.004	0.042	1.029
Ir	0.362	0.001	0.717	0.368	0.179	0.001	0.239	0.002	0.001	0.133	0.256
Pt	0.025	0.293	0.012	0.000	0.000	0.383	0.007	0.000	0.004	0.000	0.063
Au	0.680	0.001	0.666	0.527	0.475	0.007	0.991	0.001	0.001	0.291	0.001
Hg	0.037	0.542	0.007	*	0.026	*	*	*	*	*	*

Table S18. Relative electrical conductivity of M-N_nC_m-G_N with respect to 2.1% N-doped graphene [σ (M-N_nC_m-G_N)/ σ ^o)] at the prsitine state. (RPBE(U)+TS results are given for 3d metals).

Transition Metal	C 4	N_1C_3	N_2C_2	$N_2C_2{}^b$	$N_2C_2^c$	N ₃ C ₁	N_4
Sc	0.002	0.593	0.029	0.043	0.002	0.619	0.016
Ti	0.230	0.016	0.524	0.391	0.411	0.023	0.006
V	0.050	0.503	0.572	0.210	0.417	0.039	0.019
Cr	0.001	0.036	0.476	0.538	0.413	0.014	0.024
Mn	0.008	0.445	0.025	0.013	0.001	0.026	0.025
Fe	0.002	0.529	0.031	0.015	0.001	0.013	0.026
Со	0.004	0.000	0.622	0.532	0.000	0.016	0.021
Ni	0.665	0.000	0.551	0.498	0.446	0.010	0.583
Cu	0.001	0.400	0.005	0.002	0.000	0.143	0.014
Zn	0.223	0.001	0.622	0.570	0.562	0.009	0.821
Y	0.003	0.540	0.032	0.024	0.002	0.609	0.016
Zr	0.280	0.002	0.603	0.441	0.429	0.021	0.925
Nb	0.043	0.474	0.003	0.002	0.004	0.046	0.591
Мо	0.184	0.468	0.002	0.014	0.016	0.019	0.289
Tc	0.561	0.005	0.151	0.004	0.001	0.008	0.013
Ru	0.717	0.000	0.267	0.068	0.000	0.002	0.148
Rh	0.009	0.045	0.003	0.002	0.000	0.320	0.033
Pd	0.432	0.000	0.696	0.572	0.487	0.003	0.625
Ag	0.001	0.555	0.004	0.003	0.000	0.453	0.050
Cd	0.195	0.002	0.004	0.003	0.014	0.001	0.830
La	0.005	0.063	0.011	0.468	0.001	0.575	0.027
Hf	0.760	0.001	0.093	0.456	0.412	0.018	0.843
Ta	0.041	0.495	0.007	0.006	0.019	0.242	0.000
W	0.498	0.354	0.004	0.018	0.017	0.065	0.009
Re	0.670	0.002	0.023	0.072	0.002	0.006	0.018
Os	0.788	0.000	0.370	0.389	0.001	0.003	0.012
Ir	0.007	0.041	0.002	0.005	0.000	0.277	0.013
Pt	0.387	0.000	0.484	0.403	0.385	0.002	0.657
Au	0.000	0.348	0.001	0.003	0.000	0.530	0.007
Hg	0.166	0.001	0.002	*	0.194	*	*

Table S19. (a) Relative electrical conductivity of H@M-N_nC_m-G_N with respect to 2.1% N-doped graphene $[\sigma(H@M-N_nC_m-G_N)/\sigma^o)]$ upon H-adorption. (RPBE(U)+TS results are given for 3d metals).

TM		C 4			N ₁ C ₃			N_2C_2			$N_2C_2{}^b$			$N_2C_2^c$			N ₃ C ₁			N4	
1 1/1	*0	*OH	*00H	*0	*OH	*00H	*0	*OH	*00H	*0	*OH	*00H	*0	*OH	*00H	*0	*OH	*00H	*0	*OH	*00H
Sc	0.100	0.030	0.020	0.004	0.030	0.010	0.008	0.010	0.000	0.010	0.036	0.045	0.059	0.000	0.000	0.193	0.620	0.620	0.385	0.010	0.010
Ti	0.450	0.870	0.900	0.046	0.870	0.000	0.006	0.490	0.510	0.052	0.408	0.454	0.000	0.450	0.370	0.614	0.020	0.030	0.034	0.010	0.010
V	1.060	0.050	0.040	0.003	0.050	0.000	0.573	0.560	0.550	0.022	0.421	0.109	0.000	0.000	0.000	0.568	0.030	0.080	0.000	0.340	0.050
Cr	1.030	0.720	0.120	0.006	0.720	0.040	0.547	0.520	0.500	0.001	0.087	0.041	0.022	0.000	0.000	0.028	0.100	0.110	0.019	0.030	0.030
Mn	0.150	0.120	0.370	0.007	0.120	0.060	0.508	0.280	0.280	0.476	0.367	0.401	0.408	0.050	0.180	0.025	0.340	0.270	0.016	0.130	0.140
Fe	0.040	0.140	0.100	0.056	0.140	0.070	0.491	0.440	0.210	0.330	0.470	0.296	0.000	0.000	0.000	0.424	0.470	0.450	0.068	0.060	0.080
Со	0.020	0.620	0.920	0.137	0.620	0.000	0.182	0.010	0.190	0.399	0.015	0.210	0.131	0.000	0.000	0.295	0.420	0.490	0.483	0.070	0.030
Ni	0.840	0.160	0.900	0.441	0.160	0.010	0.029	0.140	0.160	0.014	0.234	0.173	0.001	0.000	0.000	0.199	0.360	0.340	0.085	0.120	0.080
Cu	0.780	0.600	0.830	0.232	0.600	0.170	0.024	0.020	0.020	0.094	0.007	0.228	0.028	0.000	0.010	0.248	0.630	0.340	0.564	0.580	0.200
Zn	0.660	0.670	0.610	0.001	0.670	0.000	0.007	0.010	0.010	0.004	0.002	0.007	0.000	0.240	0.290	0.013	0.000	0.280	0.791	0.820	0.470
Y	0.230	0.020	0.010	0.003	0.020	0.000	0.004	0.010	0.000	0.004	0.048	0.032	0.621	0.000	0.000	0.453	0.610	0.620	0.362	0.020	0.010
Zr	0.100	0.730	0.720	0.019	0.730	0.000	0.008	0.610	0.580	0.013	0.441	0.445	0.000	0.420	0.410	0.614	0.020	0.030	0.017	0.940	0.870
Nb	0.990	0.040	0.040	0.001	0.040	0.430	0.632	0.000	0.000	0.482	0.003	0.002	0.467	0.000	0.000	0.016	0.320	0.370	0.531	0.090	0.030
Mo	0.040	0.020	0.070	0.374	0.020	0.500	0.004	0.410	0.000	0.002	0.024	0.014	0.003	0.010	0.000	0.015	0.070	0.150	0.000	0.380	0.110
Tc	0.080	0.800	0.820	0.009	0.800	0.000	0.238	0.030	0.000	0.394	0.023	0.038	0.075	0.010	0.020	0.003	0.070	0.110	0.158	0.020	0.020
Ru	0.020	0.990	1.110	0.524	0.990	0.000	0.005	0.410	0.030	0.013	0.279	0.230	0.001	0.140	0.210	0.003	0.000	0.000	0.000	0.550	0.830
Rh	0.830	0.000	0.000	0.002	0.000	0.330	0.004	0.000	0.000	0.005	0.006	0.006	0.000	0.020	0.000	0.018	0.070	0.050	0.022	0.040	0.030
Pd	0.030	0.190	0.330	0.002	0.190	0.000	0.003	0.400	0.370	0.185	0.297	0.196	0.052	0.010	0.000	0.039	0.000	0.010	0.055	0.110	0.110
Ag	0.120	0.010	0.060	0.009	0.010	0.120	0.071	0.020	0.470	0.002	0.002	0.502	0.000	0.000	0.340	0.434	0.670	0.170	0.480	0.080	0.040
Cd	0.010	0.000	0.550	0.009	0.000	0.000	0.003	0.000	0.010	0.004	0.003	0.002	0.052	0.010	0.070	0.001	0.000	0.010	0.397	0.780	0.640
La	0.550	0.010	0.020	0.002	0.010	0.160	0.005	0.000	0.000	0.565	0.035	0.038	0.744	0.000	0.000	0.758	0.640	0.640	0.599	0.020	0.020
Hf	0.470	0.800	0.780	0.182	0.800	0.000	0.010	0.600	0.580	0.010	0.437	0.501	0.000	0.400	0.390	0.589	0.020	0.020	0.015	0.890	0.870
Та	0.990	0.040	0.040	0.002	0.040	0.440	0.474	0.000	0.000	0.504	0.015	0.000	0.398	0.010	0.010	0.009	0.300	0.290	0.328	0.070	0.030
W	0.040	0.530	0.650	0.452	0.530	0.490	0.001	0.010	0.010	0.009	0.137	0.229	0.009	0.060	0.330	0.017	0.000	0.080	0.094	0.780	0.870
Re	0.040	0.550	0.220	0.003	0.550	0.010	0.122	0.010	0.010	0.151	0.109	0.044	0.026	0.020	0.020	0.002	0.020	0.150	0.020	0.020	0.020
Os	0.010	0.990	0.330	0.566	0.990	0.000	0.006	0.240	0.240	0.003	0.256	0.218	0.017	0.110	0.190	0.053	0.000	0.000	0.000	0.700	0.940
Ir	0.940	0.000	0.000	0.000	0.000	0.280	0.005	0.000	0.000	0.008	0.009	0.008	0.063	0.000	0.020	0.012	0.020	0.010	0.028	0.030	0.020
Pt	0.040	0.110	0.550	0.006	0.110	0.000	0.002	0.490	0.470	0.084	0.500	0.305	0.040	0.430	0.000	0.077	0.000	0.000	0.021	0.050	0.130
Au	0.130	0.550	0.550	0.008	0.550	0.060	0.049	0.010	0.480	0.182	0.010	0.403	0.130	0.000	0.350	0.177	0.530	0.130	0.407	0.300	0.520
Hg	0.690	0.770	0.560	0.001	0.770	0.000	0.031	0.000	0.000	*	*	*	0.001	0.000	0.000	*	*	*	*	*	*

Table S19. (b) Relative electrical conductivity of O@M-N_nC_m-G_N, HO@M-N_nC_m-G_N, and HOO@M-N_nC_m-G_N with respect to 2.1% N-doped graphene [σ (O@M-N_nC_m-G_N)/ σ ^o)], [σ (HO@M-N_nC_m-G_N)/ σ ^o)], [σ (HO@M-N_nC_m-G_N)/ σ ^o)], and [σ (HOO@M-N_nC_m-G_N)/ σ ^o)] upon O⁻, OH⁻ adorption]. (RPBE(U)+TS results are given for 3d metals).

Transition Metal	C 4	N ₁ C ₃	N ₂ C ₂	N2C2 ^b	N ₂ C ₂ ^c	N ₃ C ₁	N4
Sc	-0.70	-0.10	0.13	0.06	-0.05	0.18	-0.53
	(-0.62)	(-0.05)	(0.14)	(0.10)	(-0.03)	(0.07)	(-0.66)
Ti	0.08	-0.20	-0.35	-0.36	-0.37	-0.76	-0.73
	(0.16)	(-0.26)	(-0.42)	(-0.42)	(-0.44)	(-0.60)	(-0.64)
V	-0.24	-0.30	-0.27	-0.32	-0.30	-0.43	-0.33
C	(0.06)	(0.10)	(-0.02)	(-0.03)	(-0.06)	(-0.16)	(-0.04)
Cr	-0.11	(0.72)	(0.77)	-0.36	-0.19	-0.50	(0.11)
Mn	(-0.30)	-0.60	(-0.77)	(-0.73)	(-0.73)	(-0.30)	(0.47)
14111	(-1.29)	(-0.45)	(-0.26)	(-0.11)	(-0.27)	(-0.12)	(0.80)
Fe	-0.50	-0.70	-0.42	-0.12	-0.14	-0.11	0.20
Ĩt	(-1.01)	(0.80)	(-0.18)	(-0.01)	(-0.14)	(-0.18)	(0.87)
Со	-0.45	-0.88	-0.55	-0.37	-0.17	-0.21	0.07
	(-0.92)	(-0.56)	(-0.47)	(-0.37)	(-0.13)	(-0.16)	(0.53)
Ni	-0.95	-0.91	-0.34	-0.19	0.10	-0.06	1.23
	(-1.11)	(-1.20)	(-0.45)	(-0.31)	(0.02)	(-0.08)	(1.21)
Cu	-0.62	-0.09	-0.21	-0.09	-0.23	-0.25	0.92
	(-0.69)	(-0.14)	(-0.26)	(-0.12)	(-0.25)	(-0.32)	(1.04)
Zn	-0.15	-1.05	-0.42	-0.81	-0.72	-0.61	0.94
	(-0.21)	(-1.17)	(-0.52)	(-0.90)	(-0.78)	(-0.62)	(0.69)
Y	-0.53	-0.07	0.13	0.10	-0.03	0.30	-0.41
Zr	0.18	-0.22	-0.36	-0.37	-0.40	-0.93	-1.12
Nb	-0.48	-0.47	-0.88	-0.83	-0.92	-0.87	-0.96
Мо	-0.35	-0.34	-0.70	-0.65	-0.83	-0.69	-0.58
Tc	-0.02	-0.40	-0.40	-0.43	-0.69	-0.68	-0.62
Ru	0.05	-0.72	-0.18	-0.69	-0.70	-0.78	-0.69
Rh	-0.28	-0.24	-0.40	-0.60	-0.70	-0.49	-0.35
Pd	-0.96	-1.14	-0.58	-0.31	-0.01	-0.04	1.18
Ag	-1.06	-0.33	-0.17	-0.07	-0.21	1.13	0.19
Cd	0.91	-0.13	0.26	-1.30	-0.24	-0.15	-0.27
La	-0.47	1.06	0.11	0.10	-0.02	0.85	0.25
Hf	0.01	-0.56	-0.73	-0.73	-0.80	-1.20	-1.32
Та	-0.92	-0.99	-1.24	-1.26	-1.29	-1.24	-1.24
W	-0.81	-0.85	-1.09	-1.09	-1.16	-1.09	-1.07
Re	-0.59	-0.86	-0.86	-0.84	-1.03	-1.02	-1.08
Os	-0.28	-1.05	-0.71	-0.99	-1.05	-1.05	-0.89
Ir	-0.46	-0.44	-0.51	-0.73	-1.00	-0.64	-0.48
Pt	-0.43	-0.73	-0.30	0.07	0.23	0.09	1.28
Au	-0.78	-0.12	-0.04	0.04	-0.12	0.36	1.31
Hg	-0.04	0.06	0.42	*	-0.45	*	*

Table S20. H-adsorption energy $[\Delta E_{H^*} = E_{H@M-G_N} - (E_{M-G_N} + E_{H_2}/2)$ in eV] for M-N_nC_m-G_N. (RPBE(U)+TS results are in parentheses).

Transition Metal	C4	N ₁ C ₃	N ₂ C ₂	N ₂ C ₂ ^b	N ₂ C ₂ ^c	N ₃ C ₁	N4
Sc	-0.31	0.28	0.46	0.44	0.34	0.38	-0.34
	(-0.23)	(0.33)	(0.48)	(0.49)	(0.35)	(0.27)	(-0.47)
Ti	0.43	0.01	-0.12	-0.15	-0.17	-0.54	-0.53
	(0.51)	(-0.05)	(-0.18)	(-0.21)	(-0.23)	(-0.38)	(-0.44)
V	-0.01	-0.09	-0.06	-0.12	-0.10	-0.21	-0.13
~	(0.29)	(0.30)	(0.19)	(0.18)	(0.14)	(0.06)	(0.16)
Cr	0.24	-0.21	0.30	-0.21	0.16	0.05	0.32
	(0.05)	(-0.37)	(-0.42)	(-0.40)	(-0.38)	(-0.15)	(0.68)
Mn	-0.90	-0.22	(0.29)	0.46	0.15	0.37	0.53
F e	(-0.90)	(-0.00) 0.24	0.07	(0.27)	(0.11)	(0.22)	(1.04)
ге	-0.13	-0.34	-0.07	(0.23)	(0.22)	(0.14)	(1, 11)
Co	-0.10	-0.53	-0.20	-0.03	0.17	0.14)	0.32
Cu	(-0.57)	(-0.21)	(-0.13)	(-0.11)	(0.13)	(0.12)	(0.32)
Ni	-0.60	-0.56	0.00	0.02	0.45	0.27	1.61
141	(-0.76)	(-0.84)	(-0.10)	(-0.09)	(0.23)	(0.25)	(1.59)
Cu	-0.27	0.26	0.14	0.25	0.13	0.13	1.31
eu	(-0.34)	(0.21)	(0.09)	(0.22)	(0.09)	(0.06)	(1.43)
Zn	0.21	-0.69	-0.06	-0.45	-0.36	-0.25	1.15
	(0.15)	(-0.81)	(-0.15)	(-0.54)	(-0.43)	(-0.26)	(0.90)
Y	-0.15	0.31	0.45	0.49	0.35	0.48	-0.22
Zr	0.51	0.00	-0.14	-0.15	-0.18	-0.71	-0.90
Nb	-0.24	-0.25	-0.66	-0.60	-0.70	-0.65	-0.74
Мо	<mark>-0.10</mark>	-0.12	-0.46	-0.43	-0.61	-0.48	-0.37
Tc	0.20	-0.16	-0.17	-0.18	-0.44	-0.43	-0.36
Ru	0.30	-0.46	<mark>0.06</mark>	-0.43	-0.44	-0.51	-0.43
Rh	<mark>0.06</mark>	0.11	<mark>-0.06</mark>	-0.32	-0.42	-0.19	-0.07
Pd	-0.60	-0.79	-0.25	0.05	0.35	0.29	1.57
Ag	-0.70	0.03	0.17	0.28	0.14	1.49	0.36
Cd	1.09	<mark>0.08</mark>	0.62	-0.93	0.15	<mark>0.06</mark>	<mark>-0.06</mark>
La	<mark>-0.09</mark>	1.44	0.44	0.48	0.36	1.01	0.43
Hf	0.23	-0.33	-0.50	-0.50	-0.57	-0.98	-1.09
Та	-0.67	-0.75	-1.00	-1.02	-1.04	-0.99	-1.00
W	-0.56	-0.61	-0.85	-0.84	-0.91	-0.86	-0.82
Re	-0.34	-0.61	-0.61	-0.57	-0.78	-0.78	-0.83
Os	<mark>-0.06</mark>	-0.82	-0.45	-0.75	-0.82	-0.76	-0.66
Ir	-0.21	-0.17	-0.23	-0.46	-0.73	-0.36	-0.21
Pt	<mark>-0.09</mark>	-0.39	<mark>0.03</mark>	0.41	0.57	0.43	1.68
Au	-0.42	0.23	0.30	0.39	0.22	0.71	1.71
Hg	-0.18	0.44	0.78	*	-0.21	*	*

Table S21. HER free energies ($\Delta G_{H^*} = \Delta E_{H^*} + \Delta ZPE - T\Delta S$ in eV) for M-N_nC_m-G_N. (RPBE(U)+TS results are in parentheses).^a

^a ΔG_{H^*} values for the most stable adsorption site are presented here. The small values of $\Delta G_{H^*} |< 0.1$ eV are marked in red letter dubbed with yellow color. "*" denotes unstable systems.

