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I. METHODS

A. Transfer learning

In order to exploit knowledge learned from the larger calculated dataset and promote the

learning of the small experimentally measured one, we develop a transfer learning scheme

(see Fig. S1 (a)), which is based on the idea that correlated datasets share similar domain

knowledge. In the main text, we extend our κC data to the ICSD set and learned infor-

mation related to its structural chemistry. As mentioned, theoretical models are invaluable

in that they contain the knowledge of κ, but due to simplicity they inevitably can only

provide insufficient accuracy and limited universality. To take advantage of the knowledge

learned from our larger high-throughput dataset, we develop a transfer learning framework

demonstrated in Fig. S1 (a). This transfer learning scheme we used to predict experimental

conductivity is a two-step modified CGCNN model: i) training a CGCNN model on our

high-throughput κC dataset to extract knowledge, which has been done in the main text.

ii) transferring the parameters of all layers from step i) to initialize a second CGCNN to

transfer knowledge, and add one extra layer before the output layer to account for the dif-

ference between the two datasets. For the second step, we use the smaller κ dataset (132

entries, see Tab. S5) collected from experimental measurements in the literature. Since the

experimental dataset is very small, in step ii), all the layers other than the last one are frozen

to keep the pre-learned knowledge and reduce the degrees of freedom to suppress overfitting.

With this transfer learning scheme, we predict directly experimental values here using

CGCNN, but with high MAEs (see Fig. S1 (b) and Tab. S1), due to small size of the

experimental dataset, < 103 entries. The overall performance is compared with random

forest and CGCNN in Fig. S1 (b), using different training datasets, and as can be seen our

TL-CGCNN leads to the lowest MAE. Figure S1(c) plots the improvement for each data in

the test set, defined by the absolute error difference between CGCNN and TL-CGCNN. It

can be seen that the accuracy on the high-κ end (log κ > 1) is improved, but the accuracy is

deteriorated on the low-κ end, even though the overall performance is enhanced (see detailed

analysis in the latent space in SI). Some example predictions in the high-κ limit from step

ii), termed κ′exp, can be found in Tab. 1. In the log κ < 1 region, we recommend κ′exp from

random forest.
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FIG. S1. Transfer learning based on CGCNN (TL-CGCNN). (a) This model learns high-throughput

dataset κC and transfer the knowledge to learning κexp. (b) Comparison between different machine

learning models, including random forest, CGCNN, and TL-CGCNN, trained on κC or κexp. TL-

CGCNN exhibits the lowest MAE. (c) A closer look at the improvement of TL-CGCNN compared

with CGCNN(κC) in prediction on the test set. The region of log κ > 1 is systematically enhanced,

while the log κ < 1 region can be better or worse. (d) The distribution of the feature space Vf

projected onto two dimensions. The distribution and ranking of κC is generally smoother than

κexp, and for κexp the upper end is smoother than the lower end.

B. Error of transfer learning

To understand the different performance in the high- and low- κ regions of the transfer

learning model, we look into the space of crystal features in the neural networks. In Fig.

S1(a), the network before the last hidden layer learns the feature vectors of materials Vf , and

the last operation from Vf to output is simply a regression with softmax activation. Since
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in TL-CGCNN we freeze Vf and all layers before the extra layer due to the limited amount

of data, we essentially use a one-layer neural network to fine tune κexp learnt from κC . We

plot Vf from the high-throughput and experimental datasets in Fig. S1(d). Interestingly,

we observe a similar distribution between κexp and κC in the Vf space, showing a strong

correlation between the two datasets. However, in the high-κ region, κexp distributes more

smoothly along the V-shape than in the low-κ region, which explains why TL-CGCNN

performs better in the high-κ. Such issues in the low-κ region can be tackled from two

aspects: i) more experimental data with low κ should be generated to better understand

the κexp distribution, and ii) future high-throughput calculations should be refined to shrink

the difference between κC and κexp, especially the outliers, in order to better sample the

experimental Vf space. The observation of data bias indicates the need to expand the

current database. Instead of calculating hundreds of candidates in a certain material family

each time, feature-space-based sampling techniques may be more computationally efficient

to cover the material space.

C. Random forest, feature ranking, and dimension reduction

Random forest is an ensemble method that combines multiple decision trees. [3] This

model has been used as both classifier and regressor for materials informatics. [4] In contrast

to neural networks, random forest models are interpretable by providing an intrinsic metric

to evaluate the importance of individual descriptors. We use this advantage of random

forest in the main text to extract the important structural features that dominate κ. We

use random forest implemented in scikit-learn [5]. The number of trees are set to 50 for all

calculations, but the random states are randomly selected when studying the uncertainty in

TABLE S1. MAE of different models for predicting the experimental κ. Our CGCNN-based

frameworks and random forest models predict κ directly from structure. In contrast, the Callaway

and Slack models need extra calculations of bulk modulus and gruneisen parameter, which could

be expensive. The MAE is 0.14 for Callaway [1] and 0.16 for Slack [2].

