Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2021

1

4

Comparing pathways for electricity-based production of

² dimethoxymethane as a sustainable fuel – Supplementary Information

Jannik Burre,^a Dominik Bongartz,^a Sarah Deutz,^d Chalachew Mebrahtu,^f Ole Osterthun,^f Ruiyan Sun,^f Simon Völker,^d André Bardow,^{b,c,d,e} Jürgen Klankermayer,^f Regina Palkovits,^f and Alexander Mitsos^{*,b,a,c}

^aProcess Systems Engineering (AVT.SVT), RWTH Aachen University,

Forckenbeckstraße 51, 52074 Aachen, Germany.

^bJARA-ENERGY, 52056 Aachen, Templergraben 55, Germany.

^cInstitute of Energy and Climate Research: Energy Systems Engineering (IEK-10),

Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany.

^dInstitute of Technical Thermodynamics, RWTH Aachen University, Schinkelstraße 8, 52062 Aachen, Germany.

^eDepartment of Mechanical and Process Engineering, ETH Zurich,

Tannenstraße 3, 8092 Zurich, Switzerland.

^fInstitute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.

April 26, 2021

¹ 1 Dimethoxymethane synthesis

² 1.1 Process concept for the established pathway

On the basis of Reaction (R1), established process concepts utilize a fixed-bed reactor with an acidic 3 ion exchange resin (Amberlyst 15) as catalyst.¹ A reaction temperature of about 60 °C, a pressure 4 just higher than ambient pressure to avoid substrate evaporation (e.g., 2 bar), and methanol in excess 5 enable almost perfect selectivity toward dimethoxymethane (DMM) at almost complete FA conversion. 6 Product separation is achieved by a two-pressure distillation to break the azeotrope between methanol 7 and DMM. The first distillation column additionally contains a reactive section for converting leftover 8 FA and a vapor side draw for removing excess methanol. Methanol can be produced from ${\rm H}_2$ and 9 CO_2 via Reaction (R2) with catalysts based on those for methanol formation from syngas (H₂ and 10 carbon monoxide (CO)).^{2–4} Alternatively, methanol can be obtained from syngas,⁵ which in turn can 11 be produced via the reverse water gas shift reaction from H_2 and CO_2 . FA is produced from methanol 12 either via partial oxidation over an iron, molybdenum, or vanadium oxide catalyst or via combined 13 partial oxidation and dehydrogenation over a silver catalyst (Reaction (R3)).⁶ In the latter case, 14 the formed H₂ is diluted in the off-gas of the absorption column and is burned for energy recovery. 15 Formaldehyde is removed from the gaseous product mixture via absorption in water. 16

17 **1.2** Oxidation of methanol

For the direct oxidation of methanol to DMM (Reaction (R5)), a gaseous substrate mixture of methanol and an oxidant (typically air) is fed into a fixed-bed reactor. The reactor is operated continuously under atmospheric pressure at temperatures between 120 °C and 240 °C and gas hourly space velocities (GHSV) between 10.000 mL h⁻¹ g_{cat}⁻¹ and 40.000 mL h⁻¹ g_{cat}⁻¹.⁷ To ensure safe operation, the applied methanol concentration should stay outside of the explosive range (7% to 36% in air).

Extensive research on the direct oxidation of methanol toward DMM has resulted in a large number of bifunctional catalysts comprising redox and acidic active sites. The bifunctional nature of such catalysts plays a key role in directing the reaction network toward the selective formation of DMM. An appropriate ratio between redox and acidic properties is crucial for high DMM selectivities (80 % to 99 $\%^7$). Among the reported catalysts, silicia-modified and TiO₂-supported vanadium oxide (VTiSi) features a state-of-the-art performance with an DMM selectivity of up to 99 % at a methanol conversion of 51 % and a reaction temperature of 140 °C (ESI Tab. S1).⁸