Table S22. ΔG_{H^*} (in eV) in the absence and presence of water and the solvent effect for selected M-N₂C₂-G_N systems which have $|\Delta G_{H^*}| \leq 0.1$ eV. RPBE(U)+TS results are given for 3d metals. {The results from the explicit solvent models are in braces}.

Transition Metal	∆G _{H*}	ΔG_{H^*} in water: implicit(explicit)	Solvent effect
Mn	0.06	-0.03ª {0.03}	-0.09 {-0.03}
Ni	-0.10	-0.10	0.00
Cu	0.09	0.07	-0.02
Ru	0.06	0.10 {0.09}	0.04 {0.03}
Rh	-0.06	-0.08	-0.02
Pt	0.03	0.04	0.01

^a In the case of Mn, the difference between ΔG_{H*} 's without and with implicit solvation models is slightly larger than other cases. This is because the magnetic moment of metal atoms are changed in the implicit solvation model. Thus, we also studied an explicit model which uses an implicit model in the presence of one water molecule added explicitly to each system. Then, in this explicit model, this spin change is not observed and the solvent effect is still negligible. Thus, the real solvent effect is found to be insignificant (no more than 0.03 eV).

Transition Metal	ΔE_{H^*}	$\Delta E_{2H^*/2}^{Kubas}$	ΔG_{H^*}	$\Delta G_{2H^*/2}^{Kubas}$	$\Delta G_{2nd-H^*} = 2\Delta G_{2H^*/2}^{Kubas} - \Delta G_{H^*}$	Н-Н (Å)	M-H1 (Å)	M-H2 (Å)
Sc	0.13	-0.07	0.46	0.12	-0.23	0.75	2 65	2 67
	(0.14)	(-0.07)	(0.48)	(0.12)	(-0.24)	0.75	2.05	2.07
Ti	-0.35	-0.10	-0.12	0.09	0.30	0.77	2.26	2.23
V	-0.27	0.10	-0.06	0.10)	0.68			
v	(-0.02)	(0.37)	(0.19)	(0.58)	(0.97)	1.58	1.64	1.64
Cr	-0.05	0.22	0.30	0.43	0.56	1 48	1.60	1.60
	(-0.77)	(-0.03)	(-0.42)	(0.18)	(0.78)	1.40	1.00	1.00
Mn	-0.04	-0.03	0.29	0.16	0.02	0.76	2.32	2.33
Б.	(-0.26)	(-0.03)	(0.06)	(0.16)	(0.26)			
re	-0.42	(-0.04)	-0.07	(0.10)	(0.20)	0.79	1.88	1.88
Co	-0.55	-0.12	-0.20	0.09	0.38	0 0 -		
00	(-0.47)	(-0.03)	(-0.13)	(0.18)	(0.48)	0.85	1.65	1.65
Ni	-0.34	-0.02	0.00	0.19	0.39	0.75	3 1 2	3.8/
	(-0.45)	(-0.02)	<mark>(-0.10)</mark>	(0.19)	(0.49)	0.75	5.12	5.04
Cu	-0.21	-0.02	0.14	0.19	0.23	0.75	3.29	3.32
Zn	(-0.26)	(-0.02)	(0.09) -0.06	(0.19)	(0.28)			
ZII	(-0.52)	(-0.01)	(-0.15)	(0.18)	(0.52)	0.75	3.40	3.45
Y	0.13	-0.05	0.45	0.17	-0.12	0.75	2.92	2.91
Zr	-0.36	-0.08	-0.14	0.12	0.38	0.76	2.49	2.50
Nb	-0.88	-0.24	-0.66	-0.01	0.63	2.03	1.80	1.77
Мо	-0.70	-0.26	-0.46	-0.02	0.43	1.88	1.72	1.72
Tc	-0.40	-0.42	-0.17	-0.19	-0.21	1.81	1.67	1.67
Ru	-0.18	-0.34	<mark>0.06</mark>	-0.12	-0.29	1.70	1.63	1.63
Rh	-0.40	0.08	-0.06	0.30	0.65	1.67	1.59	1.59
Pd	-0.58	-0.04	-0.25	0.19	0.63	0.75	3.23	3.96
Ag	-0.17	-0.03	0.17	0.19	0.21	0.75	3.58	3.61
Cd	0.26	-0.01	0.62	0.20	-0.23	0.75	3.45	3.47
La	0.11	-0.05	0.44	0.19	-0.05	0.75	3.31	3.30
Hf	-0.73	-0.08	-0.50	0.12	0.75	0.76	2.49	2.48
Та	-1.24	-0.44	-1.00	-0.21	0.58	2.17	1.80	1.80
W	-1.09	-0.70	-0.85	-0.44	-0.04	1.93	1.71	1.74
Re	-0.86	-0.80	-0.61	-0.56	-0.50	1.92	1.69	1.69
Os	-0.71	-0.77	-0.45	-0.52	-0.59	1.94	1.66	1.66
Ir	-0.51	-0.29	-0.23	-0.05	0.13	1.94	1.61	1.61
Pt	-0.30	0.11	<mark>0.03</mark>	0.35	0.67	2.08	1.63	1.63
Au	-0.04	-0.03	0.30	0.20	0.11	0.75	3.75	3.52
Hg	0.42	0.09	0.78	0.31	-0.17	2.30	1.65	1.65

Table S23. Volmer–Kubas reaction free energies and adsorption energies (in eV) for selected (M-N₂C₂)- G_N systems. (RPBE(U)+TS results are given in parentheses).

The values of $\Delta G_{2nd-H^*} < 0$ eV are marked in red letter and the small values of $\Delta G | < 0.1$ eV are highlighted with yellow color.

TN		C 4			N1C3			N_2C_2			$N_2C_2{}^b$			$N_2C_2^c$			N ₃ C ₁			N4	
I IVI	⊿G _{OH*}	∆ G _{0*}	∆ G _{00H*}	⊿G _{OH*}	ΔG_{O^*}	⊿G _{00H*}	⊿Gон∗	∆ G _{0*}	∆ G _{00H*}	⊿G _{OH*}	∆ G _{0*}	⊿G _{00H*}	⊿G _{OH*}	⊿G _{0*}	∆ G _{00H*}	⊿G _{OH*}	⊿G _{0*}	∆ G _{00H*}	⊿G _{0H*}	⊿G _{0*}	⊿G _{00H*}
Sc	-0.78	1.01	2.34	-0.63	1.45	2.52	-0.92	1.51	2.24	-0.90	1.51	2.40	-1.11	0.95	2.13	-1.25	0.92	1.95	-1.98	0.04	1.24
	(-0.79)	(1.15)	(2.40)	(-0.67)	(1.59)	(2.47)	(-0.97)	(1.56)	(2.19)	(-0.94)	(1.59)	(2.29)	(-1.15)	(1.07)	(2.07)	(-1.05)	(1.27)	(2.16)	(-2.06)	(0.13)	(1.16)
Ti	(-1.12)	(0.48)	(2.08)	(-1.65)	-0.30	(1.59)	-1.74	-0.97	(1.44)	(-1.77)	-0.97	(1.50)	(-1.80)	(-0.98)	(1.54)	(-1.85)	(-1.29)	(1.42)	(-2.09	-2.40	(1.21)
V	-1.38	-1.02	1.84	-1.46	-1.57	1.81	-1.61	-1.63	1.78	0.84	0.29	3.03	0.73	0.59	3.42	-1.75	-1.82	1.65	2.79	3.19	4.23
G	(-1.08)	(-0.63)	(2.19)	(-1.20)	(-1.08)	(2.07)	(-1.31)	(-0.92)	(2.05)	(0.41)	(0.44)	(3.63)	(0.51)	(0.60)	(3.72)	(-0.87)	(-0.73)	(2.56)	(0.65)	(2.15)	(3.41)
Cr	(-0.43)	-0.82	(2.84)	(-0.56)	(-0.33)	(2.71)	-0.85	-1.11 (-0.19)	(2.76)	(0.26)	(1.07)	(3.51)	(0.43)	(1.43	(3.67)	(0.62)	(0.93)	(3.79)	(0.19)	-0.52	(3.31)
Mn	-0.92	-0.76	2.30	-0.15	0.13	3.00	-0.11	0.13	3.06	0.08	0.29	3.16	0.05	0.34	3.25	-0.03	0.34	3.14	0.37	0.82	3.53
	(-0.01)	(0.71)	(3.23)	(0.44)	(1.80)	(3.63)	(0.44)	(1.71)	(3.60)	(0.51)	(1.89)	(3.65)	(0.32)	(1.87)	(3.48)	(0.26)	(1.86)	(3.45)	(0.24)	(1.86)	(3.43)
Fe	(0.11)	(1.49)	(3.31)	(0.42)	(1.84)	(3.96)	(0.58)	(1.73)	(3.80)	(0.60)	(2.02)	(3.89)	(-0.55)	(1.11)	(2.87)	(0.78)	(2.28)	(3.96)	(0.70)	(1.95)	(3.91)
Со	0.18	1.04	3.16	0.21	1.08	3.18	0.55	1.43	3.36	0.61	1.50	3.67	0.49	1.53	3.54	0.77	1.68	3.66	0.98	2.31	4.08
	(0.57)	(1.71)	(3.71)	(0.84)	(1.92)	(3.90)	(0.79)	(1.98)	(3.82)	(0.84)	(1.99)	(3.92)	(0.68)	(1.89)	(3.74)	(1.36)	(2.51)	(4.34)	(1.37)	(2.31)	(4.31)
Ni	(0.86)	(2.25)	(3.79)	(1.13)	(2.14)	(4.06)	(1.61)	(3.27)	(4.52)	(1.56)	(3.35)	(4.49)	(1.50)	(3.27)	(4.48)	(1.86)	(3.25)	(4.77)	(2.02)	(4.04)	(4.77)
Cu	1.99	3.92	4.82	2.16	4.13	4.86	1.72	3.79	4.62	1.82	4.02	4.68	1.67	3.78	4.63	1.74	3.88	4.64	1.76	3.64	4.64
7	(2.04)	(4.04)	(4.86)	(2.24)	(4.24)	(4.86)	(1.77)	(3.86)	(4.65)	(1.89)	(4.11)	(4.72)	(1.74)	(3.99)	(4.68)	(2.09)	(4.26)	(4.98)	(1.82)	(3.89)	(4.67)
Zn	(1.56)	(3.74)	(4.47)	(0.96)	(3.21)	(4.13)	(1.46)	(3.56)	(4.49)	(0.94)	(3.26)	(4.07)	(0.89)	(0.19	(4.09)	(1.52)	(3.79)	(4.70)	(0.65)	(2.99)	(3.87)
Y	-0.76	1.03	2.31	-0.65	1.50	2.55	-0.76	1.62	2.39	-0.78	1.62	2.54	-1.03	1.13	2.15	-1.12	1.19	2.09	-1.85	0.47	1.38
Zr	-1.02	0.58	2.11	-1.53	0.01	1.65	-1.70	-0.50	1.49	-1.73	-0.58	1.52	-1.76	-0.70	1.53	-2.33	-1.41	0.93	-2.57	-2.32	0.67
Nb	-1.55	-0.90	1.62	-1.59	-1.46	1.61	-2.12	-2.06	0.96	-2.07	-2.09	1.19	0.46	0.38	3.70	0.89	0.30	4.30	-0.16	0.93	2.85
Mo	-1.27	-1.40	1.95	-1.34	-1.24	2.03	1.78	1.28	3.79	1.29	0.85	4.66	1.22	1.12	4.53	1.64	1.37	4.09	0.73	3.14	3.89
Тс	-0.63	-0.80	2.56	1.79	1.44	4.43	1.87	2.08	4.49	1.55	1.67	4.87	1.60	1.94	4.85	1.66	1.86	4.58	1.40	3.39	4.35
Ru	-0.34	-0.24	2.82	-0.88	-0.65	2.09	2.08	2.45	4.69	1.03	1.98	4.23	1.23	2.46	4.39	0.97	1.98	4.09	2.41	2.70	3.65
Rh	-0.06	0.83	3.02	0.42	1.03	3.49	0.31	1.38	3.26	0.33	1.21	3.30	0.84	1.27	3.25	0.81	1.81	3.72	0.96	2.37	3.90
Pd	1.06	2.40	4.02	1.08	2.78	4.04	1.65	3.47	4.52	1.86	3.57	4.70	1.92	3.61	4.71	1.94	3.88	4.78	2.27	4.31	4.88
Ag	1.71	3.74	4.65	2.08	4.19	4.83	1.92	4.05	4.74	1.83	4.02	4.82	1.60	3.71	4.72	2.00	3.73	4.74	0.70	2.73	3.74
Cd	1.24	3.47	4.28	0.18	2.53	3.54	0.83	3.15	4.15	0.20	2.49	3.47	0.11	2.38	3.37	0.10	2.44	3.40	0.16	2.63	3.42
La	-0.57	0.29	2.62	-0.39	0.81	2.80	-0.31	1.40	2.84	-0.35	1.42	2.88	-0.59	0.51	2.61	-0.68	0.96	2.48	-1.32	0.34	1.87
Hf	-1.43	0.46	1.79	-1.97	-0.20	1.28	-2.14	-0.74	1.09	-2.18	-0.83	1.19	-2.23	-0.96	1.14	-2.65	-1.51	0.65	-2.79	-2.32	0.53
Та	-2.07	-1.32	1.40	-2.16	-1.92	1.18	-0.11	0.59	3.37	0.42	0.17	2.11	-2.53	-2.47	0.93	0.91	0.47	4.13	-0.46	1.03	2.69
W	-1.67	-1.96	1.55	-1.87	-1.99	1.58	1.88	1.22	3.32	1.23	0.77	3.52	0.33	0.36	3.59	1.66	1.46	4.26	0.17	0.12	3.42
Re	1.50	1.44	4.43	2.31	1.42	4.51	0.83	2.17	3.98	1.66	1.67	4.43	1.03	0.91	1.27	2.21	2.37	5.17	2.41	3.44	4.27
Os	1.85	2.25	4.91	1.75	2.30	4.74	2.26	2.79	4.51	1.61	2.44	4.87	1.65	1.97	4.97	1.37	2.07	4.61	2.56	2.91	3.66
Ir	-0.46	-0.18	2.59	0.13	0.23	3.13	0.06	0.72	2.98	0.31	0.82	3.20	1.74	2.41	4.97	0.78	1.47	3.71	1.04	2.07	3.97
Pt	1.01	1.99	4.23	1.05	2.47	4.07	1.52	3.04	4.45	1.88	3.36	4.79	1.88	3.31	4.76	1.85	3.83	4.79	2.30	4.19	4.90
Au	0.79	3.95	4.80	2.35	4.02	4.88	2.17	4.28	4.86	2.16	4.23	4.87	1.99	3.74	4.81	2.26	4.41	4.82	2.02	4.20	4.62
Hg	1.98	4.13	4.59	1.13	3.26	4.31	-0.29	1.93	3.82	*	*	*	0.33	2.20	3.64	*	*	*	*	*	*

Table S24. Adsorption free energies (eV) of OER/ORR intermediates (OH*, O*, OOH*) for $M-N_nC_m-G_N$ in the absence of solvent. (RPBE(U)+TS results are in parentheses).

The SAC systems with blue marked values have unstable *OOH reaction intermediate and these are calculated by associative pathway-Path-II shown in Figure 6.