RF(κC → κ′exp) RF(κexp → κ′exp) CGCNN (κC → κ′exp) CGCNN (κexp → κ′exp) TL-CGCNN

0.36 ± 0.01 0.31 ± 0.01 0.31 ± 0.01 0.51 ± 0.08 0.27 ± 0.02
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predictions.

Dimension reduction has been performed through two approaches: i) principal compo-

nent analysis (PCA) combined with t-distributed stochastic neighbor embedding (t-SNE).

PCA is a linear reduction approach using singular value decomposition, and t-SNE converts

similarities between data points to joint probabilities then minimizes the Kullback-Leibler

divergence between the joint probabilities of the low-dimensional embedding and the high-

dimensional data. We reduce the 154-dimensional feature space into 20 dimensions using

PCA, then visualize the feature space in two dimensions by t-SNE analysis. In essence,

this reduces our feature space into 2 dimensions, and enables direct visualization. PCA and

t-SNE are both implemented in scikit-learn [5]. ii) Another approach is based on feature

selection from random forest. Random forest ranks the importance of features, with which

we could reduce the feature space till the performance (e.g., MAE) converges. This process

could be more physics-based than the purely data-driven approach in i).

D. Hyperparameter optimization

In this work, we tune the following hyperparamters by grid-search: number of convolu-

tional layers, length of atom feature vectors, length of hidden layer vectors, learning rate

and type of optimizer, and for the last layer of the transfer learning scheme, the length

of the layer and regularization term are taken into account. Descriptions of the hyperpa-

rameters for CGCNN are provided in Ref. [6]. For training the larger theoretical dataset,

cross-validation is done by randomly selecting 20% of the data as the validation set, and

for the small experimental dataset, a 5-fold cross-validation is used. In order to account

for the random effect in training neural networks, for each parameter setting the training is

repeated 20 times. We used both a Bayesian random search and deterministic grid search

to optimize the hyperparameters, and the optimal hyperparameters used in this work are

listed in Table S1.

E. First-principles validation

The κDFT values in Tab. 1 are calculated using a supercell perturbation method and

the Botlzmann theory implemented in Phono3py. [7] Unit cell sizes are set to be greater

5



TABLE S2. The optimal hyperparameters used to train our neural networks.

κC κexp

number of convolutional layers 4 4

length of atom feature vectors 64 64

length of hidden layer vectors 128 16

learning rate 5× 10−3 1× 10−2

optimizer Adam Adam

length of the last layer 64

regularization term 0.1

than 10Å, and the magnitude of atomic perturbation to be 0.005 Å. The force constants

are extracted from density functional theory with plane-wave basis set and the projector

augmented wave (PAW) method [8] through VASP. [9] Recommended PAW potentials are

chosen for all the DFT calculations. We employ the generalized gradient approximation of

Perdew, Burke, and Ernzerhof, [10] and uniform k-meshes with kpoint density greater than

700 k-points/Å−3. The plane wave energy cutoff is set to be 1.3 times the maximal ENMAX

of elements in the unit cell.The convergence criteria for energy and ionic forces are set to

10−6 eV and 0.01 eV/Å, respectively.

F. Experimental measurement

The compounds synthesized in this work were obtained by solid-state mechanical alloying.

In a typical experiment, 10 grams of raw elements with high purity (≥ 99.9%) were weighed

according to stoichiometry in an argon-filled glovebox with O2 and H2O concentration less

than 1 ppm. The weighted elements were subject to high energy ball milling (SPEX 8000D)

for 20 hours under argon protection. The obtained powders were then compacted by a spark

plasma sintering (SPS, FCT GmbH). The detailed sintering conditions are listed in Table S3

The phase purity of the as-sintered compounds was characterized by a Bruker D8 Advance

diffractometer (Co radiation). Pure phases were realized for the compounds synthesized in

this work.

