Supporting Information

Carbon-coated WS₂ Nanosheets Supported on Carbon Nanofibers for High-rate

Potassium-ion Capacitors

Shitao Geng,^a Tong Zhou,^{*a} Minyu Jia,^a Xiangyan Shen,^b Peibo Gao,^a Shuang Tian,^a

Pengfei Zhou,^b Bo Liu,^a Jin Zhou,^{*b} Shuping Zhuo,^b and Feng Li*c

^a School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255049, China

E-mails: zhoutong@sdut.edu.cn

^b School of Chemistry and Chemical Engineering, Shandong University of Technology,

Zibo 255049, China

E-mails: zhoujin@sdut.edu.cn

^c Shenyang National Laboratory for Materials Science, Institute of Metal Research,

Chinese Academy of Sciences, Shenyang 110016, China

E-mail: fli@imr.ac.cn

Experiment Section

Preparation of CNFs: Typically, 11.2 g of polyacrylonitrile (PAN, $M_w = 150\ 000$, Sigma-Aldrich Co., Ltd.) was added into 20 mL of N, N-dimethylformamide (DMF, 99.5%, Sinopharm Chemical Reagent Co., Ltd). The mixture was stirred for 12 h at room temperature until the solution became transparent. 10 mL stainless steel syringe (inner diameter 0.71 mm) was used to load the precursor solution. In the electrospinning process, the flow rate was controlled at about 0.05 mL h⁻¹, and the indoor humidity was controlled below 25%. The electrospun nanofibers drew out under electrostatic field originating from 16 kV of positive voltage on the needle and 3 kV of negative voltage on the aluminum foil collector. Afterward, the pre-oxidized PAN nanofiber was obtained by heating to 260 °C for 2 h. Finally, the CNFs membrane was prepared via carbonization at 800 °C for 2 h in tube furnace under Ar atmosphere.

Preparation of O-WS₂@CNFs: 120 mg of ammonium tungsten sulfide $((NH_4)_2WS_4, \ge$ 99.9%, Sigma-Aldrich Co., Ltd.) was dissolved in 35 mL of DMF. The green reaction solution and 0.3 mg of CNFs (area of 900 mm²) were transferred to Teflon-lined autoclave and heated at 200 °C for 16 h. The product was washed repetitiously with deionized water and ethanol. Finally, the O-WS₂@CNFs was obtained after dried at 60 °C overnight.

Preparation of WS₂@CNFs: The O-WS₂@CNFs and sulfur powder (\geq 99.95%, Sigma-Aldrich Co., Ltd.) was placed in the middle and the upstream part of the tube furnace, respectively. Ar with the flow rate of 20 sccm was continuous throughout the whole process of vulcanization. The tube furnace was heated to 800 °C at heating rate

of 5 °C min⁻¹ and maintained at 800 °C for 2 h. After cooled back to room temperature, the WS₂@CNFs was finally obtained.

*Preparation of C-WS*₂@*CNFs*: The WS₂@CNFs was immersed in 100 mL of Trisbuffered solution (10 mM, pH 8.5). 200 mg of dopamine (98%, Aladdin Co., Ltd.) was added to the solution with stirring for 5 h to obtain the PDA-coating WS₂@CNFs. Afterward, the composite was washed several times with deionized water, followed by drying for 12 h at 60 °C. Finally, the C-WS₂@CNFs was carbonized in tube furnace under Ar atmosphere at 550 °C for 3.5 h to obtain the C-WS₂@CNFs.

Preparation of ACNFs: First, the CNFs were immersed in 4.0 M KOH solution and evacuated for 20 min to ensure that the KOH solution was able to infiltrate the CNFs fully, and continue to soak for 24 h in air atmosphere. After taking it out, it was dried at 80 °C for 2 h. The obtained product of KOH/CNFs was placed in tube furnace for activation treatment. The furnace temperature was heated up to 800 °C for 2 h with heating rate of 5 °C min⁻¹. The obtained product was washed with 1.0 M HCl solution, followed by washing with a large amount of de-ionized water, and finally dried at 80 °C for 12 h to obtain ACNFs.