Supplementary Information

1 1.3 Reduction of CO₂

The resource-efficient reduction of CO_2 toward DMM (Reaction (R6)) is enabled by a homogeneous 2 ruthenium-based catalyst, which is dissolved together with a co-catalyst into a liquid methanol solu-3 tion. Under high pressure (80 bar) and high temperature (80 $^{\circ}$ C), turnover numbers (the amount of 4 substrate molecules converted into product molecules per active catalyst site, TON) of up to 214 to-5 ward DMM could be achieved.⁹ Schieweck and Klankermayer¹⁰ later exchanged the ruthenium-based 6 catalyst by an earth abundant cobalt catalyst to perform the same reaction. A study by Siebert 7 et al.¹¹ revealed further potential of the ruthenium system: By using a Design of Experiments ap-8 proach, a TON of 786 for DMM could be achieved. Although TON and yield (product of selectivity 9 and conversion) correlate linearly for a fixed catalyst concentration, a high TON does not necessarily 10 mean a high yield. For low catalyst concentrations, product yield can be low although the TON of 11 the catalyst is high. For industrial implementation, achieving a reasonable high DMM yield is key— 12 preferably with only a small amount of catalyst thus high TON. For the reduction of CO_2 toward 13 DMM, a maximum yield of 8.3% (selectivity of 81.8%, conversion of 10.8%) has been achieved (ESI 14 Tab. S1). 15

¹⁶ 1.4 Dehydrogenation of methanol

¹⁷ The dehydrogenation of methanol (Reaction (R8)) proceeds in a gas-phase fixed-bed reactor in the ¹⁸ presence of a tailored Cu/H β bifunctional catalyst. A high SiO₂-to-Al₂O₃ ratio (836) of the zeolite H β ¹⁹ ensures a high selectivity toward DMM (up to 80.3%) at a conversion of 3.6%.¹² This is possible even ²⁰ at mild reaction conditions due to the coupling of methanol dehydrogenation and FA acetalization. ²¹ Temperatures at around 200 °C, atmospheric pressure, and a GHSV of 14.549 mL h⁻¹ g⁻¹_{cat} are sufficient ²² (ESI Tab. S1).

²³ 1.5 Transfer-hydrogenation of methanol

The transfer-hydrogenation of methanol (Reaction (R9)) was published recently by Osterthun and Klankermayer¹³ and requires the presence of a homogeneous iridium catalyst and the presence of a Lewis acid. TONs up to 204 for DMM could be achieved for a system at 100 °C and 20 bar. A selectivity as high as 98.2 % at a methanol conversion of 0.9 % could be achieved so far (ESI Tab. S1).

Parameter	erogeneous, Hom. Established ^{1,14} (Reaction (R1))	= Homogeneous, c Oxidative 7,8 (Reaction (R5))	onc. = concentration Reductive ⁹ (Reaction (R6))	1 Dehydrogenative ¹² (Reaction (R8))	Transfer- hydrogenative ¹³ (Reaction (R9))
Catalyst [-]	Amberlyst 15	VTiSi	Ru(triphos)(tmm)	$\mathrm{Cu/HB}$	Ir(DPEphos)(cod)
Phase [-]	Het.	Het.	Hom.	Het.	Hom.
Temperature [°C]	60	140	80	200	100
Pressure [bar]	2	1	80	1	20
Residence time [h]	0.2	N/A	18	N/A	18
$GHSV [mL h^{-1} g_{cat}^{-1}]$	N/A	12,000	N/A	14,549	N/A
Catalyst conc. $[mmol L^{-1}]$	N/A	N/A	12.5	N/A	0.25
Methanol conversion [%]	12.8	51.0	10.1	3.6	0.9
DMM selectivity [%]	99.9	99.0	81.8	80.3	98.2

e S1: Reaction parameters of the experiments with the highest reported yields for DMM synthesis via different rout	reviations: $VTiSi = silica-modified$ and titanium-oxide-supported vanadium oxide, $Ru(triphos)(tmm) = triphos-based ruth$	α catalyst, $Cu/H\beta = H\beta$ zeolite with copper nanoparticles, $Ir(DPEphos)(cod) = Bis[(2-diphenylphosphino)phenyl]$ ether-bas	um catalyst, Het. $=$ Heterogeneous, Hom. $=$ Homogeneous, conc. $=$ concentration
Table	Abbre	aium c	ridiun