		C ₄			N ₁ C ₃			N_2C_2			$N_2C_2{}^b$			$N_2C_2^c$			N ₃ C ₁			N ₄	
INI	⊿G _{OH*}	⊿G _{0*}	⊿G _{00H*}	⊿G _{OH*}	⊿G _{0*}	⊿G _{00H*}	⊿G _{OH*}	⊿G _{0*}	∆ G _{00H*}	⊿G _{OH*}	⊿ G _{0*}	⊿G _{00H*}	⊿G _{OH*}	⊿G _{0*}	⊿G _{00H*}	⊿G _{OH*}	⊿G _{0*}	∆ G _{00H*}	⊿G _{OH*}	⊿G _{0*}	⊿G _{ООН*}
Sc	0.27	0.24	3.52	0.46	1.59	3.60	0.46	2.33	3.63	0.53	2.31	3.61	0.26	1.32	3.31	0.32	1.98	3.39	-0.20	1.40	2.89
Ti	0.44	1.64	3.50	-0.05	1.04	3.07	-0.15	0.39	2.89	-0.11	0.42	2.96	-0.17	0.23	3.14	-0.67	-0.46	2.43	-0.77	-1.14	2.65
	(0.67)	(2.03)	(3.75)	(0.13)	(1.35)	(3.25)	(0.02)	(0.67)	(3.07)	(0.00)	(0.68)	(3.15)	(-0.04)	(0.51)	(3.27)	(-0.56)	(-0.19)	(2.57)	(-0.35)	(-0.50)	(2.74)
v	(-0.16)	(0.26)	(3.05)	(-0.22)	(-0.10)	(2.96)	(-0.34)	(0.01)	(2.92)	(0.38)	(0.32)	(3.49)	(0.44)	(0.50)	(3.65)	(-0.58)	(-0.55)	(2.73)	(1.72)	(3.32)	4.10 (4.63)
Cr	-0.43	-0.30	2.76	-0.74	-0.85	2.45	-0.61	-0.85	2.47	0.91	1.06	4.06	1.09	1.44	4.22	-0.73	-0.93	2.34	-0.37	-0.41	2.66
Mn	-0.31	-0.08	(3.28) 2.85	-0.24	0.11	(2.84) 2.89	-0.17	0.13	(2.90) 2.95	0.01	0.29	3.00	-0.05	0.36	3.03	-0.20	0.13)	(2.84) 2.92	0.18	0.73	(3.03) 3.29
	(-0.13)	(0.65)	(3.04)	(0.34)	(1.76)	(3.49)	(0.31)	(1.73)	(3.44)	(0.40)	(1.92)	(3.50)	(0.21)	(1.91)	(3.34)	(0.10)	(1.86)	(3.24)	(0.02)	(1.68)	(3.15)
Fe	-0.13 (0.02)	(1.48)	(3.18)	(0.19)	(1.67)	(3.73)	-0.13 (0.42)	(1.54)	(3.54)	(0.40)	(1.70)	3.25 (3.58)	(-0.47)	(1.03)	3.04 (2.87)	-0.01 (0.06)	(1.50)	(3.21)	(0.24)	(1.64)	(3.62)
Со	0.09	0.94	3.01	0.07	0.91	2.99	0.34	1.22	3.14	0.44	1.32	3.45	0.45	1.30	3.32	0.58	1.48	3.43	0.75	2.00	3.60
Ni	(0.44) 0.70	2.04	(3.54) 3.58	(0.68)	2.62	(3.67)	(0.57)	2.91	(3.55) 4.22	(0.62)	3.02	(3.64)	(-0.07) 1.35	2.98	(2.99) 4.20	(0.03)	3.15	(2.97) 4.14	(0.58)	(1.12) 3.40	(3.32) 4.38
~	(0.75)	(2.10)	(3.62)	(1.08)	(2.07)	(3.97)	(1.31)	(3.06)	(4.22)	(1.30)	(3.14)	(4.21)	(1.30)	(3.05)	(4.20)	(1.37)	(2.76)	(4.26)	(1.68)	(3.74)	(4.46)
Cu	(1.77)	(3.81)	(4.60)	(1.93)	3.80 (3.98)	4.60 (4.61)	(1.39)	(3.49)	(4.30)	(1.52)	(3.73)	4.32 (4.35)	(1.34)	(3.53)	4.26 (4.30)	(1.42)	(3.61)	(4.31)	(1.37)	3.25	(4.32)
Zn	1.34	3.51	4.30	0.70	2.92	3.81	1.11	3.18	4.19	0.70	2.94	3.81	0.61	-0.03	3.80	0.37	2.55	3.55	0.21	2.44	3.40
Y	-0.04	0.30	3.30	0.21	1.48	3.36	0.44	2.23	3.47	0.46	2.28	3.59	0.24	1.24	3.32	0.26	2.12	3.45	-0.14	1.61	3.03
Zr	0.60	1.12	3.68	0.08	1.27	3.17	-0.02	0.87	3.19	0.05	1.25	3.24	-0.08	0.71	3.05	-0.45	0.27	2.64	-0.84	-0.67	2.23
Nb	-0.18	0.37	2.90	-0.36	-0.12	2.78	-0.91	-0.76	2.25	-0.77	-0.80	2.25	0.58	0.54	3.83	0.99	0.47	4.30	-0.15	0.44	2.74
Мо	-0.56	-0.62	2.60	-0.68	-0.52	2.42	1.63	1.31	4.71	1.23	1.02	4.44	1.19	1.16	4.35	1.57	1.40	4.79	0.77	3.07	3.69
Tc	-0.41	-0.49	2.75	1.65	1.42	4.22	1.71	2.02	4.82	1.45	1.67	4.60	1.54	1.96	4.67	1.92	2.19	4.49	1.21	3.27	4.06
Ru	-0.31	-0.13	2.60	-0.84	-0.55	1.98	1.88	2.17	5.01	0.92	1.91	3.98	1.14	2.44	4.36	0.91	1.87	3.88	1.27	3.12	3.68
Rh	-0.17	0.72	2.82	0.27	0.89	3.31	0.10	1.21	3.03	0.16	1.00	3.02	0.66	1.07	3.13	0.67	1.68	3.55	0.79	2.13	3.68
Pd	0.88	2.20	3.76	0.87	2.57	3.81	1.43	3.26	4.28	1.66	3.28	4.46	1.68	3.40	4.46	1.62	3.57	4.46	1.91	3.94	4.53
Ag	1.44	3.47	4.39	1.76	3.77	4.55	1.47	3.62	4.38	1.59	3.72	4.46	1.26	3.40	4.32	1.54	3.20	4.39	0.24	2.28	3.30
Cd	0.97	2.84	4.06	-0.10	2.18	3.17	0.60	2.87	3.84	0.22	2.38	3.44	-0.61	1.44	2.64	0.06	2.34	3.28	0.05	2.25	3.27
La	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hf	0.47	1.30	3.56	-0.06	1.21	3.11	-0.20	0.85	3.16	-0.15	0.97	3.03	-0.24	0.66	2.91	-0.68	0.25	2.47	-1.06	-0.63	2.16
Та	-0.40	0.24	2.93	-0.62	-0.39	2.61	1.38	0.62	4.61	0.41	0.22	3.74	-1.21	-1.17	2.11	0.91	0.63	4.36	-0.59	0.47	2.53
W	-0.95	-1.16	2.17	-1.09	-1.14	-0.73	1.73	1.27	4.79	1.23	0.84	3.06	0.44	0.50	3.62	1.64	1.50	3.61	0.30	-0.17	3.29
Re	1.64	1.45	4.77	2.10	1.41	4.33	1.83	2.17	4.94	1.59	1.70	4.20	1.02	0.94	3.18	2.12	2.38	4.67	1.13	3.33	2.96
Os	1.64	2.25	4.81	1.61	2.27	4.42	2.08	2.48	4.58	1.49	2.41	4.63	1.60	1.99	4.89	1.28	1.82	4.14	0.93	2.92	3.58
Ir	-0.61	-0.29	2.41	-0.03	0.11	2.53	-0.12	0.56	2.78	0.19	0.69	2.89	1.64	2.17	4.77	0.66	1.35	3.55	0.88	1.84	3.78
Pt	0.85	1.86	4.04	0.88	2.30	3.86	1.35	2.75	4.23	1.71	3.18	4.56	1.70	3.14	4.53	1.64	3.37	4.51	2.00	3.71	4.55
Au	0.62	3.72	4.50	2.00	3.70	4.54	1.73	3.90	4.50	1.80	3.92	4.51	1.58	3.43	4.45	1.79	3.99	4.47	1.41	3.63	4.25
Hg	1.58	3.80	4.34	0.92	2.97	4.02	-0.55	1.58	2.72	*	*	*	0.27	1.68	3.32	*	*	*	*	*	*

Table S25. Adsorption free energies (eV) of OER/ORR inetermediates (OH*, O*, OOH*) for M-N_nC_m-G_N in the presence of solvent (dielectric constant: 80). (RPBE(U)+TS results are in parentheses).

The SAC systems with blue marked values have unstable *OOH reaction intermediate and these are calculated by associative pathway-Path-II shown in Figure 6. The data for the La case in solvent are not provided due to the convergency issue.

				(C4							Ν	1C3							Ň	1_2C_2			
ТМ		0	ER			0	RR			O	ER			0	RR			OE	R			O	RR	
	ΔG_{I}	ΔG_2	⊿G₃	⊿G₄	ΔG_5	ΔG_6	ΔG_7	ΔG_8	ΔG_{I}	ΔG_2	⊿G₃	⊿G₄	ΔG_5	ΔG_6	ΔG_7	ΔG_8	ΔG_{I}	ΔG_2	⊿G₃	⊿G₄	ΔG_5	ΔG_6	ΔG_7	ΔG_8
Sc	-0.78	1.79	1.33	2.58	-2.58	-1.33	-1.79	0.78	-0.63	2.08	1.07	2.40	-2.40	-1.07	-2.08	0.63	-0.92	2.43	0.73	2.68	-2.68	-0.73	-2.43	0.92
Ti	-1.11	1.41	1.76	2.86	-2.86	-1.76	-1.41	1.11	-1.59	1.29	1.93	3.28	-3.28	-1.93	-1.29	1.59	-1.74	0.77	2.42	3.48	-3.48	-2.42	-0.77	1.74
X 7	(-1.12)	(1.60)	(1.61)	(2.84)	(-2.84)	(-1.61) -2.86	(-1.60) -0.35	(1.12)	(-1.65) -1.46	(1.45)	(1.78) 3 39	(3.33)	(-3.33)	(-1.78) -3 39	(-1.45)	(1.65) 1.46	(-1.77)	(0.90)	(2.31)	(3.49) 3.14	(-3.49)	(-2.31)	(-0.90)	(1.77)
v	(-1.08)	(0.45)	(2.81)	(2.73)	(-2.73)	(-2.81)	(-0.45)	(1.08)	(-1.20)	(0.12)	(3.15)	(2.85)	(-2.85)	(-3.15)	(-0.12)	(1.20)	(-1.31)	(0.40)	(2.97)	(2.87)	(-2.87)	(-2.97)	(-0.40)	(1.31)
Cr	-0.93	0.12	3.12	2.61	-2.61	-3.12	-0.12	0.93	-1.09	-0.15	3.40	2.76	-2.76	-3.40	0.15	1.09	-0.83	-0.28	3.42	2.61	-2.61	-3.42	0.28	0.83
Mn	-0.92	0.16	3.06	2.62	-2.62	-3.06	-0.16	0.92	-0.15	0.28	2.87	1.92	-1.92	-2.87	-0.28	0.15	-0.11	0.24	2.93	1.86	-1.86	-2.93	-0.24	0.11
E.	(-0.01)	(0.72)	(2.52)	(1.69)	(-1.69)	(-2.52)	(-0.72)	(0.01)	(0.44)	(1.36)	(1.83)	(1.29)	(-1.29)	(-1.83)	(-1.36)	(-0.44)	(0.44)	(1.26)	(1.89)	(1.32)	(-1.32)	(-1.89)	(-1.26)	(-0.44)
re	(0.11)	(1.38)	(1.82)	(1.61)	(-1.61)	(-1.82)	(-1.38)	(-0.11)	(0.42)	(1.42)	(2.13)	(0.94)	(-0.94)	(-2.13)	(-1.42)	(-0.42)	(0.58)	(1.15)	(2.08)	(1.12)	(-1.12)	(-2.08)	(-1.15)	(-0.58)
Со	0.18	0.86	2.12	1.76	-1.76	-2.12	-0.86	-0.18	0.21	0.87	2.11	1.74	-1.74	-2.11	-0.87	-0.21	0.55	0.87	1.93	1.56	-1.56	-1.93	-0.87	-0.55
Ni	0.88	1.35	1.56	1.13	-1.13	-1.56	-1.35	-0.88	1.28	1.53	1.37	0.74	-0.74	-1.37	-1.53	-1.28	1.58	1.51	1.35	0.48	-0.48	-1.35	-1.51	-1.58
C	(0.86)	(1.39)	(1.54)	(1.13)	(-1.13)	(-1.54)	(-1.39)	(-0.86)	(1.13)	(1.00)	(1.92)	(0.86)	(-0.86)	(-1.92)	(-1.00)	(-1.13)	(1.61)	(1.65)	(1.25)	(0.40)	(-0.40)	(-1.25)	(-1.65)	(-1.61)
Cu	(2.04)	(2.01)	(0.81)	(0.06)	(-0.06)	(-0.81)	(-2.01)	(-2.04)	(2.24)	(2.00)	(0.62)	(0.06)	(-0.06)	(-0.62)	(-2.00)	(-2.24)	(1.77)	(2.09)	(0.79)	(0.27)	(-0.27)	(-0.79)	(-2.09)	(-1.77)
Zn	1.66	2.16	0.71	0.39	-0.39	-0.71	-2.16	-1.66	1.01	2.24	0.91	0.77	-0.77	-0.91	-2.24	-1.01	1.46	2.11	0.95	0.40	-0.40	-0.95	-2.11	-1.46
Y	-0.76	1.79	1.28	2.61	-2.61	-1.28	-1.79	0.76	-0.65	2.15	1.05	2.37	-2.37	-1.05	-2.15	0.65	-0.76	2.38	0.78	2.53	-2.53	-0.78	-2.38	0.76
Zr	-1.02	1.60	1.52	2.81	-2.81	-1.52	-1.60	1.02	-1.53	1.54	1.64	3.27	-3.27	-1.64	-1.54	1.53	-1.70	1.20	1.99	3.43	-3.43	-1.99	-1.20	1.70
Nb	-1.55	0.65	2.52	3.30	-3.30	-2.52	-0.65	1.55	-1.59	0.13	3.07	3.31	-3.31	-3.07	-0.13	1.59	-2.12	0.05	3.02	3.96	-3.96	-3.02	-0.05	2.12
Мо	-1.27	-0.13	3.36	2.97	-2.97	-3.36	0.13	1.27	-1.34	0.09	3.27	2.89	-2.89	-3.27	-0.09	1.34	1.78	-0.50	2.51	1.13	-1.13	-2.51	0.50	-1.78
Тс	-0.63	-0.17	3.36	2.36	-2.36	-3.36	0.17	0.63	1.79	-0.35	2.99	0.49	-0.49	-2.99	0.35	-1.79	1.87	0.21	2.42	0.43	-0.43	-2.42	-0.21	-1.87
Ru	-0.34	0.09	3.07	2.10	-2.10	-3.07	-0.09	0.34	-0.88	0.23	2.74	2.83	-2.83	-2.74	-0.23	0.88	2.08	0.37	2.24	0.23	-0.23	-2.24	-0.37	-2.08
Rh	-0.06	0.89	2.19	1.90	-1.90	-2.19	-0.89	0.06	0.42	0.61	2.46	1.43	-1.43	-2.46	-0.61	-0.42	0.31	1.08	1.88	1.66	-1.66	-1.88	-1.08	-0.31
Pd	1.06	1.34	1.62	0.90	-0.90	-1.62	-1.34	-1.06	1.08	1.70	1.27	0.88	-0.88	-1.27	-1.70	-1.08	1.65	1.82	1.05	0.40	-0.40	-1.05	-1.82	-1.65
Ag	1.71	2.03	0.91	0.27	-0.27	-0.91	-2.03	-1.71	2.08	2.11	0.64	0.09	-0.09	-0.64	-2.11	-2.08	1.92	2.13	0.68	0.18	-0.18	-0.68	-2.13	-1.92
Cd	1.24	2.24	0.81	0.64	-0.64	-0.81	-2.24	-1.24	0.18	2.35	1.01	1.38	-1.38	-1.01	-2.35	-0.18	0.83	2.32	1.00	0.77	-0.77	-1.00	-2.32	-0.83
La	-0.57	0.87	2.33	2.30	-2.30	-2.33	-0.87	0.57	-0.39	1.20	1.99	2.12	-2.12	-1.99	-1.20	0.39	-0.31	1.71	1.44	2.08	-2.08	-1.44	-1.71	0.31
Hf	-1.43	1.88	1.33	3.13	-3.13	-1.33	-1.88	1.43	-1.97	1.77	1.49	3.64	-3.64	-1.49	-1.77	1.97	-2.14	1.40	1.83	3.83	-3.83	-1.83	-1.40	2.14
Та	-2.07	0.75	2.73	3.52	-3.52	-2.73	-0.75	2.07	-2.16	0.24	3.10	3.74	-3.74	-3.10	-0.24	2.16	-0.11	0.70	2.78	1.55	-1.55	-2.78	-0.70	0.11
W	-1.67	-0.28	3.51	3.37	-3.37	-3.51	0.28	1.67	-1.87	-0.12	3.57	3.34	-3.34	-3.57	0.12	1.87	1.88	-0.66	2.10	1.60	-1.60	-2.10	0.66	-1.88
Re	1.50	-0.06	2.99	0.49	-0.49	-2.99	0.06	-1.50	2.31	-0.89	3.09	0.41	-0.41	-3.09	0.89	-2.31	0.83	1.34	1.81	0.94	-0.94	-1.81	-1.34	-0.83
Os	1.85	0.40	2.66	0.01	-0.01	-2.66	-0.40	-1.85	1.75	0.55	2.44	0.18	-0.18	-2.44	-0.55	-1.75	2.26	0.52	1.72	0.41	-0.41	-1.72	-0.52	-2.26
Ir	-0.46	0.29	2.77	2.33	-2.33	-2.77	-0.29	0.46	0.13	0.10	2.90	1.79	-1.79	-2.90	-0.10	-0.13	0.06	0.66	2.26	1.94	-1.94	-2.26	-0.66	-0.06
Pt	1.01	0.98	2.25	0.69	-0.69	-2.25	-0.98	-1.01	1.05	1.42	1.60	0.85	-0.85	-1.60	-1.42	-1.05	1.52	1.52	1.40	0.47	-0.47	-1.40	-1.52	-1.52
Au	0.79	3.16	0.84	0.12	-0.12	-0.84	-3.16	-0.79	2.35	1.67	0.86	0.04	-0.04	-0.86	-1.67	-2.35	2.17	2.11	0.58	0.06	-0.06	-0.58	-2.11	-2.17
Hg	1.98	2.15	0.46	0.33	-0.33	-0.46	-2.15	-1.98	1.13	2.13	1.05	0.61	-0.61	-1.05	-2.13	-1.13	-0.29	2.22	1.89	1.10	-1.10	-1.89	-2.22	0.29

Table S26. Reaction free energy (eV) of elementary steps for OER/ORR in the absence of solvent for $M-N_nC_m-G_NDV$ -systems. (RPBE(U)+TS results are in parentheses). (*OOH is unstable, breaking into *O and *OH in path-I; so, for these systems the OER/ORR reaction free energies marked in blue are calculated for path-II shown in Figure 6).

Table S26. Continued...