Material Characteristics: SEM and TEM images of samples were taken by field emission scanning electron microscope (FESEM, HITACHI, SU8010) and transmission electron microscope (TEM, FEI Tecnai G2 F20 S-TWIN). X-ray powder diffraction (XRD) patterns were recorded from Bruker D8 Advance powder X-ray diffractometer with Cu Ka ($\lambda = 0.15406$ nm). Raman spectra were collected from a LabRAM HR evolution spectrometer under the excitation of 532 nm laser. For the *in* *situ* Raman test, the ECC-Opto-Std test cell (EL-Cell GmbH) was used for the assembly of the K half cell. BET surface area and pore size distribution were evaluated by N_2 adsorption/desorption analyzer (ASAP 2420, Micrometrics). X-ray photoelectron spectroscopy was measured by X-ray photoelectron spectroscopy (XPS, Thermo ESCALAB 250XI). Thermogravimetric analysis (TGA) was performed using Perkin-Elmer TGA 4000 at rate of 5 °C min⁻¹ at 30-800 °C.

Electrochemical Measurement: The as-prepared O-WS₂@CNFs, WS₂@CNFs, and C-WS₂@CNFs membranes were cut into identical pieces and used directly as the working electrodes. All electrodes with an areal density of about 1.0 mg cm⁻² were assembled into CR2032-type cells under Ar glove box (H₂O and O₂ < 0.01 ppm, Mbraun, Unilab). K foil was used as the anode and 1.0 M KFSI in EC: DMC = 1:1 vol% was used as the electrolyte. Galvanostatic charge/discharge tests were performed with the Land CT2001A battery testing system. Cyclic voltammetry and electrochemical impedance spectroscopy were carried out on an electrochemical workstation (IVIUM technology, nSTAT). The current density and the capacity are based on the total mass of the electrodes.

GITT Measurement: Measurements of GITT profiles were made with pulse current at 0.05 A g^{-1} for 30 min between rest intervals for 1 h. The diffusivity coefficient can be estimated according to Fick's second law as follows:

$$D_k^+ = \frac{4}{\pi\tau} \left(\frac{m_B V_M}{M_B S}\right)^2 \left(\frac{\Delta E_S}{\Delta E_t}\right)^2$$

where $m_{\rm B}$ and $M_{\rm B}$ are the effective mass and molar mass of the electrode material, respectively. V_M is the molar volume, S is the surface area of the electrode; ΔE_S is the voltage change between the initial and steady state, ΔE_t is the constant current discharge/charge potential change.

DFT Calculation Method: First-principle calculations were performed by the density functional theory (DFT) using the Vienna Ab-initio Simulation Package (VASP) package [Comput. Mater. Sci. 1996, 6, 15-50]. The generalized gradient approximation (GGA) with the Perdew- Burke-Ernzerhof (PBE) functional was used to describe the electronic exchange and correlation effects [Phys. Rev. Lett. 1996, 77, 3865-3868]. Uniform G-centered k-points meshes with a resolution of $2\pi * 0.03$ Å⁻¹ and Methfessel-Paxton electronic smearing were adopted for the integration in the Brillouin zone for geometric optimization. The simulation was run with cutoff energy of 500 eV throughout the computations. These settings ensure convergence of the total energies to within 1 meV per atom. Structure relaxation proceeded until all forces on atoms were less than 1 meV Å⁻¹ and the total stress tensor was within 0.01 GPa of the target value. The climbing-image nudged elastic band (cNEB) method [J. Chem. Phys. 2000, 113, 9901] implemented in VASP was performed to investigate the transition state searches. Fabrication of PIC full cell: PIC devices were also assembled in 2032 coin-type cells. Before assembling the PIC full cell, the C-WS₂@CNFs anode was pre-cycled five times at 0.05 A g⁻¹ in half cell. PICs full cell was assembled by the pre-activated C-WS₂@CNFs and ACNFs with mass ratios of 1:1, 1:2 and 1:3.