¹ 2 Thermodynamic model parameters

- ² Pure component property data is taken from the Aspen Plus v11 databank APV110 PURE37. Param-
- ³ eters for the UNIFAC model for the established pathway are taken from Fredenslund *et al.*¹⁵, Mau-
- ⁴ rer¹⁶, Hasse *et al.*¹⁷, Hahnenstein *et al.*¹⁸, Albert *et al.*¹⁹,²⁰,²¹, and Kuhnert *et al.*²². Parameters for
- ⁵ the NRTL model for the direct pathways are given in ESI Tab. S2-S4.

Table S2: NRTL parameter a_{ij} (Aspen Plus notation) for nonideal interactions within the multi-component system of the direct pathways. The remaining interactions are assumed to be ideal

			Comp	onent j		
Component i	Water	DMM	MeOH	MF	DME	CO_2
Water	N/A	0^{a}	$2.7322^{\rm a}$	$-91.5425^{\rm d}$	0.825228^{b}	10.064^{e}
DMM	0^{a}	N/A	0^{a}	$-0.359076^{\rm d}$	$0^{\mathbf{c}}$	0
MeOH	$-0.693^{\rm a}$	0^{a}	N/A	0^{a}	8.0627^{b}	0
${ m MF}$	-86.3908^{d}	0.224382^{d}	0^{a}	N/A	0.224382^{g}	0
DME	0.96683^{b}	0^{c}	$-15.0667^{\rm b}$	$-0.359076^{\rm g}$	N/A	$0.394439^{\rm f}$
CO_2	10.064^{e}	0	0	0	$-0.44005^{\rm f}$	N/A

^a From AspenPlus APV110 VLE-IG databank.

^b From Dirk-Faitakis *et al.*²³.

^c From Breitkreuz *et al.*²⁴.

^d From Deutz *et al.*²⁵.

^e From AspenPlus APV110 ENRTL-RK databank.

^f From NISTV84 NIST-HOC databank.

 g In accordance to the assumptions in Breitkreuz *et al.*²⁴.

			Compos	nent j		
Component i	Water	DMM	MeOH	MF	DME	$\rm CO_2$
Water	N/A	$618.9311^{\rm a}$	$-617.2687^{\rm a}$	13650^{d}	$65.5774^{\rm b}$	-3268.135^{e}
DMM	$491.2114^{\rm a}$	N/A	$175.4218^{\rm a}$	$100^{\rm d}$	$0^{\mathbf{c}}$	0
MeOH	$172.9871^{\rm a}$	303.1328^{a}	N/A	$199.0137^{\rm a}$	$-1659.63^{\rm b}$	0
${ m MF}$	15500^{d}	0^{d}	$217.046^{\rm a}$	N/A	$0^{\mathbf{g}}$	0
DME	$-39.5507^{\rm b}$	0^{c}	3836.09^{b}	100^{g}	N/A	0^{f}
$\rm CO_2$	$-3268.135^{\rm e}$	0	0	0	0^{f}	N/A

Table S3: NRTL parameter b_{ij} (Aspen Plus notation) for nonideal interactions within the multi-component system of the direct pathways. The remaining interactions are assumed to be ideal

^a From AspenPlus APV110 VLE-IG databank.

^b From Dirk-Faitakis *et al.*²³.

^c From Breitkreuz *et al.*²⁴.

^d From Deutz *et al.*²⁵.

^e From AspenPlus APV110 ENRTL-RK databank.

^f From NISTV84 NIST-HOC databank.

 g In accordance to the assumptions in Breitkreuz *et al.*²⁴.

