Supplementary section A. Data for the proof of concept

No	Sample ID*	Current, mA	m _{before} , g	m _{after,} g	m _{salt} g	Isotope	$A_{before} = Bq/g$	A _{after**} Bq/g	${ m A}_{ m salt} { m Bq/g}$	Activity Balance*** %
						⁶⁰ Co	12145.87	12139.80	0.004	99.979
1	0.1	0	0.2172	0.2172	176.026	¹³³ Ba	228.80	228.50	-	99.889
1	0_1	0				¹³⁷ Cs	82.70	82.30	-	99.920
						¹⁵⁴ Eu	73.20	72.90	-	99.966
		0	0.4574	0.4574		⁶⁰ Co	1489.66	1489.06	0.001	99.995
2	C 1				176 027	¹³³ Ba	204.00	203.80	-	99.993
Z	5_1				1/6.03/	¹³⁷ Cs	38.50	38.40	-	99.981
						¹⁵⁴ Eu	55.90	55.60	0.001	99.970
						⁶⁰ Co	34870.12	34859.66	0.024	99.998
ſ	XX 7 1	0	0.4204	0.4204	176 012	¹³³ Ba	423.70	423.40	0.001	99.997
3	w_1	0	0.4294	0.4294	176.012	¹³⁷ Cs	41.40	41.20	-	99.974
						¹⁵⁴ Eu	146.30	145.60	0.002	99.973

Table A.1. Specific Activity change in graphite samples during leaching studies in LiCl-KCl eutectic at 723 K (0 mA current)

* - O – Oldbury Magnox reactor, S – Sizewell Magnox reactor, W – Wylfa Magnox reactor

** - the 5 hours of leaching was tested.

Activity balance =
$$\frac{A_{after} \times m_{after} + A_{salt} \times m_{salt}}{A_{before} \times m_{before}} \times 100$$

*** - Activity balance was calculated using the following equation:

No	Sample ID*	Current, mA	m _{before} , g	m _{after,} g	m _{salt} g	Isotope	A _{before} Bq/g	$A_{after} \\ Bq/g$	A _{salt} Bq/g	Activity Balance** %
						⁶⁰ Co	12139.80	12136.16	0.002	99.984
			0.2172	0.2172	176.066	¹³³ Ba	228.50	228.40	-	99.994
1	O_1	40				¹³⁷ Cs	82.30	82.20	-	99.912
						¹⁵⁴ Eu	72.90	72.40	0.001	99.919
		40	0.4574	0.4574		⁶⁰ Co	1489.06	1488.47	0.001	99.980
2					176.034	¹³³ Ba	203.80	203.70	-	99.997
2	S_1					¹³⁷ Cs	38.40	38.30	-	99.951
						¹⁵⁴ Eu	55.60	55.30	0.001	99.973
						⁶⁰ Co	34859.66	34849.20	0.024	99.998
				0.4294	176.047	¹³³ Ba	423.40	423.00	0.001	99.993
3	W_1	40	0.4294			¹³⁷ Cs	41.20	41.20	-	99.999
						¹⁵⁴ Eu	145.60	144.70	0.001	99.643

Table A.2. Specific Activity change in graphite samples during the application of positive current in LiCl-KCl eutectic at 723 K (40 mA)

Activity balance =
$$\frac{A_{after} \times m_{after} + A_{salt} \times m_{salt}}{A_{before} \times m_{before}} \times 100$$

** - Activity balance wa

N°	Sample ID	Current , mA	m ^{before,}	m 1 g	m _{1salt} g	m 2 g	m _{2salt} g	Isotope	A _{before} Bq/g	A 1 Bq/g	$\begin{array}{c} A_{1salt} \\ Bq/g \end{array}$	$\frac{A after + salt}{A before}$ %	A 2 Bq/g	A ^{2salt} Bq/g	Activity Balance** %
		-						⁶⁰ Co	12136.1 6	8669.65	3.990	97.45	8095.44	0.57 8	97.96
1	0.1	40	0.217	0.21	176.04	0.21	176.02	¹³³ Ba	228.40	187.78	0.049	98.87	179.48	0.01 0	99.01
1	0_1	40	0.217	5	0	3	5	¹³⁷ Cs	82.20	76.45	0.006	97.87	74.65	0.00 2	98.39
								¹⁵⁴ Eu	72.40	54.94	0.019	96.12	50.12	0.00 5	97.68
								⁶⁰ Co	14014.5 6	9119.00	9.648	96.38	8521.00	1.13 8	98.88
C	0_2	40	0 297	0.38	176.01 8	0.38 6	176.03	¹³³ Ba	213.69	180.66	0.067	98.76	171.41	0.01 8	99.11
2		40	0.507	7			7	¹³⁷ Cs	78.32	73.41	0.010	99.35	71.65	0.00 2	98.75
								¹⁵⁴ Eu	77.42	61.21	0.034	98.89	55.11	0.01 2	98.41
								⁶⁰ Co	15114.1 2	8639.09	7.950	96.58	7955.35	0.71 0	97.97
2	O^{3}	40	0 222	0.23	176.04	0.22	176.01	¹³³ Ba	219.65	176.24	0.051	97.01	170.68	0.00 6	98.91
5	0_5	40	0.232	0	0	9	6	¹³⁷ Cs	80.23	74.88	0.006	98.55	73.05	0.00 2	98.70
								¹⁵⁴ Eu	80.06	62.06	0.023	98.51	55.86	0.00 7	97.65
								⁶⁰ Co	1488.47	1224.44	0.591	97.18	1201.78	$\begin{array}{c} 0.04 \\ 0 \end{array}$	98.76
4	S_1	40	0.457	0.45 5	176.03 5	0.45 2	176.00 8	¹³³ Ba	203.70	170.95	0.077	98.10	166.01	0.00 6	97.89
								¹³⁷ Cs	38.30	36.22	0.005	99.36	35.63	0.00 1	98.37