In PIC full-cell tests, the specific capacities and current densities were all based on the total mass of both anode and cathode materials. The calculations of energy density (E, Wh kg⁻¹) and power densities (P, W kg⁻¹) were performed using the equations below:

$$E = \int_{t_1}^{t_2} IV dt = \Delta V \times \frac{I}{m} \times t \qquad P = \frac{E}{t}$$

where ΔV represents the potential change after full discharge, *I* is the constant discharge current, and *m* is the total mass of the anode and cathode materials, *t* is the time for a full discharge.

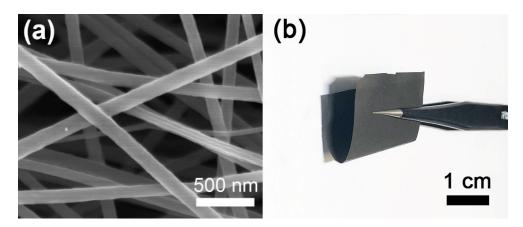


Fig. S1 (a) SEM image and (b) photograph of the CNFs membrane.

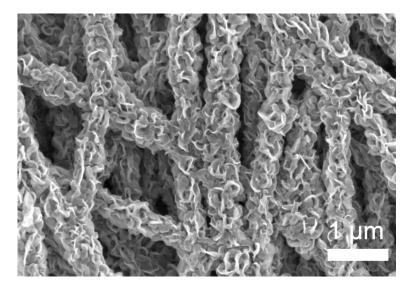


Fig. S2 SEM image of the O-WS₂@CNFs.

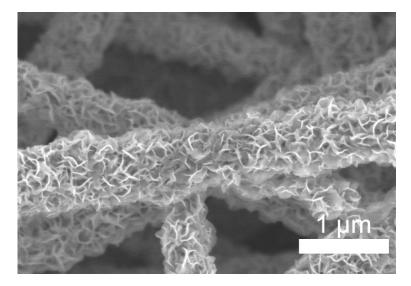


Fig. S3 SEM image of the WS₂@CNFs.

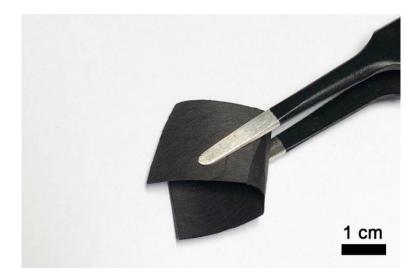


Fig. S4 Photograph of the folded C-WS₂@CNFs.

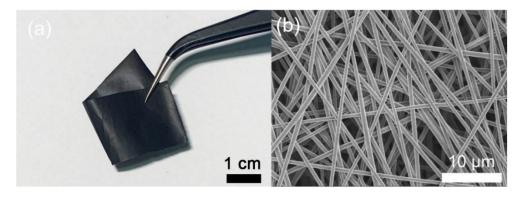


Fig. S5 (a) Photograph of the folded ACNFs, and (b) SEM image of the ACNFs.

Fig. S6 TEM image of the C-WS₂@CNFs.

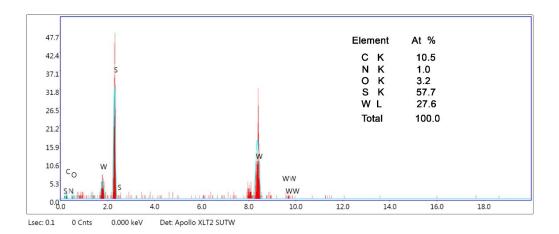


Fig. S7 EDS spectrum of the $WS_2@CNFs$.

Table S1 Element compositions of the samples by XPS

Element (at%) Sample	W	S	С	Ν	0
C-WS2@CNFs	6.59	14.06	59.77	6.64	12.94
WS ₂ @CNFs	30.39	61.94	2.02	2.03	3.62
O-WS2@CNFs	11.70	13.78	27.70	7.55	39.27