Table S4: NRTL parameter c_{ij} (Aspen Plus notation) for nonideal interactions within the multi-component system of the direct pathways. The remaining interactions are assumed to be ideal

			Compone	nt j		
Component i	Water	DMM	MeOH	MF	DME	CO_2
Water	N/A	0.3^{a}	0.3^{a}	0.383^{d}	$-0.77735^{\rm b}$	0.2^{e}
DMM	0.3^{a}	N/A	0.3^{a}	0.3^{d}	$0^{\mathbf{c}}$	0
MeOH	0.3^{a}	0.3^{a}	N/A	0.3^{a}	-0.12748^{b}	0
${ m MF}$	0.383^{d}	$0.3^{\rm d}$	0.3^{a}	N/A	$0.3^{ m g}$	0
DME	$-0.77735^{\rm b}$	0^{c}	-0.12748^{b}	0.3^{g}	N/A	0.5^{f}
$\rm CO_2$	$0.2^{\rm e}$	0	0	0	0.5^{f}	N/A

^a From AspenPlus APV110 VLE-IG databank.

^b From Dirk-Faitakis *et al.*²³.

^c From Breitkreuz *et al.*²⁴.

^d Additionally, $f_{\rm H_2O,MF} = 0.1613$ and $f_{\rm MF,H_2O} = 0.1219$ need to be provided. From Deutz *et al.*²⁵.

^e From AspenPlus APV110 ENRTL-RK databank.

^f From NISTV84 NIST-HOC databank.

 $^{\rm g}$ In accordance to the assumptions in Breitkreuz $et~al.\,^{24}.$

cific ucts MM- MM- tion and, and, ssts,		$C^{ m misc}$	×	
Γ - Spe prod- prod tribu demé demé demé us cc us cc		$C^{ ext{inv}}$	×	
DMN side is th intire cont cont cont cont ling colant eam laneo		$C_{\mathrm{P,misc}}$	×	
the I and P_{misc} and the e and P_{misc} the e tange tange (i), C_{c} , C_{c} , C_{c} , C_{c} , C_{c} , D_{c} , D_{c	st	$C^{\mathrm{b}^{\mathrm{t}\mathrm{e}\mathrm{e}\mathrm{q}}}$	××	
de is MM, and the ch rand suppl nd n	C	$C_{\rm coolant}$	××	
$d \dot{E}_{si}^{2}, \dot{D}_{si}^{2}, $		$C^{ m etegm}$	××	
, and the second		CCO ⁵	×××	
$\vec{F}_{\mathrm{DMM}}^{\mathrm{j}}$ of H_{2} 98.15 98.15 10, supput $\mathrm{nt, \ s}$ stme stme		$C^{\mathrm{H}^{5}}$	×××	
O_2, I tent, tent, te		$_{ m psim, q}I$	×	
, ÉC , con mbient bressi is tl is tl t tre ectiv fron	unge	$_{\rm b991, q}I$	××	
$\dot{E}_{\mathrm{H}_{\mathrm{J}}}$ xergy xergy s (T_{a} s (T_{a} comf comf conduction the pum pum pum pum	e chê	I _{coolant}	××	
tion. I_{I} to I_{I} and I_{I} and varial varial	imat	$I_{\rm steam}$	XX	
valua s valua ble pr he pr ed, a: ed, a: pump tion ssion	on cl	$I^{ m spis}$	××	
ay ev ating er ating l of t misce I _{P,fe} stion nud l tribu npre Ir	act	I ^{comp}	XXX	
athw er he and j and j mbu conf conf s corf ion s	Imp	I ^{CO2}	XXX	
M p high y den sion , l _{coc} el cc cost ress ress ress neou		$I^{\mathrm{H}_{\mathrm{Z}}}$	×××	
: DM d on xerg xerg y, fu comj tion scella		$P_{\rm sim}$	×	
a for based based l corr l corr $de, J_{\rm de}$ bous volue volue , mis		$P_{\rm feed}$	XX	
t dat t dat (cal (cal ($cal (Cal ())))))))))))))))))))))))))))))))))))$	y	ĘÓ	××	
inpu inpu $I_{\rm com}$ inpu $I_{\rm com}$ in $I_{\rm com}$ in $I_{\rm com}$ is the missee missee in the second se	cienc	$\dot{E}^{\rm side}$	××	
scific and c the L leman co2, co2, cupp and p and p supp	Eff	ĘDWW	XXX	
el-special el-special di la seconda di la s		$\dot{E}^{\rm CO^3}$	XXX	
i_{5} : Lev mechar ively; L electric ively; I g from mpress $C_{\rm inv}$, deman vely		$\dot{E}^{\mathrm{H}^{\mathrm{S}}}$	×××	
Table S thermo thermo respectific respe			$3 \ 2 \ 1$	