		N2C2 ^b OER ORR										N_2	2C2 ^c							Ν	[3 C 1			
TM		O	ER			0	RR			OF	ER			O	RR			OE	R			OI	RR	
_	ΔG_1	ΔG_2	∆G₃	∆G₄	∆G₅	∆ G ₆	∆ G7	ΔG_8	ΔG_1	ΔG_2	⊿G₃	∆G₄	∆ G₅	ΔG_6	ΔG_7	ΔG_8	ΔG_{I}	ΔG_2	⊿G₃	∆ G₄	∆ G₅	ΔG_6	ΔG_7	ΔG_8
Sc	-0.90	2.41	0.90	2.52	-2.52	-0.90	-2.41	0.90	-1.11	2.06	1.18	2.79	-2.79	-1.18	-2.06	1.11	-1.25	2.17	1.03	2.97	-2.97	-1.03	-2.17	1.25
Ті	(-0.94) -1.73	(2.53) 0.77	(0.70) 2.52	(2.63)	(-2.63) -3.37	(-0.70) -2.52	(-2.53) -0.77	(0.94) 1.73	(-1.15) -1.72	(2.21) 0.59	(1.00) 2.81	(2.85) 3.23	-3.23	(-1.00) -2.81	(-2.21) -0.59	(1.15) 1.72	(-1.05) -2.13	0.38	(0.89) 3.10	(2.76) 3.57	(-2.76) -3.57	(-0.89) -3.10	-0.38	2.13
	(1.77)	(0.92)	(2.36)	(3.42)	(-3.42)	(-2.36)	(-0.92)	(1.77)	(-1.80)	(0.82)	(2.52)	(3.38)	(-3.38)	(-2.52)	(-0.82)	(1.80)	(-1.85)	(0.56)	(2.70)	(3.50)	(-3.50)	(-2.70)	(-0.56)	(1.85)
V	0.84 (0.41)	-0.55 (0.03)	(3.19)	(1.29)	-1.89 (-1.29)	-2.74 (-3.19)	0.55	-0.84 (-0.41)	(0.73 (0.51)	-0.14 (0.08)	2.84 (3.13)	1.50 (1.20)	-1.50 (-1.20)	-2.84 (-3.13)	0.14 (-0.08)	-0.73	-1./5 (-0.87)	-0.08	(3.29)	(2.36)	-3.27 (-2.36)	-3.47	(-0.14)	(0.87)
Cr	0.98	0.09	3.16	0.68	-0.68	-3.16	-0.09	-0.98	1.14	0.29	2.93	0.56	-0.56	-2.93	-0.29	-1.14	-0.67	-0.27	3.37	2.49	-2.49	-3.37	0.27	0.67
Ma	(0.26) 0.08	(0.81) 0.22	(2.43) 2.86	(1.41) 1.76	(-1.41)	(-2.43) -2.86	(-0.81) -0.22	(-0.26) -0.08	(0.43) 0.05	(1.01) 0.29	(2.23) 2.91	(1.25) 1.67	(-1.25) -1.67	(-2.23) -2.91	(-1.01) -0.29	(-0.43) -0.05	(0.62)	(0.31)	(2.85)	(1.13)	(-1.13)	(-2.85)	(-0.31)	(-0.62)
MIN	(0.51)	(1.38)	(1.76)	(1.27)	(-1.27)	(-1.76)	(-1.38)	(-0.51)	(0.32)	(1.55)	(1.60)	(1.44)	(-1.44)	(-1.60)	(-1.55)	(-0.32)	(0.26)	(1.60)	(1.58)	(1.47)	(-1.47)	(-1.58)	(-1.60)	(-0.26)
Fe	0.27	0.57	2.57	1.51	-1.51	-2.57	-0.57	-0.27	0.59	1.19	1.98	1.15	-1.15	-1.98	-1.19	-0.59	0.19	0.76	2.46	1.52	-1.52	-2.46	-0.76	-0.19
Co	(0.60)	(1.42)	2.17	(1.03)	(-1.03)	(-1.86) -2.17	-0.89	-0.60)	0.49	(1.05)	2.01	1.38	-1.38	-2.01	(-1.05) -1.04	-0.49	0.77	0.91	(1.69)	(0.96)	(-0.96) -1.26	(-1.69) -1.98	-0.91	-0.77
Cu	(0.84)	(1.15)	(1.93)	(1.00)	(-1.00)	(-1.93)	(-1.15)	(-0.84)	(0.68)	(1.21)	(1.86)	(1.18)	(-1.18)	(-1.86)	(-1.21)	(-0.68)	(1.36)	(1.15)	(1.84)	(0.58)	(-0.58)	(-1.84)	(-1.15)	(-1.36)
Ni	1.59	1.63	1.25	0.45	-0.45	-1.25	-1.63	-1.59	1.58	1.59	1.27	0.49	-0.49	-1.27	-1.59	-1.58	1.56	1.89	1.00	0.47	-0.47	-1.00	-1.89	-1.56
Cu	1.82	2.20	0.66	0.24	-0.24	-0.66	-2.20	-1.82	1.67	2.11	0.85	0.29	-0.29	-0.85	-2.11	-1.67	1.74	2.14	0.77	0.28	-0.28	-0.77	-2.14	-1.74
7	(1.89)	(2.22)	(0.60)	(0.20)	(-0.20)	(-0.60)	(-2.22)	(-1.89)	(1.74)	(2.26)	(0.68)	(0.24)	(-0.24)	(-0.68)	(-2.26)	(-1.74)	(2.09)	(2.17)	(0.72)	(-0.06)	(0.06)	(-0.72)	(-2.17)	(-2.09)
Zn	(0.94)	(2.33)	(0.81)	(0.85)	(-0.85)	(-0.81)	(-2.33)	(-0.93)	(0.89)	(-0.78)	(3.98)	(0.83)	(-0.83)	(-3.98)	(0.78)	(-0.89)	(1.52)	(2.24)	(0.91)	(0.22)	(-0.22)	(-0.90)	(-2.24)	(-1.52)
Y	-0.78	2.40	0.91	2.38	-2.38	-0.91	-2.40	0.78	-1.03	2.16	1.01	2.77	-2.77	-1.01	-2.16	1.03	-1.12	2.32	0.89	2.83	-2.83	-0.89	-2.32	1.12
Zr	-1.73	1.16	2.10	3.40	-3.40	-2.10	-1.16	1.73	-1.76	1.06	2.23	3.39	-3.39	-2.23	-1.06	1.76	-2.33	0.91	2.34	3.99	-3.99	-2.34	-0.91	2.33
Nb	-2.07	-0.03	3.28	3.73	-3.73	-3.28	0.03	2.07	0.46	-0.08	3.33	1.22	-1.22	-3.33	0.08	-0.46	0.89	-0.58	4.00	0.62	-0.62	-4.00	0.58	-0.89
Мо	1.29	-0.45	3.82	0.26	-0.26	-3.82	0.45	-1.29	1.22	-0.10	3.41	0.39	-0.39	-3.41	0.10	-1.22	1.64	-0.26	2.71	0.83	-0.83	-2.71	0.26	-1.64
Тс	1.55	0.11	3.20	0.05	-0.05	-3.20	-0.11	-1.55	1.60	0.34	2.91	0.07	-0.07	-2.91	-0.34	-1.60	1.66	0.19	2.72	0.34	-0.34	-2.72	-0.19	-1.66
Ru	1.03	0.95	2.25	0.69	-0.69	-2.25	-0.95	-1.03	1.23	1.23	1.93	0.53	-0.53	-1.93	-1.23	-1.23	0.97	1.00	2.12	0.83	-0.83	-2.12	-1.00	-0.97
Rh	0.33	0.88	2.09	1.62	-1.62	-2.09	-0.88	-0.33	0.84	0.43	1.98	1.67	-1.67	-1.98	-0.43	-0.84	0.81	0.99	1.92	1.20	-1.20	-1.92	-0.99	-0.81
Pd	1.86	1.71	1.13	0.22	-0.22	-1.13	-1.71	-1.86	1.92	1.70	1.09	0.21	-0.21	-1.09	-1.70	-1.92	1.94	1.94	0.90	0.14	-0.14	-0.90	-1.94	-1.94
Ag	1.83	2.19	0.80	0.10	-0.10	-0.80	-2.19	-1.83	1.60	2.11	1.01	0.20	-0.20	-1.01	-2.11	-1.60	2.00	1.73	1.02	0.18	-0.18	-1.02	-1.73	-2.00
Cd	0.20	2.29	0.98	1.45	-1.45	-0.98	-2.29	-0.20	0.11	2.27	0.98	1.55	-1.55	-0.98	-2.27	-0.11	0.10	2.34	0.96	1.52	-1.52	-0.96	-2.34	-0.10
La	-0.35	1.78	1.46	2.04	-2.04	-1.46	-1.78	0.35	-0.59	1.10	2.10	2.31	-2.31	-2.10	-1.10	0.59	-0.68	1.64	1.52	2.44	-2.44	-1.52	-1.64	0.68
Hf	-2.18	1.35	2.01	3.73	-3.73	-2.01	-1.35	2.18	-2.23	1.27	2.09	3.78	-3.78	-2.09	-1.27	2.23	-2.65	1.15	2.16	4.27	-4.27	-2.16	-1.15	2.65
Та	0.42	-0.25	1.94	2.81	-2.81	-1.94	0.25	-0.42	-2.53	0.07	3.40	3.99	-3.99	-3.40	-0.07	2.53	0.91	-0.44	3.66	0.79	-0.79	-3.66	0.44	-0.91
W	1.23	-0.46	2.76	1.40	-1.40	-2.76	0.46	-1.23	1.03	-0.12	0.36	3.65	-3.65	-0.36	0.12	-1.03	1.66	-0.20	2.80	0.66	-0.66	-2.80	0.20	-1.66
Re	1.66	0.01	2.76	0.49	-0.49	-2.76	-0.01	-1.66	1.65	0.33	3.00	-0.05	0.05	-3.00	-0.33	-1.65	2.21	0.17	2.80	-0.25	0.25	-2.80	-0.17	-2.21
Os	1.61	0.83	2.43	0.05	-0.05	-2.43	-0.83	-1.61	1.74	0.67	2.55	-0.05	0.05	-2.55	-0.67	-1.74	1.37	0.71	2.53	0.31	-0.31	-2.53	-0.71	-1.37
Ir	0.31	0.51	2.38	1.72	-1.72	-2.38	-0.51	-0.31	0.61	1.30	2.05	0.96	-0.96	-2.05	-1.30	-0.61	0.78	0.70	2.24	1.21	-1.21	-2.24	-0.70	-0.78
Pt	1.88	1.48	1.43	0.13	-0.13	-1.43	-1.48	-1.88	1.88	1.43	1.44	0.16	-0.16	-1.44	-1.43	-1.88	1.85	1.98	0.97	0.13	-0.13	-0.97	-1.98	-1.85
Au	2.16	2.07	0.64	0.05	-0.05	-0.64	-2.07	-2.16	1.99	1.75	1.07	0.11	-0.11	-1.07	-1.75	-1.99	2.26	2.15	0.42	0.10	-0.10	-0.42	-2.15	-2.26
Hg	*	*	*	*	*	*	*	*	0.33	1.87	1.44	1.28	-1.28	-1.44	-1.87	-0.33	*	*	*	*	*	*	*	*

					N ₄			
TM		OE	R			O	RR	
	ΔG_1	ΔG_2	ΔG_3	ΔG_4	ΔG_5	ΔG_6	ΔG_7	ΔG_8
Sc	-1.98	2.02	1.20	3.68	-3.68	-1.20	-2.02	1.98
	(-2.06)	(2.19)	(1.03)	(3.76)	(-3.76)	(-1.03)	(-2.19)	(2.06)
Ti	-2.09	-0.31	3.74	3.58	-3.58	-3.74	0.31	2.09
	(-2.04)	(-0.02)	(3.27)	(3.71)	(-3.71)	(-3.27)	(0.02)	(2.04)
V	2.79	0.40	1.04	0.69	-0.69	-1.04	-0.40	-2.79
C	(0.65)	(1.50)	(1.26)	(1.51)	(-1.51)	(-1.26)	(-1.50)	(-0.65)
Cr	-0.17	-0.15	3.24	2.00	-2.00	-3.24	0.15	0.17
Mn	(0.19)	(0.76)	(2.55)	(1.01) 1 30	(-1.01)	(-2.33)	(-0.76)	(-0.19)
IVIII	(0.24)	(1.62)	(1.57)	(1.39)	(-1.39)	(-1.57)	(-1.62)	(-0.24)
Fe	0.56	0.60	(1.37) 2.27	1 48	-1 48	-2.27	-0.60	-0.56
10	(0.70)	(1.26)	(1.96)	(1.01)	(-1.01)	(-1.96)	(-1.26)	(-0.70)
Со	0.98	1.33	1.76	0.84	-0.84	-1.76	-1.33	-0.98
	(1.37)	(0.94)	(2.00)	(0.61)	(-0.61)	(-2.00)	(-0.94)	(-1.37)
Ni	1.95	2.02	0.74	0.21	-0.21	-0.74	-2.02	-1.95
	(2.02)	(2.03)	(0.73)	(0.15)	(-0.15)	(-0.73)	(-2.03)	(-2.02)
Cu	1.76	1.88	1.00	0.28	-0.28	-1.00	-1.88	-1.76
	(1.82)	(2.07)	(0.77)	(0.25)	(-0.25)	(-0.77)	(-2.07)	(-1.82)
Zn	0.56	2.47	0.75	1.14	-1.14	-0.75	-2.47	-0.56
	(0.65)	(2.34)	(0.88)	(1.05)	(-1.05)	(-0.88)	(-2.34)	(-0.65)
Y	-1.85	2.31	0.91	3.54	-3.54	-0.91	-2.31	1.85
Zr	-2.57	0.24	3.00	4.25	-4.25	-3.00	-0.24	2.57
Nb	-0.16	1.09	1.92	2.07	-2.07	-1.92	-1.09	0.16
Мо	0.73	2.41	0.75	1.03	-1.03	-0.75	-2.41	-0.73
Tc	1.40	1.99	0.96	0.57	-0.57	-0.96	-1.99	-1.40
Ru	2.41	0.29	0.95	1.27	-1.27	-0.95	-0.29	-2.41
Rh	0.96	1.41	1.53	1.02	-1.02	-1.53	-1.41	-0.96
Pd	2.27	2.04	0.57	0.04	-0.04	-0.57	-2.04	-2.27
Ag	0.70	2.03	1.01	1.18	-1.18	-1.01	-2.03	-0.70
Cd	0.16	2.46	0.80	1.50	-1.50	-0.80	-2.46	-0.16
La	-1.32	1.66	1.53	3.05	-3.05	-1.53	-1.66	1.32
Hf	-2.79	0.47	2.85	4.39	-4.39	-2.85	-0.47	2.79
Та	-0.46	1.48	1.67	2.23	-2.23	-1.67	-1.48	0.46
W	0.17	-0.05	3.30	1.50	-1.50	-3.30	0.05	-0.17
Re	2.41	1.03	0.84	0.65	-0.65	-0.84	-1.03	-2.41
Os	2.56	0.35	0.75	1.26	-1.26	-0.75	-0.35	-2.56
Ir	1.04	1.03	1.90	0.95	-0.95	-1.90	-1.03	-1.04
Pt	2.30	1.89	0.71	0.02	-0.02	-0.71	-1.89	-2.30
Au	2.02	2.18	0.41	0.30	-0.30	-0.41	-2.18	-2.02
Hg	*	*	*	*	*	*	*	*

Table S27. Reaction free energy (eV) of elementary steps for OER/ORR in the presence of solvent (dielectric constant : 80) for M-N_nC_m-G_N DV-systems. (RPBE(U)+TS results are in parentheses). (*OOH is unstable, breaking into *O and *OH in pathway-I; so, for these systems the OER/ORR reaction free energies marked in blue are calculated for path-II shown in Figure 6). The data for the La case in solvent are not provided due to the convergency problem.