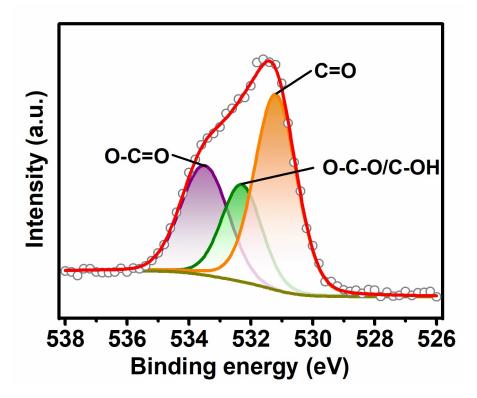


Fig. S8 The O 1s spectrum of C-WS₂@CNFs

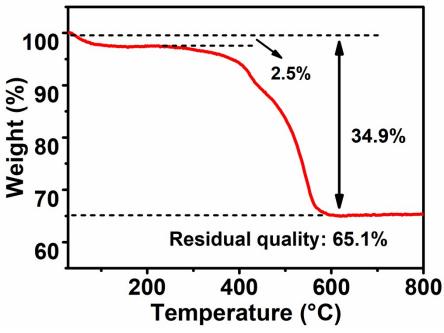
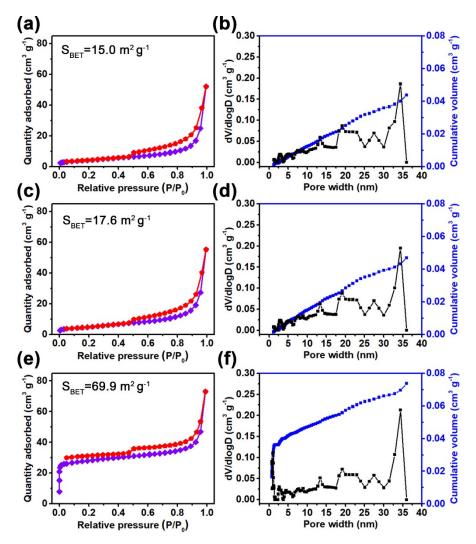



Fig. S9 TGA of C-WS₂@CNFs.

Fig. S10 (a) N₂ adsorption-desorption isotherm, and (b) pore size distribution of the C-WS₂@CNFs.

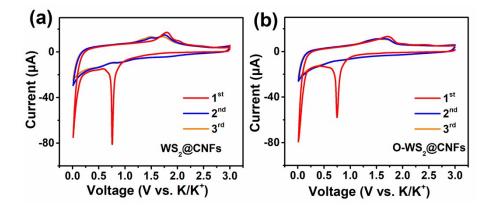


Fig. S11 The initial three CV curves at 0.2 mV s⁻¹ of (a) WS₂@CNFs, (b) O-WS₂@CNFs.

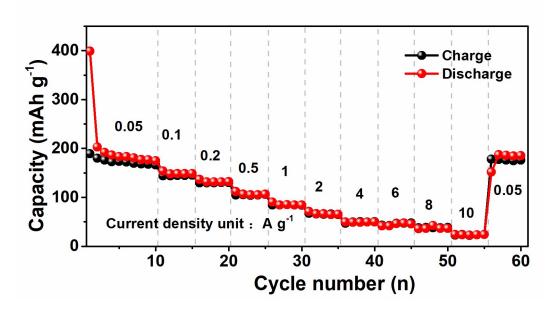


Fig. S12 Rate capabilities of the CNFs.

Anode materials	Current	Initial Coulombic	Reference
C-WS ₂ @CNFs	0.05	68.6%	This work
ED-MoS ₂	0.1	40.9%	Adv. Funct. Mater. 2020 , 1908755
C/MoSe ₂ /MXene	0.2	54.2%	ACS Nano 2019 , 13, 3448–3456
FeSe ₂ /N-C	0.1	37%	Adv. Energy Mater. 2019 , 1903277
NbSe ₂ /NSeCNFs	0.05	56.7%	Adv. Funct. Mater. 2020 , 2004247
SnO ₂ Nanoparticles	0.02	43.3%	Energy Environ. Sci., 2020 , 13, 571–578
N-doped Hollow Carbon	0.1	16.3%	Energy Environ. Sci., 2019 , 12, 1605–1612
Sulfur-Grafted Hollow Carbon	0.025	51.4%	Adv. Mater. 2019, 1900429
WS ₂ @NCNs	0.05	48.8%	Matter 2019 , 1, 893–910

Table S2 Comparison of the initial Coulombic efficiency of C-WS2@CNFs anodewith previously reported anode materials for PIBs.