Table A.3. Activity level in graphite samples after electrochemical treatment (40 mA current, up to two cycles) in LiCl-KCl eutectic at 723 K

								¹⁵⁴ Eu	55.30	51.60	0.006	97.12	48.82	0.00 5	97.95
								⁶⁰ Co	3639.96	2911.55	1.735	98.09	2823.33	0.27 4	98.47
E	G 2	40	0.450	0.45	176.01	0.44	176.03	¹³³ Ba	156.43	134.60	0.049	97.90	132.75	0.00 6	98.24
3	S_ 2	40	0.439	8	9	8	0	¹³⁷ Cs	26.92	24.96	0.004	98.82	25.12	$\begin{array}{c} 0.00 \\ 0 \end{array}$	99.06
								¹⁵⁴ Eu	51.46	46.35	0.012	98.79	44.86	0.00 4	98.32
								⁶⁰ Co	1299.39	1079.15	0.259	97.51	950.44	0.14 1	97.84
6	S 3	40	0 237	0.23	176.02	0.23	176.01	¹³³ Ba	224.63	202.41	0.025	98.12	190.73	0.01 1	98.46
0	5_5		0.237	6	0	6	3	¹³⁷ Cs	63.13	60.00	0.004	98.99	58.42	0.00 1	98.31
								¹⁵⁴ Eu	67.52	59.47	0.009	97.66	56.09	0.00 4	99.45
								⁶⁰ Co	34849.2 0	19100.2 2	35.76 9	96.80	15769.3 3	6.72 8	96.66
7	W/ 1	40	0.420	0.42	176.03 6	0.42 6	176.03 1	¹³³ Ba	423.00	297.56	0.281	97.41	276.88	0.03 5	97.43
/	w_1	40	0.429	8				¹³⁷ Cs	41.20	34.97	0.014	98.78	33.90	0.00 2	98.49
								¹⁵⁴ Eu	144.70	120.19	0.056	98.64	107.59	0.02 6	97.91
								⁶⁰ Co	29726.3 3	21719.0 8	25.26 2	97.51	19568.2 3	5.88 8	97.95
Q	W 2	40	0.600	0.59	176.02	0.59	176.02	¹³³ Ba	373.31	254.35	0.362	96.15	217.05	0.09 8	96.62
0	vv_2	40	0.000	6	3	5	4	¹³⁷ Cs	67.69	56.83	0.035	98.68	53.28	0.01 0	98.62
								¹⁵⁴ Eu	149.05	117.78	0.092	96.69	111.12	0.01 6	98.28
9	W_3	40	0.458	0.45 7	176.01 7	0.45 4	176.02 7	⁶⁰ Co	29726.3 3	17791.3 9	29.03 0	97.25	15607.1 3	4.80 5	97.55

1	³³ Ba	26.94	17.82	0.022	97.49	16.21	0.00 4	98.13
1	³⁷ Cs	70.65	59.46	0.028	98.94	56.97	0.00 6	99.02
1	⁵⁴ Eu	170.32	131.99	0.084	96.30	118.53	0.03	98.81

$$Activity \ balance = \frac{A_{after} \times m_{after} + A_{salt} \times m_{salt}}{A_{before} \times m_{before}} \times 100$$
** - Activity balance was calculated using the following equation:

Supplementary section B. Data for the influence of applied current

Nº	Sample ID	Current,	Cycle Nº	m before,	m after	m _{salt}	Isotope	A before	A_{after}	A $_{salt}$	Activity Balance***
	1	mA	5	g	g	g	1	Bq/g	Bq/g	Bq/g	%
							⁶⁰ Co	15114.12	7955.35	4.330	95.43
1	0.3	40	2	0 232	0 220	352 056**	^{133}Ba	219.65	170.68	0.028	96.15
1	0_3	40	2	0.232	0.229	552.050	^{137}Cs	80.23	73.05	0.004	97.34
							¹⁵⁴ Eu	80.06	58.78	0.015	96.71
							⁶⁰ Co	8070.00	7083.47	0.710	97.97
2	0.4	20	2	0.487	0.486	176.016	^{133}Ba	205.19	202.54	0.006	98.91
2	0_4	20	2	0.407	0.400	170.010	^{137}Cs	79.02	77.14	0.002	98.70
							¹⁵⁴ Eu	69.32	61.29	0.007	97.65
							⁶⁰ Co	10575.68	4216.78	2.290	97.85
2	0.5	60	2	0.380	0 277	176 020	^{133}Ba	207.09	166.42	0.004	99.26
5	0_5	00	2	0.380	0.577	170.020	^{137}Cs	85.26	63.65	0.003	98.57
							¹⁵⁴ Eu	71.36	51.39	0.016	96.51
							⁶⁰ Co	9573.28	2431.91	13.053	96.73
Λ	0.6	80	2	0 384	0 3 8 1	176.016	^{133}Ba	142.58	49.52	0.080	97.73
-	0_0	80	Z	0.384	0.381	1/0.010	^{137}Cs	82.98	60.99	0.042	96.85
							¹⁵⁴ Eu	81.35	50.01	0.041	98.11
							⁶⁰ Co	2952.99	2652.32	15.051	97.27
5	S A	20	2	0.616	0.615	176 008	^{133}Ba	93.44	91.40	0.192	96.23
5	5_4	20	2	0.010	0.015	170.008	^{137}Cs	27.96	27.59	0.043	96.88
							¹⁵⁴ Eu	79.48	72.49	0.062	95.79
							⁶⁰ Co	2839.30	2017.70	0.843	97.83
6	S 5	40	2	0.600	0.500	176 030	^{133}Ba	146.80	118.55	0.004	98.85
0	5_5	40	2	0.000	0.399	170.050	^{137}Cs	54.69	48.98	0.000	98.96
							¹⁵⁴ Eu	731.56	585.70	0.018	97.51
							⁶⁰ Co	2862.45	853.05	2.495	96.73
7	S_6	80	2	0.315	0.314	176.022	^{133}Ba	193.56	77.48	0.084	97.44
							¹³⁷ Cs	24.68	17.93	0.017	98.64

Table B.1. Activity level in graphite samples after electrochemical treatment (up to 80 mA current, two cycles) in LiCl-KCl eutectic at 723 K

							¹⁵⁴ Eu	81.43	53.83	0.436	97.40
							⁶⁰ Co	28049.32	12266.30	3.398	96.04
8	W_4	60	r	0 5872	0.5855	176 011	¹³³ Ba	217.77	180.90	0.194	95.98
0		00	2	0.3872		1/0.011	¹³⁷ Cs	39.13	30.34	0.011	98.36
							¹⁵⁴ Eu	174.60	116.95	0.047	97.90

** - total mass of salt is given after cycle 1 and cycle 2, for details on separate runs see table A.3.

 $Activity \ balance = \frac{A_{after} \times m_{after} + A_{salt} \times m_{salt}}{A_{before} \times m_{before}} \times 100$

Supplementary section C. Data for the influence of the cycle number

No	Sample ID	Current, mA	Cycle No	m _{before} , g	m _{after} g	m _{salt} g	Isotope	A _{before} Bq/g	$A_{after} Bq/g$	A_{salt} Bq/g	Activity Balance** %
							⁶⁰ Co	28049.32	12266.30	49.560	96.57
1	W/ A	60	2	0 5 9 7	0 5055	176 022	¹³³ Ba	217.77	180.90	0.107	97.58
1	vv_4	00	Z	0.387	0.3833	1/0.052	¹³⁷ Cs	39.13	30.34	0.025	96.25
							¹⁵⁴ Eu	174.60	116.95	0.172	96.39
							⁶⁰ Co	31297.56	13317.47	43.197	96.37
r	W 5	60	1	0.440	0.446	176.014	¹³³ Ba	363.16	316.78	0.100	97.49
2	vv_5	00	1	0.449	0.440	170.014	¹³⁷ Cs	566.37	455.36	0.265	98.21
							¹⁵⁴ Eu	136.66	109.87	0.061	97.36
							⁶⁰ Co	30954.34	11810.84	50.380	95.61
3	W 6	60	4	0.498	0 407	176 022	^{133}Ba	228.76	177.74	0.127	97.12
5	w_0	00	Т		0.777	170.022	^{137}Cs	64.92	48.09	0.042	96.72
							¹⁵⁴ Eu	123.55	83.12	0.106	97.56
							⁶⁰ Co	35014.78	12396.33	32.341	96.09
1	W 7	60	6	0.265	0.260	176 024	133 Ba	263.51	77.67	0.267	96.16
4	vv_/	00	0	0.205	0.200	170.034	^{137}Cs	39.04	28.34	0.016	97.59
							¹⁵⁴ Eu	156.32	87.86	0.096	96.07
							⁶⁰ Co	26072.99	9581.60	19.181	95.74
5	W/ Q	60	0	0.217	0.212	176 010	133 Ba	453.22	83.20	0.441	96.91
5	vv_o	00	0	0.217	0.215	170.010	^{137}Cs	379.62	275.04	0.126	97.93
							¹⁵⁴ Eu	161.03	50.73	0.130	96.44
							⁶⁰ Co	26978.51	6466.24	54.820	95.88
6	W O	60	10	0.401	0 472	176 009	133 Ba	440.95	72.42	0.990	96.25
6	VV_9	00	10	0.491	0.472	170.008	¹³⁷ Cs	71.97	52.08	0.057	97.91
							¹⁵⁴ Eu	163.58	29.01	0.361	96.09
7	W 10	60	0	0.450	0.448	176.020	⁶⁰ Co	33648.72	11069.53	56.740	96.77
/	w_10	00	0	0.439	0.448	1/0.020	¹³³ Ba	369.85	62.01	0.767	95.88