				(C4							Ν	1 C 3							N	1_2C_2			
TM		0	ER			0	RR			OI	ER			0	RR			OE	R			0	RR	
	ΔG_1	ΔG_2	⊿G₃	∆ G₄	⊿G₅	ΔG_6	ΔG_7	ΔG_8	ΔG_1	ΔG_2	⊿G₃	∆G₄	ΔG_5	ΔG_6	ΔG_7	ΔG_8	ΔG_1	ΔG_2	⊿G₃	∆ G₄	⊿G₅	ΔG_6	ΔG_7	ΔG_8
Sc	0.27	-0.03	3.28	1.40	-1.40	-3.28	0.03	-0.27	0.46	1.13	2.01	1.32	-1.32	-2.01	-1.13	-0.46	0.46	1.87	1.29	1.29	-1.29	-1.29	-1.87	-0.46
Ti	0.44	1.20	1.86	1.42	-1.42	-1.86	-1.20	-0.44	-0.05	1.09	2.03	1.85	-1.85	-2.03	-1.09	0.05	-0.15	0.54	2.50	2.03	-2.03	-2.50	-0.54	0.15
v	(0.67) -0.46	(1.36) 0.32	(1.71) 2.83	(1.17) 2.23	(-1.17) -2.23	(-1.71) -2.83	(-1.36) -0.32	(-0.67) 0.46	(0.13) -0.53	(1.23) -0.10	(1.89) 3.28	(1.67) 2.27	(-1.67) -2.27	(-1.89) -3.28	(-1.23) 0.10	(-0.13) 0.53	(0.02) -0.60	(0.65) 0.00	(2.41) 3.28	(1.85) 2.25	(-1.85) -2.25	(-2.41) -3.28	(-0.65) 0.00	(-0.02) 0.60
,	(-0.16)	(0.42)	(2.79)	(1.87)	(-1.87)	(-2.79)	(-0.42)	(0.16)	(-0.22)	(0.12)	(3.07)	(1.96)	(-1.96)	(-3.07)	(-0.12)	(0.22)	(-0.34)	(0.35)	(2.91)	(2.00)	(-2.00)	(-2.91)	(-0.35)	(0.34)
Cr	(0.07)	(0.13)	(2.94)	(1.64)	-2.16 (-1.64)	-3.06 (-2.94)	-0.13 (-0.27)	(-0.07)	(-0.37)	(0.27)	(2.94)	(2.08)	(-2.08)	-3.31 (-2.94)	(-0.27)	(0.37)	(-0.24)	-0.24 (0.28)	3.32 (2.85)	(2.02)	-2.45 (-2.02)	-3.32 (-2.85)	(-0.28)	(0.24)
Mn	-0.31	0.22	2.93	2.07	-2.07	-2.93	-0.22	0.31	-0.24 (0.34)	0.34	2.78	2.03	-2.03	-2.78 (-1.73)	-0.34 (-1.42)	0.24	-0.17 (0.31)	0.30	2.82	1.97 (1.48)	-1.97	-2.82	-0.30 (-1.42)	0.17
Fe	-0.13	0.35	2.79	1.91	-1.91	-2.79	-0.35	0.13	0.01	0.33	2.71	1.87	-1.87	-2.71	-0.33	-0.01	-0.13	0.50	2.35	2.20	-2.20	-2.35	-0.50	0.13
Co	(0.02) 0.09	(1.46) 0.85	(1.70) 2.07	(1.74) 1.91	(-1.74) -1.91	(-1.70) -2.07	(-1.46) -0.85	(-0.02) -0.09	(0.19) 0.07	(1.48) 0.84	(2.06) 2.08	(1.19) 1.93	(-1.19) -1.93	(-2.06) -2.08	(-1.48) -0.84	(-0.19) -0.07	(0.42) 0.34	(1.12) 0.88	(2.00) 1.92	(1.38) 1.78	(-1.38) -1.78	(-2.00) -1.92	(-1.12) -0.88	(-0.42) -0.34
	(0.44)	(1.09)	(2.01)	(1.38)	(-1.38)	(-2.01)	(-1.09)	(-0.44)	(0.68)	(1.04)	(1.95)	(1.25)	(-1.25)	(-1.95)	(-1.04)	(-0.68)	(0.57)	(1.12)	(1.87)	(1.37)	(-1.37)	(-1.87)	(-1.12)	(-0.57)
INI	(0.75)	(1.34)	(1.52)	(1.30)	(-1.30)	(-1.52)	(-1.34)	(-0.75)	(1.08)	(0.99)	(1.89)	(0.95)	(-0.95)	(-1.89)	(-0.99)	(-1.08)	(1.31)	(1.76)	(1.15)	(0.70)	(-0.70)	(-1.15)	(-1.76)	(-1.31)
Cu	1.73 (1.77)	1.96 (2.04)	0.88 (0.79)	0.35 (0.32)	-0.35 (-0.32)	-0.88 (-0.79)	-1.96 (-2.04)	-1.73 (-1.77)	1.84 (1.93)	2.02 (2.05)	0.74 (0.63)	0.32 (0.31)	-0.32 (-0.31)	-0.74 (-0.63)	-2.02 (-2.05)	-1.84 (-1.93)	1.35 (1.39)	2.08 (2.11)	0.84 (0.81)	0.65 (0.62)	-0.65 (-0.62)	-0.84 (-0.81)	-2.08 (-2.11)	-1.35 (-1.39)
Zn	1.34	2.17	0.80	0.62	-0.62	-0.80	-2.17	-1.34	0.70	2.22	0.89	1.11	-1.11	-0.89	-2.22	-0.70	1.11	2.07	1.01	0.73	-0.73	-1.01	-2.07	-1.11
Y	-0.04	0.34	3.00	1.62	-1.62	-3.00	-0.34	0.04	0.21	1.28	1.88	1.56	-1.56	-1.88	-1.28	-0.21	0.44	1.79	1.24	1.45	-1.45	-1.24	-1.79	-0.44
Zr	0.60	0.52	2.57	1.24	-1.24	-2.57	-0.52	-0.60	0.08	1.19	1.90	1.75	-1.75	-1.90	-1.19	-0.08	-0.02	0.89	2.31	1.73	-1.73	-2.31	-0.89	0.02
Nb	-0.18	0.55	2.53	2.02	-2.02	-2.53	-0.55	0.18	-0.36	0.25	2.90	2.14	-2.14	-2.90	-0.25	0.36	-0.91	0.16	3.01	2.67	-2.67	-3.01	-0.16	0.91
Мо	-0.56	-0.05	3.22	2.32	-2.32	-3.22	0.05	0.56	-0.68	0.17	2.94	2.50	-2.50	-2.94	-0.17	0.68	1.63	-0.32	3.39	0.21	-0.21	-3.39	0.32	-1.63
Тс	-0.41	-0.08	3.24	2.17	-2.17	-3.24	0.08	0.41	1.65	-0.23	2.80	0.70	-0.70	-2.80	0.23	-1.65	1.71	0.31	2.80	0.10	-0.10	-2.80	-0.31	-1.71
Ru	-0.31	0.19	2.72	2.32	-2.32	-2.72	-0.19	0.31	-0.84	0.30	2.53	2.94	-2.94	-2.53	-0.30	0.84	1.88	0.29	2.84	-0.09	0.09	-2.84	-0.29	-1.88
Rh	-0.17	0.89	2.10	2.10	-2.10	-2.10	-0.89	0.17	0.27	0.61	2.42	1.61	-1.61	-2.42	-0.61	-0.27	0.10	1.11	1.82	1.89	-1.89	-1.82	-1.11	-0.10
Pd	0.88	1.32	1.56	1.16	-1.16	-1.56	-1.32	-0.88	0.87	1.70	1.24	1.11	-1.11	-1.24	-1.70	-0.87	1.43	1.82	1.02	0.64	-0.64	-1.02	-1.82	-1.43
Ag	1.44	2.03	0.92	0.53	-0.53	-0.92	-2.03	-1.44	1.76	2.00	0.79	0.37	-0.37	-0.79	-2.00	-1.76	1.47	2.16	0.76	0.54	-0.54	-0.76	-2.16	-1.47
Cd	0.97	1.87	1.23	0.86	-0.86	-1.23	-1.87	-0.97	-0.10	2.28	0.99	1.75	-1.75	-0.99	-2.28	0.10	0.60	2.27	0.97	1.08	-1.08	-0.97	-2.27	-0.60
La	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hf	0.47	0.83	2.26	1.36	-1.36	-2.26	-0.83	-0.47	-0.06	1.27	1.90	1.81	-1.81	-1.90	-1.27	0.06	-0.20	1.05	2.31	1.76	-1.76	-2.31	-1.05	0.20
Та	-0.40	0.65	2.68	1.99	-1.99	-2.68	-0.65	0.40	-0.62	0.23	3.00	2.31	-2.31	-3.00	-0.23	0.62	1.38	-0.76	4.00	0.31	-0.31	-4.00	0.76	-1.38
W	-0.95	-0.21	3.33	2.75	-2.75	-3.33	0.21	0.95	-1.09	-0.04	0.40	5.65	-5.65	-0.40	0.04	1.09	1.73	-0.46	3.52	0.13	-0.13	-3.52	0.46	-1.73
Re	1.64	-0.19	3.32	0.15	-0.15	-3.32	0.19	-1.64	2.10	-0.68	2.92	0.59	-0.59	-2.92	0.68	-2.10	1.83	0.35	2.76	-0.02	0.02	-2.76	-0.35	-1.83
Os	1.64	0.61	2.56	0.11	-0.11	-2.56	-0.61	-1.64	1.61	0.65	2.15	0.50	-0.50	-2.15	-0.65	-1.61	2.08	0.40	2.10	0.34	-0.34	-2.10	-0.40	-2.08
Ir	-0.61	0.31	2.71	2.51	-2.51	-2.71	-0.31	0.61	-0.03	0.14	2.41	2.39	-2.39	-2.41	-0.14	0.03	-0.12	0.68	2.21	2.14	-2.14	-2.21	-0.68	0.12
Pt	0.85	1.01	2.17	0.88	-0.88	-2.17	-1.01	-0.85	0.88	1.42	1.56	1.06	-1.06	-1.56	-1.42	-0.88	1.35	1.40	1.48	0.69	-0.69	-1.48	-1.40	-1.35
Au	0.62	3.10	0.78	0.42	-0.42	-0.78	-3.10	-0.62	2.00	1.70	0.84	0.38	-0.38	-0.84	-1.70	-2.00	1.73	2.16	0.60	0.42	-0.42	-0.60	-2.16	-1.73
Hg	1.58	2.22	0.54	0.58	-0.58	-0.54	-2.22	-1.58	0.92	2.06	1.05	0.90	-0.90	-1.05	-2.06	-0.92	-0.55	2.13	1.13	2.20	-2.20	-1.13	-2.13	0.55

Table S27. Continued...

		OER ORR										N_2	C ₂ ^c							Na	sC ₁			
ТМ		O	ER			0	RR			0	ER			0	ER			OI	ER			0	ER	
	ΔG_1	ΔG_2	ΔG_1	ΔG_1	ΔG_1	ΔG_1	ΔG_1	ΔG_1	ΔG_1	ΔG_1	⊿G₃	∆ G₄	ΔG_5	ΔG_6	ΔG_7	⊿G ₈	ΔG_1	ΔG_2	⊿G₃	∆ G₄	ΔG_5	ΔG_6	ΔG_7	ΔG_8
Sc	0.53 (0.56)	1.77 (1.94)	1.30 (1.21)	1.31 (1.22)	-1.31 (-1.22)	-1.30 (-1.21)	-1.77 (-1.94)	-0.53 (-0.56)	0.26 (0.27)	1.07 (1.20)	1.99 (2.20)	1.61 (1.25)	-1.61 (-1.25)	-1.99 (-2.20)	-1.07 (-1.20)	-0.26 (-0.27)	0.32 (0.40)	1.67 (1.78)	1.41 (1.33)	1.53 (1.41)	-1.53 (-1.41)	-1.41 (-1.33)	-1.67 (-1.78)	-0.32 (-0.40)
Ti	-0.11	0.53	2.54	1.96	-1.96	-2.54	-0.53	0.11	-0.17	0.40	2.92	1.78	-1.78	-2.92	-0.40	0.17	-0.67	0.21	2.89	2.49	-2.49	-2.89	-0.21	0.67
\mathbf{v}	(0.00) 0.78	(0.08) - 0.46	(2.46) 2.29	2.31	-2.31	-2.48) -2.29	(-0.68) 0.46	- 0.78	(-0.04) 0.77	(0.34) -0.15	(2.76) 2.26	2.03	-1.03) -2.03	-2.76) -2.26	(-0.34) 0.15	(0.04) -0.77	-1.09	-0.16	3.52	2.65	-2.65	-3.52	0.16	1.09
Cr	(0.38) 0.91	(0.05) 0.15	(3.17) 3.00	(1.43) 0.86	(-1.43) -0.86	(-3.17) -3.00	(0.05) -0.15	(-0.38) -0.91	(0.44) 1.09	(0.06) 0.35	(3.15) 2.78	(1.27) 0.70	(-1.27) -0.70	(-3.15) -2.78	(-0.06) -0.35	(-0.44) -1.09	(-0.58) -0.73	(0.03) -0.19	(3.28) 3.27	(2.19) 2.58	(-2.19) -2.58	(-3.28) -3.27	(-0.03) 0.19	(0.58) 0.73
	(0.14)	(0.78)	(2.35)	(1.66)	(-1.66)	(-2.35)	(-0.78)	(- 0.14)	(0.35)	(1.02)	(2.16)	(1.39)	(-1.39)	(-2.16)	(-1.02)	(-0.35)	(-0.27)	(0.39)	(2.72)	(2.08)	(-2.08)	(-2.72)	(-0.39)	(0.27)
Mn	(0.40)	(1.51)	(1.59)	(1.42)	(-1.42)	-2.71 (-1.59)	-0.29 (-1.51)	-0.01 (-0.40)	(0.21)	(1.70)	(1.43)	(1.58)	-1.89 (-1.58)	-2.67 (-1.43)	-0.41 (-1.70)	(-0.22)	-0.20 (0.10)	(1.76)	(1.38)	(1.68)	-2.00 (-1.68)	-2.61 (-1.38)	-0.50 (-1.76)	(-0.10)
Fe	0.10	0.61	2.55	1.67	-1.67	-2.55	-0.61 (-1.30)	-0.10 (-0.40)	0.51	1.07	2.07 (1.84)	1.28	-1.28 (-2.05)	-2.07	-1.07 (-1.50)	-0.51 (0.47)	-0.01	0.77	2.40	1.76	-1.76	-2.40	-0.77 (-1.44)	0.01
Со	0.44	0.87	2.13	1.47	-1.47	-2.13	-0.87	-0.44	0.45	0.85	2.02	1.60	-1.60	-2.02	-0.85	-0.45	0.58	0.90	1.95	1.49	-1.49	-1.95	-0.90	-0.58
Ni	(0.62) 1.37	(1.11) 1.65	(1.91) 1.20	(1.28) 0.70	-0.70	(-1.91) -1.20	(-1.11) -1.65	(-0.62) -1.37	(-0.07) 1.35	(1.15) 1.63	(1.91) 1.23	(1.93) 0.72	(-1.93) -0.72	(-1.91) -1.23	(-1.15) -1.63	(0.07)	(0.03)	(1.12) 1.87	(1.82) 0.99	(1.95) 0.78	(-1.95) -0.78	(-1.82) -0.99	(-1.12) -1.87	(-0.03) -1.27
с. С	(1.30)	(1.84)	(1.08)	(0.71)	(-0.71)	(-1.08)	(-1.84)	(-1.30)	(1.30)	(1.76)	(1.15)	(0.72)	(-0.72)	(-1.15)	(-1.76)	(-1.30)	(1.37)	(1.39)	(1.50)	(0.66)	(-0.66)	(-1.50)	(-1.39)	(-1.37)
Cu	(1.52)	(2.21)	(0.62)	(0.57)	(-0.57)	(-0.62)	(-2.21)	(-1.52)	(1.34)	(2.19)	(1.77)	(0.62)	(-0.62)	(-0.77)	(-2.19)	(-1.34)	(1.43)	(2.18)	(0.70)	(0.61)	(-0.61)	(-0.70)	(-2.18)	(-1.43)
Zn	0.70 (0.67)	2.25 (2.26)	0.86 (0.84)	1.11 (1.14)	-1.11 (-1.14)	-0.86 (-0.84)	-2.25 (-2.26)	-0.70 (-0.67)	0.61 (0.57)	-0.64 (-0.66)	3.83 (3.85)	1.12 (1.16)	-1.12 (-1.16)	-3.83 (-3.85)	0.64 (0.66)	-0.61 (-0.57)	0.37 (0.44)	2.18 (2.22)	1.00 (0.97)	1.37 (1.30)	-1.37 (-1.30)	-1.00 (-0.97)	-2.18 (-2.22)	-0.37 (-0.44)
Y	0.46	1.82	1.31	1.33	-1.33	-1.31	-1.82	-0.46	0.24	0.99	2.09	1.60	-1.60	-2.09	-0.99	-0.24	0.26	1.86	1.33	1.47	-1.47	-1.33	-1.86	-0.26
Zr	0.05	1.21	1.98	1.68	-1.68	-1.98	-1.21	-0.05	-0.08	0.80	2.34	1.87	-1.87	-2.34	-0.80	0.08	-0.45	0.71	2.37	2.28	-2.28	-2.37	-0.71	0.45
Nb	-0.77	-0.03	3.05	2.67	-2.67	-3.05	0.03	0.77	0.58	-0.05	3.29	1.09	-1.09	-3.29	0.05	-0.58	0.99	-0.52	3.83	0.62	-0.62	-3.83	0.52	-0.99
Мо	1.23	-0.21	3.43	0.48	-0.48	-3.43	0.21	-1.23	1.19	-0.04	3.19	0.57	-0.57	-3.19	0.04	-1.19	1.57	-0.17	3.39	0.13	-0.13	-3.39	0.17	-1.57
Tc	1.45	0.22	2.92	0.32	-0.32	-2.92	-0.22	-1.45	1.54	0.42	2.71	0.25	-0.25	-2.71	-0.42	-1.54	1.92	0.27	2.30	0.43	-0.43	-2.30	-0.27	-1.92
Ru	0.92	1.00	2.06	0.94	-0.94	-2.06	-1.00	-0.92	1.14	1.31	1.91	0.56	-0.56	-1.91	-1.31	-1.14	0.91	0.96	2.01	1.04	-1.04	-2.01	-0.96	-0.91
Rh	0.16	0.84	2.02	1.90	-1.90	-2.02	-0.84	-0.16	0.66	0.41	2.06	1.79	-1.79	-2.06	-0.41	-0.66	0.67	1.00	1.87	1.37	-1.37	-1.87	-1.00	-0.67
Pd	1.66	1.62	1.18	0.46	-0.46	-1.18	-1.62	-1.66	1.68	1.72	1.06	0.46	-0.46	-1.06	-1.72	-1.68	1.62	1.95	0.89	0.46	-0.46	-0.89	-1.95	-1.62
Ag	1.59	2.13	0.75	0.46	-0.46	-0.75	-2.13	-1.59	1.26	2.14	0.92	0.60	-0.60	-0.92	-2.14	-1.26	1.54	1.67	1.18	0.53	-0.53	-1.18	-1.67	-1.54
Cd	0.22	2.16	1.05	1.48	-1.48	-1.05	-2.16	-0.22	-0.61	2.05	1.19	2.28	-2.28	-1.19	-2.05	0.61	0.06	2.28	0.94	1.64	-1.64	-0.94	-2.28	-0.06
La	10.88	-3.82	10.95	-13.09	13.09	-10.95	3.82	-10.88	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hf	-0.15	1.12	2.05	1.89	-1.89	-2.05	-1.12	0.15	-0.24	0.91	2.25	2.01	-2.01	-2.25	-0.91	0.24	-0.68	0.93	2.22	2.45	-2.45	-2.22	-0.93	0.68
Та	0.41	-0.19	3.52	1.18	-1.18	-3.52	0.19	-0.41	-1.21	0.04	3.27	2.81	-2.81	-3.27	-0.04	1.21	0.91	-0.29	3.73	0.56	-0.56	-3.73	0.29	-0.91
W	1.23	-0.40	2.22	1.86	-1.86	-2.22	0.40	-1.23	1.02	-0.09	2.24	1.74	-1.74	-2.24	0.09	-1.02	1.64	-0.14	2.11	1.31	-1.31	-2.11	0.14	-1.64
Re	1.59	0.11	2.50	0.72	-0.72	-2.50	-0.11	-1.59	1.60	0.40	2.89	0.03	-0.03	-2.89	-0.40	-1.60	2.12	0.25	2.29	0.25	-0.25	-2.29	-0.25	-2.12
Os	1.49	0.91	2.22	0.29	-0.29	-2.22	-0.91	-1.49	1.64	0.52	2.60	0.15	-0.15	-2.60	-0.52	-1.64	1.28	0.54	2.32	0.78	-0.78	-2.32	-0.54	-1.28
Ir	0.19	0.50	2.20	2.03	-2.03	-2.20	-0.50	-0.19	0.58	1.14	2.12	1.08	-1.08	-2.12	-1.14	-0.58	0.66	0.69	2.20	1.37	-1.37	-2.20	-0.69	-0.66
Pt	1.71	1.47	1.38	0.36	-0.36	-1.38	-1.47	-1.71	1.70	1.44	1.39	0.39	-0.39	-1.39	-1.44	-1.70	1.64	1.72	1.14	0.41	-0.41	-1.14	-1.72	-1.64
Au	1.80	2.12	0.59	0.41	-0.41	-0.59	-2.12	-1.80	1.58	1.85	1.02	0.47	-0.47	-1.02	-1.85	-1.58	1.79	2.20	0.49	0.45	-0.45	-0.49	-2.20	-1.79
Hg	*	*	*	*	*	*	*	*	0.27	1.41	1.63	1.60	-1.60	-1.63	-1.41	-0.27	*	*	*	*	*	*	*	*