Table S3 Comparison of the electrochemical performance of C-WS2@CNFs anodewith previously reported anode materials for PIBs.

Anode materials	Rate capability	Reference	
C-WS2@CNFs	319 mAh g ⁻¹ @0.05 A g ⁻¹ 234 mAh g ⁻¹ @ 1 A g ⁻¹ 219 mAh g ⁻¹ @2 A g ⁻¹ 168 mAh g ⁻¹ @10 A g ⁻¹	This work	
V ₂ O ₃ @PNCNFs	245 mAh g ⁻¹ @0.05 A g ⁻¹ 138 mAh g ⁻¹ @1 A g ⁻¹	Nano Energy 2018 , 50, 462- 467	
VSe ₂ NSs	374 mAh g ⁻¹ @0.1 A g ⁻¹ 180 mAh g ⁻¹ @1 A g ⁻¹	Adv. Mater. 2018, 1800036	
S-HCS	389 mAh g ⁻¹ @0.1 A g ⁻¹ 108 mAh g ⁻¹ @ 5A g ⁻¹	Adv. Mater. 2019, 1900429	
MoSe ₂ /N-C	303 mAh g ⁻¹ @0.1 A g ⁻¹ 178 mAh g ⁻¹ @2 A g ⁻¹	Adv. Energy Mater. 2018 , 1801477	
MoS ₂ @rGO	399 mAh g ⁻¹ @0.1 A g ⁻¹ 195 mAh g ⁻¹ @2 A g ⁻¹	Nano Energy 2019 , 63, 103868	
NbSe ₂ /rGO	281 mAh g^{-1} @0.05 A g^{-1} 81 mAh g^{-1} @2A g^{-1}	Adv. Funct. Mater. 2020 , 2004247	
$VS_2 NSA$	412 mAh g^{-1} @0.1A g^{-1} 101 mAh g^{-1} @2A g^{-1}	Adv. Mater. 2017, 1702061	
FeSe ₂ /N-C	291 mAh g ⁻¹ @0.1 A g ⁻¹ 151 mAh g ⁻¹ @ 2A g ⁻¹	Adv. Energy Mater. 2019 , 1903277	
WS ₂ powder	115 mAh g^{-1} @0.05 A g^{-1} 62 mAh g^{-1} @0.8 A g^{-1}	Nano Res. 2019 , 1998-0124	
WS2@NCNs	415 mAh g^{-1} @0.05 A g^{-1} 198 mAh g^{-1} @1A g^{-1}	Matter 2019 , 1, 893–910	

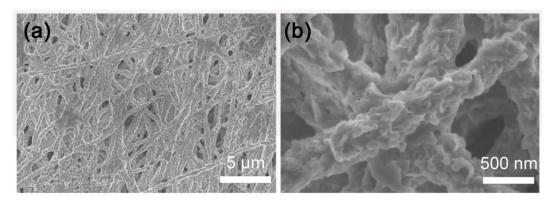


Fig. S13 (a, b) SEM of the C-WS₂@CNFs electrode after the 300 cycles.

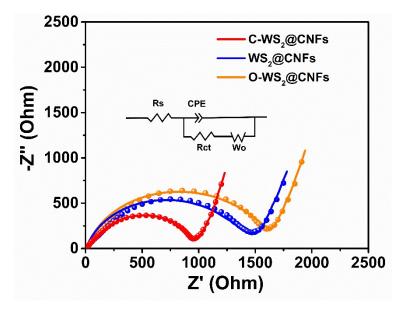


Fig. S14 Electrochemical impedance spectroscopy (EIS) and the data fitting results of C-WS₂@CNFs, WS₂@CNFs, and O-WS₂@CNFs. The inset shows the corresponding equivalent circuit used for the data fitting, where R_s , R_{ct} , CPE, and W_0 represent contact resistance, charge-transfer resistance, constant-phase element, and Warburg ion-diffusion resistance, respectively.