Table C.1. Activity level in graphite samples after electrochemical treatment (60 mA current, up to ten cycles) in LiCl-KCl eutectic at 723 K

No	Sample ID	Current, mA	Cycle No	m _{before} , g	m _{after} g	m _{salt} g	Isotope	A _{before} Bq/g	$\begin{array}{c}A_{after}\\Bq/g\end{array}$	A_{salt} Bq/g	Activity Balance** %
							¹³⁷ Cs	51.33	38.04	0.036	98.91
							¹⁵⁴ Eu	144.24	37.10	0.268	96.34
							⁶⁰ Co	957.43	389.57	0.715	96.64
o	S 7	60	1	0.225	0.235	176 021	¹³³ Ba	86.31	73.18	0.016	98.90
8	S_/	00	1	0.235		1/0.031	¹³⁷ Cs	39.47	32.40	0.008	97.33
							¹⁵⁴ Eu	82.64	69.49	0.016	98.59
							⁶⁰ Co	1684.59	499.90	3.120	96.36
0	C Q	60	2	0.488	0.486	176.027	¹³³ Ba	113.89	95.73	0.045	97.91
9	5_0	00					¹³⁷ Cs	59.64	46.03	0.035	98.16
							¹⁵⁴ Eu	597.32	431.92	0.439	98.53
							⁶⁰ Co	10845.90	4634.50	15.813	96.99
10	0.7	60	4	0.460	0 464	176 010	¹³³ Ba	147.63	114.20	0.087	98.73
10	0_/	00	4	0.409	0.404	1/0.019	¹³⁷ Cs	76.95	56.21	0.054	98.49
							¹⁵⁴ Eu	81.35	54.19	0.068	97.45
							⁶⁰ Co	8784.59	3378.87	13.436	96.95
11	0.8	60	6	0.457	0 452	176 013	¹³³ Ba	213.53	71.03	0.352	96.47
11	0_0	00	0	0.437	0.432	1/0.015	¹³⁷ Cs	86.54	62.20	0.062	98.63
							¹⁵⁴ Eu	67.23	41.59	0.064	98.06
							⁶⁰ Co	8573.28	2433.44	16.476	96.20
14		60	10	0 4008	0 4716	176 027	¹³³ Ba	163.54	35.63	0.347	97.04
14	O_9	60		0.4908	0.4716	176.027	¹³⁷ Cs	75.69	56.52	0.056	98.43
							¹⁵⁴ Eu	75.63	19.40	0.152	96.52

Activity balance =
$$\frac{A_{after} \times m_{after} + A_{salt} \times m_{salt}}{A_{before} \times m_{before}} \times 100$$

*** - Activity balance was calculated using the following equation:

Supplementary section D. Data for potential-time profiles of the cyclic galvanostatic electrolysis

Figure D.1. Galvanostatic transients recorded under 40 mA negative (black) and 40mA positive (red) currents applied to irradiated graphite sample from Oldbury reactor placed in LiCl-KCl eutectic at 723 K

Supplementary section E. Data for cyclic voltammetry of the molten salts recorded before and after electrolysis

Figure E.1. Cyclic voltammograms of LiCl-KCl eutectic at 723 K recorded at scan rate of 100 mV/s before electrolysis (black) and after electrolysis (red) of irradiated graphite sample from Wylfa reactor at 40 mA. Working electrode: tungsten wire (S = 0.69 cm²); reference electrode: 1 wt% Ag/AgCl; counter electrode: molybdenum wire (Ø 0.5 mm)