The synthesized specimens were examined by X-ray diffraction (XRD). As shown in the

supporting information (Fig. S2), the patterns of the compounds synthesized in this work
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Compounds SPS conditions

Cu2HfTe3 573 K, 50 MPa, 3 min

Cu3VTe4 573 K, 50 MPa, 3 min

Cu3VTe4 573 K, 50 MPa, 3 min

TaCoTe2 873 K, 45 MPa, 3 min

AgAlTe2 543 K, 45 MPa, 3 min

FeIn2S4 773 K, 45 MPa, 3 min

TiFeCoGa 1173 K, 50 MPa, 2 min

Er2Se3 1573 K, 50 MPa, 3 min

Er2Te3 1523 K, 50 MPa, 3 min

Tb2Te3 1073 K, 50 MPa, 3min

Dy2Te3 1173 K, 50 MPa, 3 min

Ho2Te3 1073 K, 50 MPa, 3 min

TABLE S3. The SPS conditions for the compounds synthesized in this work.

(except for TiFeCoGa) matches well with the recorded patterns from the ICSD database,

indicating the formation of compounds with high phase-purity. For TiFeCoGa, which is not

recorded on ICSD, the measured pattern was compared to the simulation by assuming a

quaternary Heulser crystal structure with space group Fm-3m (225) where the Ti, Fe, Co,

and Ga atoms occupy the Wyckoff positions 4b (1
2
, 1
2
, 1
2
), 4c (1

4
, 1
4
, 1
4
), 4d (3

4
, 3
4
, 3
4
), and 4a (0, 0,

0), respectively. The simulation almost reproduced the experimental pattern of TiFeCoGa,

yet some minor peaks cannot be observed experimentally. The slight mismatch between

simulation and experiment might originate from atomic disorder, which contributed to the

reduction of lattice thermal conductivity. Indeed, as shown in Table 1, the experimental

lattice thermal conductivity of TiFeCoGa is lower than the predictions.

The thermal conductivities were calculated as a multiplication of thermal diffusivity, mass

density, and specific heat. The thermal diffusivities were measured by a Laserflash (LFA1000

Linseis); the mass densities were measured by using the Archimedes principle; the specific

heats were calculated from the Dulong-Petit law. The measurement uncertainties are 2% in

mass density and 4% in diffusivity.

7



FIG. S2. X-ray powder diffraction (XRD) of all measured crystals in this work.
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FIG. S3. Comparison of experimental measurements (κexp, red dots) and κ from high-throughput

datasets (κC and κAFLOW ) to machine learning predictions (κML, the blue points are within a

factor of 2, and the green points are outliers). high-throughput dataset aligns well with experiments.

II. RESULTS FROM DIFFERENT MACHINE LEARNING MODELS

We have trained CGCNN, TL-CGCNN and random forest models for learning κ from

both high-throughput and experimental data sets. CGCNN has also been used to learn from

AFLOW data. A detailed comparison is shown in Fig. S3. These diagonal plots compare

the machine learning models (y axis) with given data sets (x axis). It is interesting to note

the systematic underestimate from the model learnt from AFLOW data. In contrast, the

model from our high-throughput data set align well with the diagonal. Table S1 lists the

MAE from different machine learning models tained on the experimental data set, compared

to the Callaway [1] and Slack [2] models. Our machine learning models consistently lead to

lower error for the experimental data set.

III. EXPERIMENTAL DATA AND COMPARISON WITH MACHINE LEARN-

ING PREDICTIONS

We collected 132 experimental κexp values from the literature, tabulated in Tab. S5.
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TABLE S4. The 132 experimentally measured κexp.

Material κ Material κ Material κ

C 2235 VFeSb 13 Cu2ZnSiTe4 2.22

BN 1600 GaCuSe2 12.9 GaCuTe2 2.2

BAs 1200 TiCoSb 12 PbSe 2

BN 760 Fe2O3 11.3 LiBr 1.83

SiC 490 CdGeP2 11 NaI 1.8

BP 490 Li2O 11 InTe 1.7

BeO 370 ZnGeAs2 11 CuI 1.68

SiC 360 CoSb3 10 Bi2Te3 1.6

AlN 350 MnO 10 KSbS2 1.573

BP 350 SrO 10 SnTe 1.5

GaN 210 Mg2Ge 9.3 AgGaS2 1.45

GaP 100 TiNiSn 9.3 Bi2Se3 1.34

AlAs 98 NiSnZr 8.8 Cu3SbSe3 1.29

SnO2 98 SrTiO3 8.5 Cu2Se 1.25

InP 93 Mg2Si 8.2 CuBr 1.25

AlP 90 SiO2 8 Ca5Al2Sb6 1.2

MgO 60 MgSe 7.69 YbFe4Sb12 1.18

ZnO 60 CdTe 7.5 AgBr 1.1

AlSb 56 KCl 7.1 CsI 1.1

GaAs 45 Mg2Sn 7.1 Bi2Te3 1.1

CdGeAs2 42 NaCl 7.1 AgCl 1

GaSb 40 HfNiSn 6.7 CsCl 1

ZnGeP2 35.5 KF 6.43 TlCl 0.94

Al2O3 30 GaCuS2 5.09 CsBr 0.94

CaO 30 Cu2O 5 CuCl 0.84

InAs 30 CdSe 4.4 Bi2O3 0.8

NiO 30 RbBr 3.8 NaSbTe2 0.75

ZnS 27 SrIn2O4 3.64 CuCl 0.70
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TABLE S5. The 132 experimentally measured κexp (continued).