Sample	$R_{s}\left(\Omega ight)$	$R_{ct}\left(\Omega ight)$	$W_{O}(\Omega)$
C-WS ₂ @CNFs	3.9	917	169
WS ₂ @CNFs	5.3	1361	451
O-WS2@CNFs	5.2	1567	183

Table S4 The resistor elements of three samples derived from the Nyquist plots.

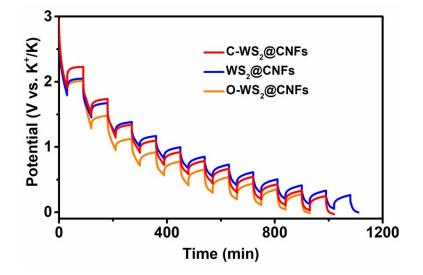


Fig. S15 GITT profiles of the discharging process of the three electrodes.

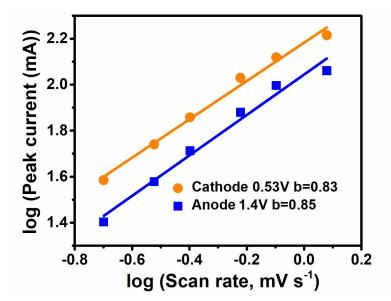
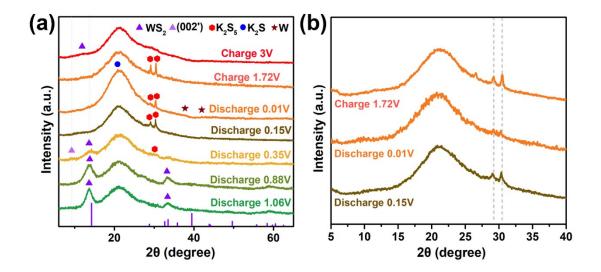



Fig. S16 Determination of the b-value according to the relationship between peak current and scan rate.

Fig. S17 The ECC-Opto-Std test cell and its parts for the in situ Raman spetra testing.

Fig. S18 (a) *Ex situ* XRD patterns of C-WS₂@CNFs (a) the 1st discharge-charge process, (b) the 3rd discharge-charge process

The phase transition of C-WS₂@CNFs was further identified by *ex situ* XRD at different discharge/charge states (Fig. S18). When the C-WS₂@CNFs electrode is

discharged from 1.04 to 0.88 V, the peaks of the pristine WS₂ are still found and remained essentially unchanged. Upon further potassiation at 0.35 V, the predominant (002) Bragg peak at 14.1° weakens, while a new peak named (002') is collected at 9.8° corresponding to enlarged interlayer space of 0.790 nm. These changes further confirm the formation of K⁺-intercalated WS₂ (K_x WS₂). After the electrode is discharged to 0.15 V, the intermediate phase of K_2S_5 (JCPDS No. 30-0993) is identified, demonstrating the continuation of the conversion reactions. As the potassiation continues to 0.01 V, the K₂S₅ signal gradually fades, accompanied by the appearance of a peak at 20.84° corresponding to the (111) plane of cubic K₂S (JCPDS No. 74-1030). Two small peaks appear around 37.7° and 42.0°, which are indexed to the (111) and (200) planes of W (JCPDS No. 88-2339). Upon depotassiation at 1.72 V, the peak of the K_2S_5 phase reappears. When fully charged to 0.01 V, a faint WS₂ peak with slight shift compared to that of pristine WS₂ is detected, indicating the irreversible structural degradation of WS₂ caused by the phase conversion during the charge/discharge cycle. This intermediate phase of K₂S₅ could be also identified by the ex situ XRD measurement for the 3rd discharge/charge cycle (Fig. S18b). In detail, the intermediate phase of K₂S₅ can be determined when the electrode is discharged to 0.15 V according to the two diffraction peaks at 2θ = 29.1° and 30.4° (JCPDS No. 30-0993). These peaks significantly became weak when it was further discharge to 0.01 V, and reappeared when it was re-charged to 1.72 V. These results further confirm the well reproducibility of the intermediate phase of K₂S₅ and the conversion reaction mechanism between K⁺ and WS₂.

