Supplementary Materials for

Electrocatalytic water splitting with unprecedentedly low overpotentials by nickel sulfide nanowires stuffed into carbon nitride scabbards

Zaki N. Zahran^{1*}, Eman A. Mohamed¹, Yuta Tsubonouchi¹, Manabu Ishizaki², Takanari Togashi², Masato Kurihara², Kenji Saito¹, Tatsuto Yui¹, and Masayuki Yagi ^{1*}

¹Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata 9050-2181, Japan.

²Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan.

Correspondence to: yagi@eng.niigata-u.ac.jp and znzahran@eng.niigata-u.ac.jp

This PDF file includes:

Materials and Methods Table S1 Figs. S1 to S16

Materials and Methods

Materials.

The Nickel Foam (NF, 1.6 x 100 x 110 mm, Nilaco Co) was purchased, and cleaned by sonication in dilute HCl, distilled water, and acetone for 5 min each, and finally dried at 70 °C overnight before use. Millipore water (18 M Ω cm) was used for all the experiments. All solvents and reagents of the purest grade were used as received.

Preparation of a control NiS_x electrode.

The control NiS_x electrode was prepared in the same manner using sulfur powder (4.0 g) instead of CH_4N_2S and characterized by XRD, SEM, and EDS (Fig. S5).

Preparation of a control IrO_x electrode.

10 mg of commercially-available IrO_x (Sigma-Aldrich) was dispersed into water/isopropanol (0.6/0.35 ml) and then 50 µl of Nafion (Nafion 117 solution, Sigma-Aldrich) was added into the solution. The mixture was sonicated for 2 h to form a uniform ink, which was then dropwise cast onto the NF electrode with a mass loading of 1.0 mg cm⁻². The prepared electrodes were dried at 70° for 1 h before measurement.

Preparation of a Pt-coated electrode.

 H_2PtCl_6 was added in 10 ml of MeOH / MeIm solvents (3:1, volume ratio) to give a yellow precursor solution (20 mM). The solution was sonicated for at least 2 h before use. The NF electrode (1.0 x 2.0 cm) was soaked into the precursor solution for 30 s and dried to form a Pt layer on the NF surface. The layer was calcined under air from room temperature to 200 °C at 5.8 °C min⁻¹ and maintained for 2 h, followed by raising the temperature to 450 °C at 8.3 °C min⁻¹ and maintained for 2 h to form the Pt-coated NF electrode. The formed film was washed thoroughly with deionized water, and then dried at 70 °C for at least 2 h.

Structural characterization.

X-ray diffraction patterns (XRD) were collected by Rigaku (MiniFlex 600) using monochromated Cu K α (λ = 1.54 Å) radiation. The XRD patterns were recorded from 5 to 70 degree in 2 θ at a step size of 0.02 degree and a scan rate of 0.25 degree min⁻¹. The surface morphology was observed by a scanning electron microscope (SEM; JEOL JSM-6500F) operated at 15 KV accelerating voltage and 15 mm working distance. The energy dispersive X-ray spectroscopic (EDS) data were taken using an electron probe microanalysis (JEOL JED- 2300) operated at an accelerating voltage of 10 kV. The transmission electron microscopic (TEM) and scanning transmission electron microscopic (STEM) images were recorded by JEOL JEM-2100F with a EDS spectrometer (EX-24200M1G2T), operated at 200 kV. X-ray photoelectron spectra (XPS) were obtained using a Ulvac Phi 5000 Versa Probe CU X-ray photoelectron spectrometer. The photoelectrons emitted by a monochromated Al K α (1486.6 eV; 350 W) radiation were collected with path energy of 23.5 eV through a hemispherical analyzer. The pressure in the analyzing chamber was below 1 x 10⁻⁹ Torr during the measurements. All spectra in XPS were calibrated to C 1s = 284.8 eV.

Table S1. Comparison in OER performances of the present NiS_x/C_3N_4 anode with the state-of-the-art OER anodes with the excellent η_{O2}^{10} values less than 200 mV ^{a)}.

Anodes	Current collector	Г / mg cm ⁻²	Fabrication method	Medium	η ₀₂ ^{10/} mV	Tafel slope / mV dec ⁻¹	Ref.
NiS_x/C_3N_4	NF	NA	Gas-solid reaction	1.0 M KOH	32	48	This work
Ni(OH) ₂ NR ^{b)}	carbon cloth	1.9	Electrochemical oxidation of NiS_2	1.0 M KOH	162	72	(24)
FeNiWO _x	NF	43.2	Dipping, calc. 450 °C	1.0 M KOH	167	49	(23)
Fe ²⁺ -NiFe LDH ^{c)}	NF	3.0	Drop casting with Nafion	1.0 M KOH	195	NA	(22)
NiFeCu metal/oxide	NF	10.2	Electrodeposition	1.0 M KOH	180	33	(18)
FeCoWO(OH)	Au/NF	0.39	Drop casting with Nafion	1.0 M KOH	191	NA	(19)
NiCo ₂ S ₄ /NiFe LDH ^{d)}	NF	NA	Hydrothermal	1.0 M KOH	195	46.3	(21)
$Fe_{0.2}Ni_{0.8}Se_2$ -derived oxide	NF	NA	Hydrothermal	1.0 M KOH	195	28	(20)
Cr ⁶⁺ /N-G ^{e)}	NF	1.0	Drop casting with Nafion	1.0 M KOH	197	NA	(17)

a) "NA" expresses "not available", ^{b)} NR = nanoribbon ^{d)} LDH = Layered double hydroxide, ^{e)} N-G nitrogen-doped graphene.