Material κ Material κ Material κ

InSb 20 Ba2SnO4 3.64 NaBiTe2 0.64

ZnSe 19 ZnSb 3.5 AgBiSe2 0.63

NaF 18.4 KBr 3.4 SnSe 0.62

ZnTe 18 HgSe 3 TlBr 0.58

LiF 17.6 PbS 2.9 AgSbTe2 0.55

HfCoSb 17 NaBr 2.8 Cu3SbSe3 0.50

Sc2O3 17 RbCl 2.8 CuBiS2 0.50

CdS 16 KI 2.6 Tl9BiTe6 0.47

Cr2O3 16 HgTe 2.5 CsPbI3 0.45

Sb3Ir 16 TePb 2.5 AgSbSe2 0.44

LiH 15 Sb2Te3 2.4 CsPbBr3 0.43

ZrCoSb 15 PbTe 2.4 Sb2O3 0.4

CoO 14 BaO 2.3 CsSnI3 0.37

Ga2O3 14 RbI 2.3 Tl3VSe4 0.30

ZnSiAs2 14 RbF 2.27 Gd117Co56Sn112 0.28

AlCuO2 13 Ba3In2O6 2.22 CsAg5Te3 0.18

IV. GENERALIZED VAN-ARKEL TRIANGLES

Van-Arkel triangles have been used to characterize the bonding nature of binary com-

pounds, in terms of the average and difference of element electronegativity (χa). This

construction matches seamlessly with both the ranked features from random forest and the

theoretical consideration from lattice dynamics. Therefore, we extend the average-difference

in electronegativity to mean-variance in broadly all the ranked features. Except for the

mean-variance of χa shown in Fig. 2(f), the other 9 plots, presented in Fig. S6, expand

to other structural and elemental properties. Some properties, such as bond length (LB),

covalent radius (ra) and mass (m) are features that clearly divide low-κ from high-κ ma-

terials. Several other features that are conventionally deemed reasonable proxy quantities

(e.g. bond angle θB and coordination number CN) are however less obvious that the above
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(a) (b)

FIG. S4. Comparison between predicted experimental values and Callaway-model values from (a)

TL-CGCNN and (b) random forest. TL-CGCNN gives more consistent predictions than random

forest model. This should not be surprising, since TL-CGCNN tranfers the learnt knowledge from

Callaway model, while random forest learnt Callaway and experimental datasets independently.

features.

V. ANOMALOUS BI DOPING

Note that Bi has one valance electron less than Te, however, increasing the content of

Bi yields n-type properties instead of p-type, as shown by the Seebeck coefficients. To un-

derstand the role of Bi for optimizing the thermoelectric performance of REX compounds,

we show the X-ray diffraction (XRD) patterns of the Er2Te3−xBix series in Fig. S7(a). The

pristine compound, Er2Te3, possesses a single phase that is crystallized in space group Fddd

(No. 70). Upon the substitution of even 3.33% Bi into the Te sites (x=0.1), several extra

diffraction peaks are recognized as elemental Bi. Therefore, the exact Bi contents that are

solved into the Er2Te3 lattice is unknown but should not be higher than 3.33%. The other

unsolved Bi elements exist as secondary phases, as indicated by the Energy Dispersive X-Ray

(EDX) mapping of Er2Te2.4Bi6 in Fig. S7(b). The unsolved Bi yields main compositions

that are anion-deficient (i.e., Te-deficient), which explains the strengthened n-type trans-

port behaviors when the Bi concentration is higher. We note that creating anion-deficiency
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FIG. S5. Correlation between important features. The color bar is correlation value, and line plot

on the left is the correlation between features and κ. This is compared to the learnt important

features in the main text, showing the mined knowledge is significant.

compounds is a possible approach, as demonstrated in a similar composition Gd2Se2.98. [11]

Overall, although it demands further investigations to clarify how these Bi precipitates affect

exactly the thermoelectric transport properties, we experimentally demonstrate the promis-

ing potential of the REX family with vast members as high-temperature thermoelectric

materials.
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