					N4			
TM		OE	R			Ol	RR	
	ΔG_1	ΔG_2	ΔG_3	ΔG_4	ΔG_5	ΔG_6	ΔG_7	ΔG_8
Sc	-0.20	1.60	1.49	2.03	-2.03	-1.49	-1.60	0.20
	(-0.10)	(1.84)	(1.29)	(1.89)	(-1.89)	(-1.29)	(-1.84)	(0.10)
Ti	-0.77	-0.37	3.80	2.27	-2.27	-3.80	0.37	0.77
.	(-0.35)	(-0.15)	(3.24)	(2.18)	(-2.18)	(-3.24)	(0.15)	(0.35)
V	1.32	1.97	0.86	0.76	-0.76	-0.86	-1.97	-1.32
C	(1.72)	(1.60)	(1.31)	(0.29)	(-0.29)	(-1.31)	(-1.60)	(-1.72)
Cr	-0.37	-0.05	(2, 21)	2.20	-2.20	-3.08	(0.05)	(1.04)
Mn	(1.04)	(-0.22)	2.21)	(1.69)	(-1.69)	(-2.21)	(0.22)	-0.18
IVIII	(0.02)	(1.66)	(1.47)	(1.05)	(-1.77)	(-1.47)	(1.66)	(-0.02)
Fe	0.38	0.53	2.29	1.72	-1 72	-2.29	-0.53	-0.38
rt	(0.24)	(1.40)	(1.98)	(1.30)	(-1.30)	(-1.98)	(-1.40)	(-0.24)
Со	0.75	1.25	1.61	1.32	-1.32	-1.61	-1.25	-0.75
	(0.38)	(0.74)	(2.20)	(1.60)	(-1.60)	(-2.20)	(-0.74)	(-0.38)
Ni	1.61	1.78	0.99	0.54	-0.54	-0.99	-1.78	-1.61
	(1.68)	(2.05)	(0.72)	(0.46)	(-0.46)	(-0.72)	(-2.05)	(-1.68)
Cu	1.33	1.92	1.04	0.63	-0.63	-1.04	-1.92	-1.33
	(1.37)	(2.12)	(0.84)	(0.60)	(-0.60)	(-0.84)	(-2.12)	(-1.37)
Zn	0.21	2.23	0.96	1.52	-1.52	-0.96	-2.23	-0.21
	(0.31)	(2.28)	(0.92)	(1.41)	(-1.41)	(-0.92)	(-2.28)	(-0.31)
Y	-0.14	1.76	1.42	1.89	-1.89	-1.42	-1.76	0.14
Zr	-0.84	0.17	2.90	2.69	-2.69	-2.90	-0.17	0.84
Nb	-0.15	0.59	2.30	2.18	-2.18	-2.30	-0.59	0.15
Мо	0.77	2.30	0.62	1.23	-1.23	-0.62	-2.30	-0.77
Tc	1.21	2.06	0.79	0.86	-0.86	-0.79	-2.06	-1.21
Ru	1.27	1.85	0.56	1.24	-1.24	-0.56	-1.85	-1.27
Rh	0.79	1.34	1.55	1.24	-1.24	-1.55	-1.34	-0.79
Pd	1.91	2.03	0.59	0.39	-0.39	-0.59	-2.03	-1.91
Ag	0.24	2.04	1.02	1.62	-1.62	-1.02	-2.04	-0.24
Cd	0.05	2.19	1.02	1.65	-1.65	-1.02	-2.19	-0.05
La	-	-	-	-	-	-	-	-
Hf	-1.06	0.43	2.79	2.76	-2.76	-2.79	-0.43	1.06
Та	-0.59	1.06	2.06	2.39	-2.39	-2.06	-1.06	0.59
W	0.30	-0.47	3.47	1.63	-1.63	-3.47	0.47	-0.30
Re	1.13	2.20	-0.37	1.96	-1.96	0.37	-2.20	-1.13
Os	0.93	1.99	0.67	1.34	-1.34	-0.67	-1.99	-0.93
Ir	0.88	0.96	1.93	1.14	-1.14	-1.93	-0.96	-0.88
Pt	2.00	1.70	0.84	0.37	-0.37	-0.84	-1.70	-2.00
Au	1.41	2.22	0.62	0.67	-0.67	-0.62	-2.22	-1.41
Hg	*	*	*	*	*	*	*	*

Table S28. Theoretical overpotential of OER in the absence (vacuum) and presence of solvent (by implicit solvation model) for divalency systems. (RPBE(U)+TS results are in parentheses). The solvent effect is added: $\Delta \eta = \eta_{sol} - \eta_{vac}$.

		C 4			N ₁ C ₃			N ₂ C ₂			N ₂ C ₂ ^b			N ₂ C ₂ ^c		-	N ₃ C ₁			N4	
INI	η ^{OER-vac}	$\eta^{\textit{OER-sol}}$	$\Delta\eta$ OER	$\eta^{ {\it OER-vac}}$	η ^{OER-sol}	$\Delta\eta^{ {\scriptscriptstyle OER}}$	$\eta^{\textit{OER-vac}}$	$\eta^{ {\it OER-sol}}$	$\Delta\eta$ OER	$\eta^{\textit{OER-vac}}$	$\eta^{\textit{OER-sol}}$	$\Delta\eta^{OER}$	η ^{OER-vac}	η ^{OER-sol}	$\Delta\eta$ OER	$\eta^{ {\scriptscriptstyle OER} ext{-vac}}$	η ^{OER-sol}	$\Delta\eta$ OER	$\eta^{ {\scriptscriptstyle OER-vac}}$	$\eta^{\textit{OER-sol}}$	$\Delta\eta$ OER
Sc	1.35	2.05	0.70	1.17	0.78	-0.39	1.45	0.64	-0.81	1.29	0.54	-0.74	1.56	0.76	-0.80	1.74	0.44	-1.30	2.45	0.80	-1.65
т	(1.29) 1.63	(2.20) 0.63	(0.91)	(1.22) 2.05	(0.83)	(-0.39) -1.25	(1.50) 2.25	(0.71)	-0.98	(1.40) 2.14	(0.71)	(-0.69) -0.83	(1.62) 2.00	(0.97)	-0.32	(1.53) 2.34	(0.55)	-0.68	(2.53) 2.51	(0.66) 2.57	(-1.87) 0.05
11	(1.61)	(0.48)	(-1.12)	(2.10)	(0.66)	(-1.44)	(2.26)	(1.18)	(-1.08)	(2.19)	(1.23)	(-0.95)	(2.15)	(1.53)	(-0.62)	(2.27)	(1.54)	(-0.74)	(2.48)	(2.01)	(-0.46)
V	1.85	1.60	-0.25	2.16	2.05	-0.11	2.18	2.05	-0.13	1.51	1.08	-0.44	1.61	1.03	-0.57	2.24	2.29	0.05	1.56	0.74	-0.82
Cr	1.89	1.83	-0.05)	2.17	2.08	-0.08)	2.19	2.09	-0.10	1.90)	1.77	-0.16	1.70	1.55	-0.15	2.14	2.04	-0.10	2.01	1.85	-0.16
CI	(1.76)	(1.71)	(-0.05)	(1.81)	(1.71)	(-0.10)	(1.71)	(1.62)	(-0.09)	(1.20)	(1.12)	(-0.09)	(1.00)	(0.93)	(-0.07)	(1.62)	(1.49)	(-0.14)	(1.12)	(0.98)	(-015)
Mn	1.83	1.70	-0.12	1.64	1.55	-0.09	1.70	1.59	-0.11	1.63	1.48	-0.15	1.68	1.44	-0.24	1.57	1.38	-0.19	1.48	1.33	-0.14
Fe	1.68	1.56	-0.12	1.58	1.48	-0.10	1.24	1.12	-0.12	1.34	1.32	-0.02	0.75	0.84	0.08	1.23	1.17	-0.06	1.04	1.06	0.02
~	(0.59)	(0.51)	(-0.08)	(0.90)	(0.83)	(-0.07)	(0.85)	(0.77)	(-0.07)	(0.63)	(0.65)	(0.02)	(0.82)	(0.82)	(0.00)	(0.46)	(0.48)	(0.03)	(0.73)	(0.75)	(0.02)
Со	(0.78)	(0.78)	-0.05	(0.75)	(0.72)	-0.02	(0.61)	(0.69)	-0.01	(0.70)	(0.68)	-0.03	(0.63)	(0.79)	(0.07)	(0.61)	(0.72)	-0.03	(0.77)	(0.58	-0.15
Ni	0.33	0.31	-0.02	0.30	0.29	-0.02	0.35	0.30	-0.05	0.40	0.42	0.02	0.36	0.40	0.04	0.66	0.64	-0.02	0.79	0.55	-0.24
a	(0.31)	(0.29)	(-0.02)	(0.69)	(0.66)	(-0.03)	(0.42)	(0.53)	(0.10)	(0.56)	(0.61)	(0.05)	(0.55)	(0.53)	(-0.02)	(0.63)	(0.27)	(-0.36)	(0.80)	(0.82)	(0.03)
Cu	(0.81)	(0.81)	(0.00)	(1.01)	(0.82)	(-0.13)	(0.86)	(0.83)	(0.02)	(0.97)	(0.93)	(-0.02)	(1.03)	(0.92)	(-0.07)	(0.91)	(0.95)	(0.00)	(0.84)	(0.89)	(0.04)
Zn	0.93	0.94	0.01	1.01	0.99	-0.01	0.88	0.84	-0.03	1.08	1.02	-0.07	2.70	2.60	-0.10	1.01	0.95	-0.06	1.24	1.00	-0.24
X 7	(0.96)	(0.94)	(-0.02)	(1.02)	(1.00)	(-0.02)	(0.90)	(0.86)	(-0.04)	(1.10)	(1.03)	(-0.07)	(2.75)	(2.62)	(-0.13)	(1.04)	(0.99)	(-0.06)	(1.11)	(1.05)	(-0.07)
Y 7n	1.38	1.77	0.40	1.14	0.65	-0.50	1.30	0.56	-0.73	1.17	0.59	-0.58	1.54	0.86	-0.69	1.60	0.63	-0.98	2.31	0.66	-1.65
	1.56	1.54	-0.25	2.04	0.07	-1.57	2.20	1.08	-1.12	2.17	0.75	-1.42	2.10	1.11	-1.05	2.70	1.14	-1.02	5.02	1.07	-1.34
Nb	2.07	1.30	-0.76	2.08	1.67	-0.41	2.73	1.78	-0.95	2.50	1.82	-0.69	2.10	2.06	-0.03	2.77	2.60	-0.17	0.84	1.07	0.23
Мо	2.13	1.99	-0.14	2.04	1.71	-0.34	1.28	2.16	0.88	2.59	2.20	-0.39	2.18	1.96	-0.22	1.48	2.16	0.67	1.18	1.07	-0.11
Тс	2.13	2.01	-0.12	1.76	1.57	-0.19	1.19	1.57	0.39	1.97	1.69	-0.28	1.68	1.48	-0.20	1.49	1.07	-0.42	0.76	0.83	0.07
Ru	1.84	1.49	-0.34	1.60	1.71	0.11	1.01	1.61	0.60	1.02	0.83	-0.19	0.70	0.68	-0.02	0.89	0.78	-0.10	1.18	0.62	-0.57
Rh	0.96	0.87	-0.09	1.23	1.19	-0.05	0.65	0.66	0.01	0.86	0.79	-0.07	0.75	0.83	0.08	0.69	0.64	-0.05	0.30	0.32	0.02
Pd	0.39	0.33	-0.05	0.47	0.47	0.00	0.59	0.59	0.00	0.63	0.43	-0.20	0.69	0.49	-0.20	0.71	0.72	0.01	1.04	0.80	-0.24
Ag	0.80	0.80	0.00	0.88	0.77	-0.11	0.90	0.93	0.03	0.96	0.90	-0.06	0.88	0.91	0.03	0.77	0.44	-0.33	0.80	0.81	0.01
Cd	1.01	0.64	-0.37	1.12	1.05	-0.07	1.09	1.04	-0.05	1.06	0.93	-0.13	1.04	1.05	0.01	1.11	1.05	-0.06	1.23	0.96	-0.27
La	1.10	-	-	0.89	-	-	0.85	-	-	0.81	-	-	1.08	-	-	1.21	-	-	1.82	-	-
Hf	1.90	1.03	-0.87	2.41	0.67	-1.74	2.60	1.08	-1.51	2.50	0.82	-1.68	2.55	1.02	-1.54	3.04	1.22	-1.82	3.16	1.56	-1.59
Та	2.29	1.45	-0.83	2.51	1.77	-0.74	1.55	2.77	1.21	1.58	2.29	0.71	2.76	2.04	-0.72	2.43	2.50	0.07	1.00	1.16	0.17
W	2.28	2.10	-0.18	2.34	4.42	2.08	0.87	2.29	1.42	1.53	0.99	-0.54	2.42	1.01	-1.41	1.57	0.88	-0.69	2.07	2.24	0.17
Re	1.76	2.09	0.33	1.86	1.69	-0.17	0.58	1.53	0.95	1.53	1.27	-0.26	1.77	1.66	-0.10	1.57	1.06	-0.51	1.18	0.97	-0.20
Os	1.43	1.33	-0.09	1.21	0.92	-0.29	1.03	0.87	-0.16	1.20	0.99	-0.21	1.32	1.37	0.05	1.30	1.09	-0.21	1.33	0.76	-0.58
Ir	1.54	1.48	-0.06	1.67	1.18	-0.49	1.03	0.98	-0.05	1.15	0.97	-0.18	0.82	0.89	0.07	1.01	0.97	-0.04	0.67	0.70	0.03
Pt	1.02	0.94	-0.07	0.37	0.33	-0.04	0.29	0.25	-0.04	0.65	0.48	-0.17	0.65	0.47	-0.18	0.75	0.49	-0.25	1.07	0.77	-0.30
Au	1.93	1.87	-0.06	1.12	0.77	-0.35	0.94	0.93	-0.01	0.93	0.89	-0.05	0.76	0.62	-0.14	1.03	0.97	-0.06	0.95	0.99	0.04
Hg	0.92	0.99	0.07	0.90	0.83	-0.07	0.99	0.97	-0.02	*	*	*	0.64	0.40	-0.24	*	*	*	*	*	*

 Hg
 0.92
 0.99
 0.07
 0.90
 0.83
 -0.07
 0.99
 0.97
 -0.02
 *
 *
 *
 0.64
 0.40
 -0.24
 *
 *
 *
 *

 The SAC systems with blue marked values have unstable *OOH reaction intermediates which are calculated for the associative pathway-Path-II. * denotes unstable.

Table S29. Theoretical overpotential of ORR in the absence (vacuum) and presence of solvent (by implicit solvation model) for divacancy systems (RPBE(U)+TS results are in parentheses). The solvent effect is added: $\Delta \eta = \eta_{sol} - \eta_{vac}$).