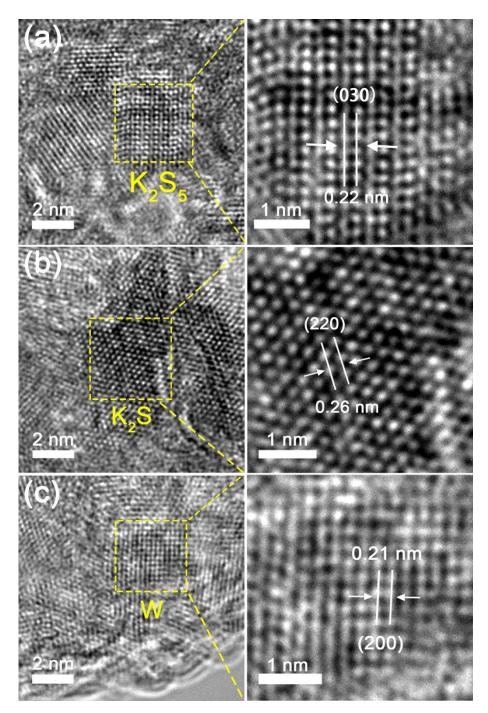


Fig. S19 *Ex situ* HRTEM images of C-WS₂@CNFs at discharged to 0.01 V: (a) K_2S_5 , (b) K_2S , and (c) W.

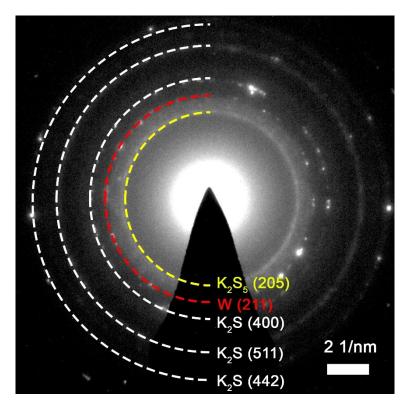
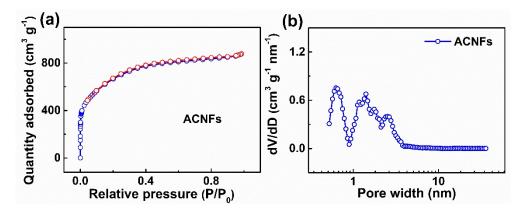
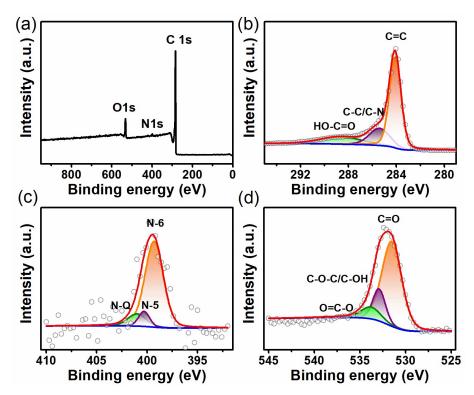




Fig. S20 SAED pattern of the discharged C-WS₂@CNFs electrode.

Fig. S21 (a) Nitrogen adsorption-desorption isothermal curves and b) pore size distribution of ACNFs.

Fig. S22 (a) XPS survey, high-resolution XPS spectra of (b) C1s, (c) N1s, and (d) O1s of ACNFs.

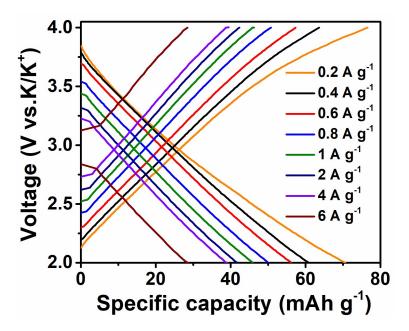


Fig. S23 Charge/discharge plots at different current densities of ACNFs.