Figs. S1-S16

Fig. S1. Photos of NF and NiS_x/C_3N_4 on NF.

 $\Box \Box$ Fig. S2. Top view SEM image of the bare NF surface.

Fig. S3. EDS spectra of the NiS_x/C_3N_4 on NF (A) before and (B) after electrolysis under galvanostatic conditions at 10 mA cm⁻² for 5 h.

Fig. S4. X-ray photoelectron spectroscopy (XPS) spectra of the NF electrode in (**A**) C 1*s*, (**B**) N 1*s*, and (**C**) Ni $2p_{3/2}$ regions.

Fig. S5. Characterization of the control NiS_x electrode before and after 5h chronopotentiometry at 10 mA cm⁻². SEM images (**A**) before and (**B**) after electrolysis. (**C**) XRD patterns before (blue) and after (grey) electrolysis and pdf data of the assigned compounds. Ni: 01-070-0989, millerite NiS: 03-065-2117, hexagonal nickel sulfide NiS: 75-0613 and vaesite, syn NiS₂: pdf 01-089-7142. EDS data (**D**) before and (**E**) after electrolysis.

Fig. S6. CVs (*iR* corrected) of NiS_x/C_3N_4 , NiS_x , IrO_x on the NF electrode (1.0 cm² of geometric area) in 1.0 M KOH solutions (pH 14.0) at 10 mV s⁻¹ of a scan rate. The used electrodes are indicated by different colors in the figure.

Fig. S7. Chronopotentiogram in OER at the current density of 10 mA cm⁻² and then switched to 250 mA cm⁻² after 30 min for the NiS_x/C_3N_4 electrode.

Fig. S8. CVs of (A) the as-prepared NiS_x/C_3N_4 electrode, (B) one with the pretreatment of anodic polarization for 30 min at 10 mA cm⁻² in 1.0 M KOH, (C) the bare NF electrode in 1.0 M KOH solutions (pH 14.0) in the potential range of 0.5-0.7 V vs RHE at different scan rates (*v*) of 25-200 mV s⁻¹. The *v* values are indicated by different colors in respective figures.

Fig. S9. LSVs without *iR* corrections of NiS_x/C_3N_4 , NiS_x , IrO_x on the NF electrode (1.0 cm² of geometric area) in 1.0 M KOH solutions (pH 14.0) at 5 mV s⁻¹ of a scan rate in a negative scan direction. The used electrodes are indicated by different colors in the figure.

Fig. S10. XRD patterns of the NiS_x/C_3N_4 on NF (A) before and (B) after electrolysis at 10 mA cm⁻² for 5 h.

Fig. S11. SEM images (top view) of the NiS_x/C_3N_4 surface of NF after electrolysis at 10 mA cm⁻² for 5 h.

Fig. S12. STEM image of NiS_x/C_3N_4 with EDS-elemental mapping of (**a**) C, (**b**) N, (**c**) S, (**d**) Ni, and (**e**) overlapped image of elements C (red), N (blue), and Ni (green) after electrolysis at 10 mA cm⁻² for 5 h.

Fig. S13. Capillary electrophoresis chromatograms of the electrolyte solution after the 5 h electrolysis using the NiS_x/C_3N_4 electrode (red) and the NO_3^- standard solutions with different concentrations of 0.34 (blue) and 2.0 mM (black).

Fig. S14. HER performance. (A) LSV of the Pt-coated NF cathode $(1.0 \text{ cm}^2 \text{ of geometric})$ area) as measured at 5 mV s⁻¹ of a scan rate in a positive scan direction. The inset shows Tafel plot (solid line) and slope (dashed line) obtained from the LSV. (B) Chronopotentiogram in HER at a current density of -10 mA cm⁻² using the Pt-coated NF cathode. The electrochemical data were measured in 1.0 M KOH solutions (pH 14.0) and have *iR* corrections.

Fig. S15. Gas chromatograph (**A** and **C**) with different known amounts and calibration curves (**B** and **D**) for O₂ (**A** and **B**) and H₂ (**C** and **D**) derived from the peak area and the amounts of used gases, respectively. (**E**) Gas chromatographic data for the anodic compartment equipped with NiS_x/C₃N₄ (1.0 cm² of geometric area) during the electrolysis at 10 mA cm⁻² in a 1.0 M KOH solution (pH 14.0). The signals of H₂ are caused by H₂ evolved and diffused from the cathodic compartment. The very small signals of N₂ were detected, meaning negligible air contamination during the electrolysis. (**F**) Gas chromatographic data for one compartment cell equipped with the NiS_x/C₃N₄ anode and the Pt-coated NF cathode during the electrolysis at 10 mA cm⁻² in a 1.0 M KOH solution (pH 14.0).

Fig. S16. LSV (without *i*R correction) of the water spitting (WS) cell (two electrode system) equipped with the NiS_x/C_3N_4 anode (1.0 cm²) and the Pt-coated NF cathode (1.0 cm²) at 5 mV s⁻¹ of a scan rate in a negative scan direction after electrolysis for 5 h.