TM		C 4			N ₁ C ₃			N ₂ C ₂			$N_2C_2{}^b$			N ₂ C ₂ ^c			N ₃ C ₁			N4	
INI	$\eta^{ {\scriptscriptstyle ORR-vac}}$	η ^{ORR-sol}	$\Delta\eta^{ m ORR}$	$\eta^{\textit{ORR-vac}}$	$\eta^{\ {\it ORR-sol}}$	$\Delta\eta^{ m ORR}$	$\eta^{\textit{ORR-vac}}$	η ^{ORR-sol}	$\Delta\eta$ orr	$\eta^{\textit{ORR-vac}}$	$\eta^{\textit{ORR-sol}}$	$\Delta\eta^{ m ORR}$	$\eta^{\textit{ORR-vac}}$	$\eta^{\ {\it ORR-sol}}$	$\Delta\eta$ orr	$\eta^{\textit{ORR-vac}}$	η ^{ORR-sol}	$\Delta\eta$ orr	$\eta^{\ {\it ORR-vac}}$	$\eta^{\ {\it ORR-sol}}$	$\Delta\eta^{ m orr}$
Sc	2.01	1.26	-0.75	1.86	0.77	-1.09	2.15	0.77	-1.38	2.13	0.70	-1.43	2.34	0.97	-1.36	2.48	0.91	-1.57	3.21	1.43	-1.78
т	(2.02) 2.34	(1.28) 0.79	(-0.74)	(1.90) 2.82	(0.69)	(-1.21)	(2.20) 2.97	(0.70)	(-1.50)	(2.17) 2.96	(0.67)	(-1.50) -1.62	(2.38) 2.95	(0.96)	(-1.42)	(2.28)	(0.83)	(-1.45)	(3.29)	(1.33) 2.00	(-1.95)
11	(2.35)	(0.56)	(-1.79)	(2.88)	(1.10)	(-1.77)	(3.00)	(1.21)	(-1.79)	(3.00)	(1.23)	(-1.78)	(3.03)	(1.27)	(-1.77)	(3.08)	(1.79)	(-1.29)	(3.27)	(1.58)	(-1.69)
V	2.61	1.69	-0.92	2.69	1.76	-0.93	2.84	1.83	-1.01	1.78	1.69	-0.09	1.37	1.38	0.01	2.98	2.32	-0.65	0.83	0.47	-0.36
Cr	(2.31)	(1.39)	-0.50	(2.43)	(1.45)	-0.35	(2.54)	(1.57)	-0.22	(1.20)	(1.28)	(0.08) -0.06	(1.15) 0.94	(1.17) 0.88	(0.03)	(2.10)	(1.81)	(-0.29)	(0.58)	(0.94) 1.60	(0.36) 0.20
u	(1.66)	(1.16)	(-0.50)	(1.79)	(1.60)	(-0.19)	(1.64)	(1.47)	(-0.17)	(0.97)	(1.09)	(0.12)	(0.80)	(0.88)	(0.08)	(0.92)	(1.50)	(0.58)	(1.04)	(1.45)	(0.41)
Mn	2.15	1.54	-0.62	1.38	1.47	0.08	1.34	1.40	0.06	1.15	1.22	0.07	1.18	1.28	0.10	1.26	1.43	0.16	0.86	1.05	0.19
Fo	(1.24)	(1.36)	0.08	(0.79)	(0.89)	0.18	(0.79)	(0.92)	0.15	0.96	(0.85)	0.18	(0.91) 0.64	(1.02)	0.08	(0.97)	(1.15)	0.16)	(0.99) 0.67	(1.21) 0.85	0.18
ге	(1.12)	(1.21)	(0.10)	(0.81)	(1.04)	(0.23)	(0.65)	(0.81)	(0.16)	(0.63)	(0.83)	(0.20)	(1.78)	(1.70)	(-0.07)	(0.45)	(1.17)	(0.72)	(0.53)	(0.99)	(0.46)
Со	1.05	1.14	0.09	1.02	1.16	0.14	0.68	0.89	0.21	0.62	0.79	0.17	0.74	0.78	0.04	0.46	0.65	0.20	0.39	0.48	0.09
NI	(0.66)	(0.79)	(0.14) 0.18	(0.39) 0.49	(0.55)	-0.20	(0.44)	(0.66)	-0.22)	(0.39)	(0.61)	-0.25	(0.55)	(1.30) 0.51	-0.23	(0.65)	(1.20) 0.45	-0.32	(0.62)	(0.85)	-0.32
141	(0.37)	(0.48)	(0.11)	(0.37)	(0.28)	(-0.10)	(0.83)	(0.53)	(-0.30)	(0.80)	(0.52)	(-0.27)	(0.79)	(0.51)	(-0.28)	(1.08)	(0.57)	(-0.51)	(1.08)	(0.77)	(-0.31)
Cu	1.13	0.88	-0.25	1.17	0.91	-0.26	0.93	0.58	-0.35	0.99	0.63	-0.36	0.94	0.57	-0.37	0.95	0.62	-0.33	0.95	0.60	-0.35
7n	(1.17) 0.84	(0.91)	-0.26)	(1.17) 0.46	(0.92)	(-0.26)	(0.96)	0.50	-0.33	0.41	(0.66)	(-0.36)	(0.99)	(0.61)	-0.11	(1.29) 0.54	0.86	(-0.67)	(0.98)	(0.63)	(-0.35)
ZII	(0.78)	(0.55)	(-0.23)	(0.44)	(0.57)	(0.13)	(0.80)	(0.49)	(-0.30)	(0.42)	(0.56)	(0.14)	(2.01)	(1.89)	(-0.12)	(1.01)	(0.79)	(-0.21)	(0.58)	(0.92)	(0.34)
Y	1.99	1.27	-0.72	1.88	1.02	-0.86	1.99	0.79	-1.20	2.01	0.77	-1.24	2.26	0.99	-1.27	2.35	0.97	-1.38	3.08	1.37	-1.70
Zr	2.25	0.71	-1.53	2.76	1.15	-1.60	2.93	1.25	-1.69	2.96	1.18	-1.78	2.99	1.31	-1.67	3.56	1.68	-1.88	3.80	2.07	-1.72
Nb	2.78	1.41	-1.37	2.82	1.59	-1.23	3.35	2.14	-1.20	3.30	2.00	-1.29	1.31	1.28	-0.04	1.81	1.75	-0.07	1.39	1.38	-0.01
Мо	2.50	1.79	-0.71	2.57	1.91	-0.66	1.73	1.55	-0.18	1.68	1.44	-0.24	1.33	1.27	-0.06	1.49	1.40	-0.09	0.50	0.61	0.12
Tc	1.86	1.64	-0.22	1.58	1.46	-0.12	1.02	1.13	0.11	1.18	1.01	-0.17	1.16	0.98	-0.18	1.04	0.96	-0.08	0.66	0.44	-0.22
Ru	1.57	1.54	-0.02	2.11	2.07	-0.04	1.00	1.32	0.32	0.54	0.31	-0.22	0.70	0.67	-0.03	0.40	0.32	-0.09	0.94	0.67	-0.27
Rh	1.29	1.40	0.11	0.81	0.96	0.15	0.92	1.13	0.21	0.90	1.07	0.17	0.80	0.82	0.03	0.42	0.56	0.14	0.27	0.44	0.17
Pd	0.33	0.35	0.02	0.35	0.36	0.01	0.83	0.59	-0.24	1.01	0.77	-0.24	1.02	0.77	-0.24	1.09	0.77	-0.32	1.19	0.84	-0.35
Ag	0.96	0.70	-0.26	1.14	0.86	-0.28	1.05	0.69	-0.35	1.13	0.77	-0.36	1.03	0.63	-0.40	1.05	0.70	-0.36	0.53	0.99	0.46
Cd	0.59	0.37	-0.22	1.05	1.33	0.28	0.46	0.63	0.17	1.03	1.01	-0.03	1.12	1.84	0.73	1.13	1.17	0.05	1.07	1.18	0.11
La	1.80	-	-	1.62	-	-	1.54	-	-	1.58	-	-	1.82	-	-	1.91	-	-	2.55	-	-
Hf	2.66	0.76	-1.89	3.20	1.29	-1.91	3.37	1.43	-1.94	3.41	1.38	-2.03	3.46	1.47	-1.99	3.88	1.91	-1.97	4.02	2.29	-1.73
Та	3.30	1.63	-1.66	3.39	1.85	-1.54	1.34	1.99	0.65	1.48	1.42	-0.06	3.76	2.44	-1.33	1.67	1.52	-0.15	1.69	1.82	0.14
W	2.90	2.18	-0.73	3.10	2.32	-0.78	1.89	1.69	-0.20	1.69	1.63	-0.07	1.35	1.32	-0.03	1.43	1.37	-0.06	1.28	1.70	0.42
Re	1.29	1.42	0.12	2.12	1.91	-0.21	0.40	1.25	0.85	1.22	1.12	-0.10	1.28	1.20	-0.08	1.48	0.98	-0.50	0.58	1.60	1.02
Os	1.22	1.12	-0.10	1.05	0.73	-0.32	0.82	0.89	0.07	1.18	0.94	-0.25	1.28	1.08	-0.20	0.92	0.69	-0.23	0.88	0.56	-0.32
Ir	1.69	1.84	0.14	1.13	1.26	0.13	1.17	1.35	0.18	0.92	1.04	0.12	0.62	0.65	0.03	0.53	0.57	0.03	0.28	0.35	0.06
Pt	0.54	0.38	-0.17	0.38	0.35	-0.03	0.76	0.54	-0.22	1.10	0.87	-0.22	1.07	0.84	-0.23	1.10	0.82	-0.28	1.21	0.86	-0.35
Au	1.11	0.81	-0.30	1.19	0.85	-0.34	1.17	0.81	-0.36	1.18	0.82	-0.35	1.12	0.76	-0.36	1.13	0.78	-0.35	0.93	0.61	-0.31
Hα	0.90	0.69	-0.21	0.62	0.33	-0.29	1.52	1 78	0.26	*	*	*	0.90	0.96	0.06	*	*	*	*	*	*

 Hg
 0.90
 0.69
 -0.21
 0.62
 0.33
 -0.29
 1.52
 1.78
 0.26
 *
 *
 0.90
 0.96
 0.06
 *
 *
 *
 *

 The SAC systems with blue marked values have unstable *OOH reaction intermediates which are calculated for the associative pathway-Path-II. "*" denotes unstable.

$Table \ S30. \ Predicted \ probable \ HER/OER/ORR \ overpotentials \ with \ error \ bound \ \ (\eta \pm \ \epsilon) \ for \ M-N_nC_m \ moitifs.$

 $\eta = (\eta_{vac} + \eta_{sol})/2$ and $\varepsilon = \sqrt{\varepsilon_{vac-sol}^2 + \varepsilon_{vac}^2 + \varepsilon_{sol}^2}$ where $\eta_{vac/sol} = (\eta_{vac/sol}^2 + \eta_{vac/sol}^U)/2$, $\varepsilon_{vac/sol} = (|\eta_{vac} - \eta_{vac}^U|)/2$, and $\varepsilon_{vac-sol} = (|\eta_{vac} - \eta_{sol}^U|)/2$. Subscript "vac" and "sol" denote the cases in vacuum and solvent ($\varepsilon = 80$), respectively, and superscripts "o" and "U" denote the cases without and with Hubbard effective parameter U (which was used only for 3d metals), respectively. In case of HER, η_{vac}^0 and η_{vac}^U are $(\Delta G_{H^*})/\epsilon$ without and with Hubbard effective parameter U at vacuum, respectively.

[Since the value of U in DFT calculations is used to obtain a reasonable band structure (but not a thermodynamic energy), the (U) needs be considered for the band structure, electronic properties and conductivity. Given that the electronic state becomes better, the thermodynamic energy is likely to be better-corrected toward the right direction, but in certain cases a biased electron density modification towards better electronic properties could degrade the quantitative energy evaluation due to a possible bias. In this regard, in the evaluation of η , we may consider both U=0, and U values as the upper/lower limits, or simply consider therim rid value with the error bar (ϵ) as the half of their difference. Regarding the solvent effect, in a bulk dielectric medium the implicit solvent model would be reliable. However, in ~1 nm-sized confined medium, the Debye screening is far from complete, and thus, the dielectric constant is much reduced due to the limited polarization arising from almost forbidden rotational mode of solvent molecules.⁸ Indeed, the dielectric constant for the interfacial water can be reduced to only ~2.⁹ Similarly, the rotationally forbidden surface water molecules at catalytic stolwent effect could overestimate the effect of interfacial solvents on η of (TM)SA catalysts embedded on G_N/Gr. In this regard, we again consider both vacuum and implicit solvent models as the upper/lower limits, or the mid value with the error bar as the half of their difference.]

(a)	. <i>r</i>	1 ^{HER}	±	3
-----	------------	------------------	---	---

Transition Metal	C ₄	N ₁ C ₃	N_2C_2	$N_2C_2^{b}$	N ₂ C ₂ ^c	N ₃ C ₁	N ₄
Sc	-0.27 ± 0.04	-0.31 ± 0.03	-0.47 ± 0.01	-0.46 ± 0.02	-0.35 ± 0.00	-0.33 ± 0.06	-0.41 ± 0.07
Ti	-0.47 ± 0.04	-0.03 ± 0.02	-0.15 ± 0.03	-0.18 ± 0.03	-0.20 ± 0.03	-0.46 ± 0.08	-0.49 ± 0.05
V	-0.15 ± 0.14	-0.20 ± 0.11	-0.13 ± 0.07	-0.15 ± 0.03	-0.12 ± 0.02	-0.14 ± 0.08	-0.15 ± 0.02
Cr	-0.15 ± 0.10	-0.29 ± 0.08	-0.36 ± 0.06	-0.30 ± 0.10	-0.27 ± 0.11	-0.10 ± 0.05	-0.50 ± 0.18
Mn	-0.90 ± 0.00	-0.14 ± 0.08	-0.18 ± 0.12	-0.36 ± 0.09	-0.13 ± 0.02	-0.30 ± 0.08	-0.79 ± 0.26
Fe	-0.40 ± 0.25	-0.91 ± 0.57	-0.12 ± 0.05	-0.29 ± 0.06	-0.22 ± 0.01	-0.18 ± 0.04	-0.78 ± 0.34
Со	-0.34 ± 0.24	-0.37 ± 0.16	-0.17 ± 0.04	-0.07 ± 0.04	-0.15 ± 0.02	-0.15 ± 0.03	-0.55 ± 0.23
Ni	-0.68 ± 0.08	-0.70 ± 0.14	-0.05 ± 0.05	-0.06 ± 0.03	-0.34 ± 0.11	-0.26 ± 0.01	-1.60 ± 0.01
Cu	-0.31 ± 0.04	-0.24 ± 0.03	-0.12 ± 0.03	-0.24 ± 0.02	$\textbf{-0.11} \pm 0.02$	-0.10 ± 0.04	-1.37 ± 0.06
Zn	-0.18 ± 0.03	-0.75 ± 0.06	$\textbf{-0.11} \pm 0.05$	-0.50 ± 0.04	$\textbf{-0.40} \pm 0.04$	$\textbf{-0.26} \pm 0.01$	-1.03 ± 0.13
Y	-0.15	-0.31	-0.45	-0.28	-0.35	-0.48	-0.22
Zr	-0.51	0.00	-0.14	-0.36	-0.18	-0.71	-0.90
Nb	-0.24	-0.25	-0.66	-0.81	-0.70	-0.65	-0.74
Мо	-0.10	-0.12	-0.46	-0.64	-0.61	-0.48	-0.37
Tc	-0.20	-0.16	-0.17	-0.39	-0.44	-0.43	-0.36
Ru	-0.30	-0.46	-0.06	-0.64	-0.44	-0.51	-0.43
Rh	-0.06	-0.11	-0.06	-0.53	-0.42	-0.19	-0.07
Pd	-0.60	-0.79	-0.25	-0.16	-0.35	-0.29	-1.57
Ag	-0.70	-0.03	-0.17	-0.08	-0.14	-1.49	-0.36
Cd	-1.09	-0.08	-0.62	-0.16	-0.15	-0.06	-0.06
La	-0.09	-1.44	-0.44	-0.48	-0.36	-1.01	-0.43
Hf	-0.23	-0.33	-0.50	-0.71	-0.57	-0.98	-1.09
Та	-0.67	-0.75	-1.00	-1.22	-1.04	-0.99	-1.00
W	-0.56	-0.61	-0.85	-1.04	-0.91	-0.86	-0.82
Re	-0.34	-0.61	-0.61	-0.77	-0.78	-0.78	-0.83
Os	-0.06	-0.82	-0.45	-0.96	-0.82	-0.76	-0.66
Ir	-0.21	-0.17	-0.23	-0.67	-0.73	-0.36	-0.21
Pt	-0.09	-0.39	-0.03	-0.20	-0.57	-0.43	-1.68
Au	-0.42	-0.23	-0.30	-0.18	-0.22	-0.71	-1.71
Hg	-0.18	-0.44	-0.78	*	-0.21	*	*

Table S30 (b). $\eta^{OER} \pm \epsilon$

Transition Metal	C ₄	N_1C_3	N_2C_2	$N_2C_2{}^b$	$N_2C_2^c$	N_3C_1	N_4
Sc	1.73 ± 0.41	1.00 ± 0.20	1.07 ± 0.40	0.98 ± 0.37	1.23 ± 0.38	1.06 ± 0.58	1.61 ± 0.88
Ti	1.09 ± 0.53	1.41 ± 0.68	1.74 ± 0.52	1.72 ± 0.45	1.84 ± 0.26	1.95 ± 0.36	2.39 ± 0.29
V	1.65 ± 0.15	1.99 ± 0.17	1.91 ± 0.29	1.62 ± 0.50	1.62 ± 0.49	2.16 ± 0.15	0.77 ± 0.67
Cr	1.80 ± 0.10	1.94 ± 0.26	1.90 ± 0.34	1.51 ± 0.49	1.30 ± 0.47	1.82 ± 0.38	1.49 ± 0.63
Mn	1.50 ± 0.39	1.07 ± 0.74	1.11 ± 0.76	1.00 ± 0.79	0.99 ± 0.82	0.96 ± 0.73	0.93 ± 0.67
Fe	1.08 ± 0.76	1.20 ± 0.47	1.84 ± 0.90	0.98 ± 0.49	0.81 ± 0.04	0.84 ± 0.52	0.90 ± 0.22
Co	0.82 ± 0.07	0.80 ± 0.09	0.66 ± 0.05	0.80 ± 0.16	0.72 ± 0.09	0.70 ± 0.07	0.66 ± 0.32
Ni	0.31 ± 0.02	0.49 ± 0.27	0.40 ± 0.12	0.50 ± 0.12	0.46 ± 0.11	0.55 ± 0.21	0.74 ± 0.15
Cu	0.78 ± 0.05	0.89 ± 0.09	0.86 ± 0.02	0.97 ± 0.02	0.95 ± 0.08	0.90 ± 0.08	0.77 ± 0.14
Zn	0.94 ± 0.01	1.00 ± 0.01	0.87 ± 0.02	1.06 ± 0.04	2.67 ± 0.06	1.00 ± 0.04	1.10 ± 0.10
Y	1.58 ± 0.20	0.89 ± 0.25	0.93 ± 0.80	0.88 ± 0.29	1.20 ± 0.34	1.12 ± 0.49	1.49 ± 0.82
Zr	1.46 ± 0.12	1.36 ± 0.69	1.64 ± 0.56	1.46 ± 0.71	1.63 ± 0.52	1.95 ± 0.81	2.34 ± 0.67
Nb	1.69 ± 0.38	1.87 ± 0.21	2.26 ± 0.47	2.16 ± 0.34	$\textbf{2.08} \pm \textbf{0.02}$	$\boldsymbol{2.69 \pm 0.09}$	0.95 ± 0.11
Мо	2.06 ± 0.07	1.88 ± 0.17	1.72 ± 0.44	2.39 ± 0.19	$\pmb{2.07 \pm 0.11}$	1.82 ± 0.34	1.12 ± 0.05
Тс	2.07 ± 0.06	1.67 ± 0.09	1.38 ± 0.19	1.83 ± 0.14	1.58 ± 0.10	1.28 ± 0.21	0.80 ± 0.03
Ru	1.66 ± 0.17	1.65 ± 0.06	1.31 ± 0.30	$\boldsymbol{0.92 \pm 0.09}$	$\boldsymbol{0.69 \pm 0.01}$	$\boldsymbol{0.83 \pm 0.05}$	0.90 ± 0.28
Rh	0.91 ± 0.05	1.21 ± 0.02	0.65 ± 0.01	0.83 ± 0.03	0.79 ± 0.04	0.66 ± 0.02	0.31 ± 0.01
Pd	0.36 ± 0.03	0.47 ± 0.00	0.59 ± 0.00	0.53 ± 0.10	0.59 ± 0.10	0.72 ± 0.00	0.92 ± 0.12
Ag	0.80 ± 0.00	0.83 ± 0.05	0.91 ± 0.01	0.93 ± 0.03	0.89 ± 0.01	0.60 ± 0.16	0.80 ± 0.01
Cd	0.82 ± 0.18	1.08 ± 0.03	1.07 ± 0.03	1.00 ± 0.06	1.05 ± 0.01	1.08 ± 0.03	1.10 ± 0.14
La	1.10 ^{vac}	0.89 ^{vac}	0.88 ^{vac}	0.81 ^{vac}	1.08vac	1.21 ^{vac}	1.82 ^{vac}
Hf	1.46 ± 0.44	1.54 ± 0.87	1.84 ± 0.76	1.66 ± 0.84	1.79 ± 0.77	2.13 ± 0.91	2.36 ± 0.80
Та	1.87 ± 0.42	2.14 ± 0.37	$\pmb{2.16 \pm 0.61}$	1.93 ± 0.36	2.40 ± 0.36	$\textbf{2.47} \pm \textbf{0.04}$	$\boldsymbol{1.08 \pm 0.08}$
W	2.19 ± 0.09	3.38 ± 1.04	1.58 ± 0.71	1.26 ± 0.27	1.72 ± 0.70	1.23 ± 0.34	2.15 ± 0.08
Re	1.92 ± 0.16	$\boldsymbol{1.78 \pm 0.09}$	1.06 ± 0.48	1.40 ± 0.13	1.72 ± 0.05	1.31 ± 0.25	$\boldsymbol{1.08 \pm 0.10}$
Os	1.38 ± 0.05	1.07 ± 0.15	$\boldsymbol{0.95 \pm 0.08}$	1.10 ± 0.11	1.35 ± 0.02	1.20 ± 0.11	1.04 ± 0.29
Ir	1.51 ± 0.03	1.43 ± 0.24	1.01 ± 0.03	1.06 ± 0.09	$\boldsymbol{0.86 \pm 0.04}$	0.99 ± 0.02	0.69 ± 0.02
Pt	0.98 ± 0.04	0.35 ± 0.02	0.27 ± 0.02	0.57 ± 0.09	0.56 ± 0.09	0.62 ± 0.13	0.92 ± 0.15
Au	1.90 ± 0.03	0.94 ± 0.18	0.94 ± 0.01	0.91 ± 0.02	0.69 ± 0.07	1.00 ± 0.03	0.97 ± 0.02
Hg	0.96 ± 0.04	0.86 ± 0.03	0.98 ± 0.01	*	0.52 ± 0.12	*	*