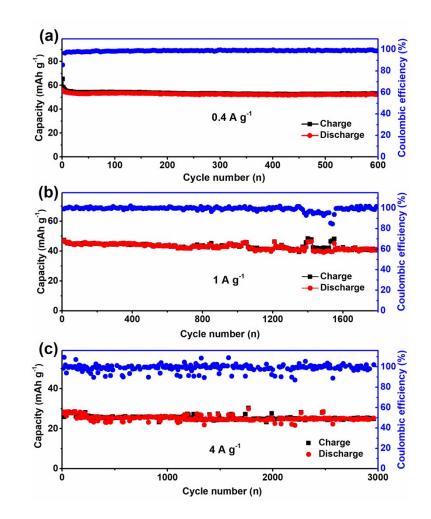


Fig. S24 Cycle performance of ACNFs at different current densities.

PICs	Rate capability	Reference	
C-WS2@CNFs ACNFs	180.4 Wh kg ⁻¹ @399.6 W kg ⁻¹ 42 Wh kg ⁻¹ @12.6 kW kg ⁻¹	This work	
S-N-PCNs AC	170.3 Wh kg ⁻¹ @196.7 W kg ⁻¹ 79.8 Wh kg ⁻¹ @ 5.4 kW kg ⁻¹	Adv. Energy Mater. 2019 , 1901533	
NbSe ₂ /NSeCNFs AC	136.2 Wh kg ⁻¹ @182.0 W kg ⁻¹ 18.6 Wh kg ⁻¹ @ 4.1 kW kg ⁻¹	Adv. Funct. Mater. 2020 , 2004247	
FeSe ₂ /N-C AC	232.2 Wh kg ⁻¹ @198.1W kg ⁻¹ 29.9Wh kg ⁻¹ @ 7.5 kW kg ⁻¹	Adv. Energy Mater. 2019 , 1903277	
CTP AC	76.2 Wh kg ⁻¹ @126.3 W kg ⁻¹ 47.0 Wh kg ⁻¹ @ 1.8 kW kg ⁻¹	Adv. Funct. Mater. 2018 , 1802684	
NHCS ANHCS	109.5 Wh kg ⁻¹ @189.2 W kg ⁻¹ 18.4 Wh kg ⁻¹ @ 8.3 kW kg ⁻¹	Adv. Funct. Mater. 2019 , 1903496	
N-MoSe ₂ /G AC	103.0 Wh kg ⁻¹ @209.9 W kg ⁻¹ 31.2 Wh kg ⁻¹ @ 6.8 kW kg ⁻¹	Adv. Funct. Mater. 2019 , 1903878	
K ₂ TP AC	84.0 Wh kg ⁻¹ @209.9 W kg ⁻¹ 51.2 Wh kg ⁻¹ @ 2.0 kW kg ⁻¹	Chem. Sci., 2019 , 10, 2048	
Soft carbon AC	92.6 Wh kg ⁻¹ @197.0 W kg ⁻¹ 13.8 Wh kg ⁻¹ @ 0.6 kW kg ⁻¹	Adv. Mater. 2018 , 1800804	
3D-Ti ₃ C ₂ HPAC	98.4 Wh kg ⁻¹ @120.8 W kg ⁻¹ 18.7 Wh kg ⁻¹ @ 7.0 kW kg ⁻¹	Adv. Funct. Mater. 2020 , 2005663	
MDPC PDPC	120.0 Wh kg ⁻¹ @260 W kg ⁻¹ 21.7 Wh kg ⁻¹ @ 26 kW kg ⁻¹	Adv. Funct. Mater. 2020 , 2006561	
S-MCCF aMCCF	100 Wh kg ⁻¹ @200 W kg ⁻¹ 58.3 Wh kg ⁻¹ @ 10 kW kg ⁻¹	Nano-Micro Lett. 2021 , 13:14	
WS2@NCNs NCHS	103.7 Wh kg ⁻¹ @235.5 W kg ⁻¹ 66.4 Wh kg ⁻¹ @ 2.3 kW kg ⁻¹	Matter 2019 , 1, 893–910	

Table S5 Comparison of the C-WS $_2$ @CNFs||ACNFs with previously reported PICs.