Table S30 (c). $\eta^{ORR} \pm \epsilon$

Transition Metal	C4	N_1C_3	N_2C_2	$N_2C_2{}^b$	$N_2C_2^c$	N ₃ C ₁	N_4
Sc	1.64 ± 0.37	1.31 ± 0.58	1.46 ± 0.72	1.42 ± 0.73	1.66 ± 0.70	1.63 ± 0.76	2.32 ± 0.93
Ti	1.51 ± 0.84	2.02 ± 0.83	2.14 ± 0.85	2.13 ± 0.85	2.16 ± 0.83	2.53 ± 0.70	2.55 ± 0.78
V	2.00 ± 0.51	2.08 ± 0.52	2.20 ± 0.53	1.49 ± 0.35	1.27 ± 0.15	2.30 ± 0.56	0.71 ± 0.27
Cr	1.66 ± 0.43	1.92 ± 0.35	1.75 ± 0.29	1.07 ± 0.09	$\boldsymbol{0.88 \pm 0.07}$	1.57 ± 0.57	1.37 ± 0.25
Mn	1.57 ± 0.48	1.13 ± 0.42	1.11 ± 0.37	0.98 ± 0.30	1.10 ± 0.20	1.20 ± 0.22	1.03 ± 0.15
Fe	1.24 ± 0.12	1.03 ± 0.18	1.01 ± 0.40	0.89 ± 0.25	1.21 ± 0.75	0.98 ± 0.38	0.76 ± 0.19
Со	0.91 ± 0.27	0.78 ± 0.45	0.67 ± 0.20	0.60 ± 0.17	0.84 ± 0.34	0.74 ± 0.34	0.58 ± 0.23
Ni	0.43 ± 0.08	0.36 ± 0.10	0.66 ± 0.13	0.66 ± 0.13	0.64 ± 0.13	0.72 ± 0.27	0.89 ± 0.17
Cu	1.02 ± 0.13	1.04 ± 0.13	0.77 ± 0.18	0.83 ± 0.18	0.78 ± 0.19	0.87 ± 0.30	0.79 ± 0.18
Zn	0.70 ± 0.12	0.50 ± 0.06	0.65 ± 0.16	0.48 ± 0.07	1.94 ± 0.06	0.80 ± 0.24	0.80 ± 0.19
Y	1.63 ± 0.36	1.45 ± 0.43	1.39 ± 0.60	1.39 ± 0.62	1.62 ± 0.63	1.66 ± 0.69	2.23 ± 0.85
Zr	1.48 ± 0.77	1.95 ± 0.80	2.09 ± 0.84	2.07 ± 0.89	2.15 ± 0.84	2.62 ± 0.94	2.93 ± 0.86
Nb	2.09 ± 0.69	2.21 ± 0.61	2.74 ± 0.60	2.65 ± 0.65	1.29 ± 0.02	1.78 ± 0.03	1.38 ± 0.00
Мо	2.15 ± 0.35	2.24 ± 0.33	1.64 ± 0.09	1.56 ± 0.12	1.30 ± 0.03	1.45 ± 0.05	0.55 ± 0.06
Tc	1.75 ± 0.11	1.52 ± 0.06	1.08 ± 0.06	1.09 ± 0.09	1.07 ± 0.09	$\boldsymbol{1.00 \pm 0.04}$	0.55 ± 0.11
Ru	1.56 ± 0.01	2.09 ± 0.02	1.16 ± 0.16	0.42 ± 0.11	0.68 ± 0.01	0.36 ± 0.04	$\boldsymbol{0.80 \pm 0.14}$
Rh	1.34 ± 0.05	0.88 ± 0.07	1.03 ± 0.10	0.99 ± 0.09	0.81 ± 0.01	0.49 ± 0.07	0.36 ± 0.08
Pd	0.34 ± 0.01	0.36 ± 0.00	0.71 ± 0.12	0.89 ± 0.12	0.89 ± 0.12	0.93 ± 0.16	1.01 ± 0.17
Ag	0.83 ± 0.13	1.00 ± 0.14	0.87 ± 0.18	0.95 ± 0.18	0.83 ± 0.20	0.88 ± 0.18	0.76 ± 0.23
Cd	0.48 ± 0.11	1.19 ± 0.14	0.55 ± 0.08	1.02 ± 0.01	1.48 ± 0.36	1.15 ± 0.02	1.12 ± 0.05
La	1.80 ^{vac}	1.62 ^{vac}	1.54 ^{vac}	1.58 ^{vac}	1.82 ^{vac}	1.91 ^{vac}	2.55 ^{vac}
Hf	1.71 ± 0.95	2.25 ± 0.96	2.40 ± 0.97	2.39 ± 1.02	2.47 ± 0.99	2.90 ± 0.99	3.15 ± 0.87
Та	2.46 ± 0.83	2.62 ± 0.77	1.66 ± 0.32	1.45 ± 0.03	3.10 ± 0.66	$\boldsymbol{1.59 \pm 0.07}$	1.76 ± 0.07
W	2.54 ± 0.36	2.71 ± 0.39	1.79 ± 0.10	1.66 ± 0.03	1.33 ± 0.02	1.40 ± 0.03	1.49 ± 0.21
Re	1.36 ± 0.06	2.02 ± 0.10	0.82 ± 0.42	1.17 ± 0.05	1.24 ± 0.04	1.23 ± 0.25	1.09 ± 0.51
Os	1.17 ± 0.05	0.89 ± 0.16	0.86 ± 0.04	1.06 ± 0.12	1.18 ± 0.10	$\boldsymbol{0.80 \pm 0.11}$	0.72 ± 0.16
Ir	1.77 ± 0.07	1.20 ± 0.07	1.26 ± 0.09	0.98 ± 0.06	0.64 ± 0.02	0.55 ± 0.02	0.31 ± 0.03
Pt	0.46 ± 0.08	0.37 ± 0.02	0.65 ± 0.11	0.99 ± 0.11	0.95 ± 0.11	0.96 ± 0.14	1.04 ± 0.18
Au	0.96 ± 0.15	1.02 ± 0.17	0.99 ± 0.18	1.00 ± 0.18	0.94 ± 0.18	0.96 ± 0.18	0.77 ± 0.16
Hg	0.79 ± 0.10	0.48 ± 0.14	1.65 ± 0.13	*	0.93 ± 0.03	*	*

Table S31. Promising M-N_nC_m moities for high-performing HER/ORR and their predicted properties. Only outstanding properies are listed based on Table S31 (Criteria: $|\eta^{\text{HER}}| < 0.1$ V, $\eta^{\text{OER/ORR}} < 0.7$ V. Only thermodynamically/electrochemically stable systems are considered).

Bi/Tri-functional						
System	$E_{ m emb/coh}$	U_{ds}	$\eta^{\text{HER}}(V)$	$\eta^{\text{OER}}(V)$	η^{ORR} (V)	σ/σ^0 (pristine)
Ni-C4	-1.15	0.32		0.31 ± 0.02	0.43 ± 0.08	0.750
Pd-C ₄	-1.26	1.58		0.36 ± 0.03	$0.34{\pm}0.01$	0.262
Pt-C ₄	-1.85	2.10	-0.09 ± 0.00		0.46 ± 0.08	
Ni-N ₁ C ₃	-2.48	0.98		$0.49{\pm}0.27$	0.36 ± 0.10	
Pd-N ₁ C ₃	-2.29	2.09		$0.47{\pm}0.00$	0.36 ± 0.00	0.364
Pt-N ₁ C ₃	-2.72	2.54		0.35 ± 0.02	0.37 ± 0.02	0.293
Co-N ₂ C ₂	-3.48	1.46		0.66 ± 0.05	0.67 ± 0.20	
Ni-N ₂ C ₂	-3.60	1.54	-0.05 ± 0.05	$0.40{\pm}0.12$	0.66 ± 0.13	
Rh-N ₂ C ₂	-2.45	1.82	-0.06 ± 0.00	0.65 ± 0.01		0.687
Pt-N ₂ C ₂	-3.19	2.77	-0.03 ± 0.00	0.27 ± 0.02	0.65 ± 0.11	
Ni-N ₂ C ₂ ^b	-3.10	1.29	-0.06±0.03	0.50 ± 0.12	0.66 ± 0.13	
Ni-N ₂ C ₂ ^c	-2.49	0.98		$0.46{\pm}0.11$	0.64 ± 0.13	
Rh-N ₃ C ₁	-1.45	1.33		0.66 ± 0.02	$0.49{\pm}0.07$	
Co-N ₄	-2.45	0.95		0.66 ± 0.32	0.58 ± 0.23	
Rh-N ₄	-0.76	0.98	-0.07 ± 0.00	0.31 ± 0.01	$0.36{\pm}0.08$	0.237
Ir-N ₄	-0.44	1.31		0.69 ± 0.02	0.31 ± 0.03	0.239
Monofunctional						
System	$E_{ m emb/coh}$	U_{ds}	$\eta^{\text{HER}}(V)$	$\eta^{\text{OER}}(V)$	$\eta^{ORR}(V)$	σ/σ^0 (pristine)
Zn-C ₄	-1.55	0.01			0.70 ± 0.12	
Rh-C ₄	-1.26	1.23	-0.06 ± 0.00			0.111
Os-C ₄	-0.48	0.90	-0.06 ± 0.00			
Zn-N ₁ C ₃	-2.14	0.31			0.50 ± 0.06	0.261
Ag-N ₁ C ₃	-1.35	2.15	-0.03 ± 0.00			
Hg-N ₁ C ₃	-0.49	1.29			0.48 ± 0.14	0.542
Zn-N ₂ C ₂	-3.16	0.82			0.65 ± 0.16	
Ru-N ₂ C ₂	-1.69	1.31	-0.06 ± 0.00			
Pd-N ₂ C ₂	-3.02	2.46		$0.59{\pm}0.00$		
Cd-N ₂ C ₂	-1.67	0.43			0.55 ± 0.08	
Co-N ₂ C ₂ ^b	-3.00	1.22	-0.07 ± 0.04		$0.60{\pm}0.17$	
Zn-N ₂ C ₂ ^b	-2.24	0.36			0.48 ± 0.07	
Ru-N ₂ C ₂ ^b	-0.60	0.76			0.42 ± 0.11	
$Pd-N_2C_2^b$	-2.66	2.28		0.53 ± 0.10		
Ag-N ₂ C ₂ ^b	-1.31	2.11	-0.08 ± 0.00			
Pt-N ₂ C ₂ ^b	-2.91	2.63		0.57 ± 0.09		
Pd-N ₂ C ₂ ^c	-1.98	1.94		$0.59{\pm}0.10$		
Ir-N ₂ C ₂ ^c	-0.71	1.40			0.64 ± 0.02	0.179
Pt-N ₂ C ₂ ^c	-2.15	2.26		0.56 ± 0.09		
Au-N ₂ C ₂ ^c	-1.43	1.98		0.69 ± 0.07		0.475
Cr-N ₃ C ₁	-3.52	0.85	-0.10 ± 0.05			0.476
$Co-N_3C_1$	-3.08	1.26		0.70 ± 0.07		0.487
N1-N3C1	-3.12	1.30		0.55 ± 0.21		0.510
Cu-N ₃ C ₁	-1.99	1.34	-0.10 ± 0.04			
Ru-N ₃ C ₁	-0.21	0.57			0.36 ± 0.04	
Ag-N ₃ C ₁	-0.67	1.47		0.60 ± 0.16		
Cd-N ₃ C ₁	-0.87	0.03	-0.06 ± 0.00			0.576
Ir-N ₃ C ₁	-1.28	1.59			0.55 ± 0.02	
Pt-N ₃ C ₁	-2.55	2.45		0.62 ± 0.13		0.383

Table S32. HER: Mean and standard deviation values of the Area Under the Receiver Operating Characteristic Curve(ROC AUC) for different machine learning methods:KNN—k-nearest neighbors , RNC—Radius Neighbors Classifier,RF—Random Forest, ET—Extremely Randomized Trees, GB—Gradient Boosting, SVC—Support Vector Classification,NN—Neural Network, DT—Decision Trees, LR—Logistic Regression, NB—Gaussian Naïve Bayes.

Classifier	Elemental	properties	DFT-optimized geometry			
	ROC AUC mean	ROC AUC sd	ROC AUC mean	ROC AUC sd		
RF	0.79	0.05	0.88	0.05		
SVC	0.77	0.06	0.86	0.06		
KNN	0.76	0.07	0.91	0.04		
RNC	0.66	0.09	0.90	0.04		
ET	0.76	0.08	0.87	0.05		
GB	0.76	0.07	0.87	0.06		
NN	0.75	0.07	0.82	0.07		
DT	0.71	0.08	0.76	0.07		
LR	0.7	0.08	0.71	0.06		
NB	0.64	0.09	0.64	0.08		

Table S33. OER: Mean and standard deviation values of the Area Under the Receiver Operating Characteristic Curve(ROC AUC) for different machine learning methods:KNN—k-nearest neighbors , RNC—Radius Neighbors Classifier,RF—Random Forest, ET—Extremely Randomized Trees, GB—Gradient Boosting, SVC—Support Vector Classification,NN—Neural Network, DT—Decision Trees, LR—Logistic Regression, NB—Gaussian Naïve Bayes.

Classifier	Elemental properties		DFT-optimized geometry					
	ROC AUC		*O - ROC AUC		*O, *OH - ROC AUC		*O, *OH, *OOH - ROC AUC	
	mean	sd	mean	sd	mean	sd	mean	sd
RF	0.87	0.06	0.86	0.07	0.87	0.07	0.89	0.06
SVC	0.84	0.08	0.87	0.06	0.87	0.08	0.84	0.07
KNN	0.80	0.07	0.87	0.06	0.86	0.06	0.83	0.07
RNC	0.79	0.09	0.87	0.06	0.84	0.07	0.82	0.08
ET	0.85	0.07	0.84	0.07	0.86	0.07	0.86	0.07
GB	0.87	0.05	0.84	0.07	0.85	0.07	0.86	0.08
NN	0.79	0.08	0.83	0.09	0.80	0.08	0.80	0.08
DT	0.84	0.07	0.84	0.07	0.85	0.07	0.80	0.07
LR	0.75	0.08	0.79	0.09	0.78	0.08	0.78	0.09
NB	0.64	0.11	0.75	0.09	0.81	0.08	0.80	0.08
Table S34. ORR: Mean and standard deviation values of the Area Under the Receiver Operating Characteristic Curve(ROC AUC) for different machine learning methods:KNN—k-nearest neighbors , RNC—Radius Neighbors Classifier,RF—Random Forest, ET—Extremely Randomized Trees, GB—Gradient Boosting, SVC—Support Vector Classification,NN—Neural Network, DT—Decision Trees, LR—Logistic Regression, NB—Gaussian Naïve Bayes.

Classifier	Elemental properties		DFT-optimized geometry					
	ROC AUC		*O - ROC AUC		*O, *OH - ROC AUC		*0, *0H, *00H - ROC AUC	
	mean	sd	mean	sd	mean	sd	mean	sd
RF	0.81	0.08	0.81	0.08	0.82	0.07	0.87	0.06
SVC	0.80	0.07	0.81	0.07	0.83	0.07	0.84	0.07
KNN	0.79	0.08	0.84	0.07	0.84	0.07	0.82	0.07
RNC	0.72	0.10	0.85	0.07	0.84	0.06	0.82	0.09
ET	0.81	0.07	0.83	0.06	0.83	0.07	0.84	0.07
GB	0.82	0.08	0.78	0.07	0.81	0.07	0.86	0.07
NN	0.78	0.08	0.79	0.09	0.78	0.07	0.80	0.09
DT	0.79	0.08	0.76	0.08	0.80	0.09	0.82	0.10
LR	0.80	0.07	0.81	0.08	0.83	0.08	0.82	0.07
NB	0.72	0.10	0.77	0.10	0.81	0.07	0.83	0.09

References

- Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer and P. Kim, *Phys. Rev. Lett.* 2007, **99**, 10.
- J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov and U. Stimming, *J. Electrochem. Soc.* 2005, 152, J23.
- 3. L. M. Mentel, *Mendeleev A Python resource for properties of chemical elements, ions and isotopes*, https://github.com/lmmentel/mendeleev, (accessed April 2021).
- 4. M. Rupp, A. Tkatchenko, K.-R. Müller and O. A. von Lilienfeld, *Phys. Rev. Lett.* 2012, **108**, 058301.
- 5. M. Dwass, Ann. Math. Stat. 1957, 28, 181.
- F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher and M. Perrot, *J. Mach. Learn. Res.* 2011, **12**, 2825.
- 7. D. K. McClish, Med. Decis. Making. 1989, 9 (3), 190.
- 8. M. H. Motevaselian and N. R. Aluru, ACS Nano 2020, 14, 12761–12770.
- L. Fumagalli, A. Esfandiar, R. Fabregas, S. Hu, P. Ares, A. Janardanan, Q. Yang, B. Radha, T. Taniguchi, K. Watanabe, G. Gomila, K. S. Novoselov and A. K. Geim, *Science* 2018, 360, 1339–1342.