The DMM-specific minimum raw material consumption $m_{L1,i}$ on Level 1 is calculated according to ESI Equation (1):

$$m_{\mathrm{L1,i}} = \frac{|\nu_{\mathrm{i}}|}{\nu_{\mathrm{DMM}}} \frac{M_{\mathrm{i}}}{M_{\mathrm{DMM}}} \qquad \mathrm{i} \in \{\mathrm{H}_{2}, \mathrm{CO}_{2}\},\tag{1}$$

¹ with the stoichiometric coefficients of the overall reaction equation towards DMM, ν_i and ν_{DMM} , and ² the molar mass of component i and DMM, M_i and M_{DMM} , respectively.

3 3.1 Exergy efficiency

System exergy efficiency $\eta_{S,l}$ is calculated by

$$\eta_{\rm S,l} = \frac{\dot{E}_{\rm DMM} + \dot{E}_{\rm side} + \dot{E}_{\dot{\rm Q}_{\rm out}}}{m_{\rm l,H_2} B_{\rm H_2} + m_{\rm l,CO_2} B_{\rm CO_2} + \dot{E}_{\dot{\rm Q}_{\rm in}} + P_{\rm feed} + P_{\rm misc}} \qquad l \in \{\rm L1, \rm L2, \rm L3\},$$
(2)

where \dot{E}_{DMM} and \dot{E}_{side} is the DMM-specific thermomechanical and chemical (based on higher heating value) exergy content of DMM and side products, respectively; $\dot{E}_{\dot{Q}_{\text{out}}}$ and $\dot{E}_{\dot{Q}_{\text{in}}}$ is the DMM-specific exergy of excess heat and heat demand of the process, respectively ($T_{\text{ambient}} = 298.15$ K); B_{H_2} and B_{CO_2} is the H₂- and CO₂-specific exergy demand for producing H₂ and capturing CO₂, respectively; P_{feed} and P_{misc} is the DMM-specific electricity demand for feed compression and miscellaneous compression and pumping within the entire process, respectively.

¹⁰ 3.2 Sizing and costing

¹¹ The column diameter D_{col} is determined by the molar vapor flow \dot{V} such that tray flooding is prevented ¹² in the highest loaded column section. The column diameter D_{col} is calculated according to ESI ¹³ Equation (3):

$$D_{\rm col} = \sqrt{\frac{1}{F_{\rm v}(1-\phi)} \frac{4}{\pi} \frac{\dot{V}}{n_{\rm col}} \sqrt{\frac{RT_{\rm top}\bar{M}}{100p}},$$
(3)

¹⁴ with F-factor $F_{\rm v}$, relative free area on a tray ϕ , number of parallel columns $n_{\rm col}$, ideal gas constant ¹⁵ R, column top temperature $T_{\rm top}$, molar mass of the gaseous mixture \bar{M} , and column pressure p. The ¹⁶ values for $F_{\rm v}$ and ϕ are given in ESI Tab. S6.

The column height H_{col} is determined by the number of trays N_{col} found by deterministic optimization (simultaneous minimization of OPEX and CAPEX) according to Kossack *et al.*²⁶ and Kraemer *et al.*²⁷. The column height H_{col} is calculated according to ESI Equation (4):

$$H_{\rm col} = N_{\rm col} H_{\rm tray} + \Delta H,\tag{4}$$

with tray spacing H_{tray} and extra space ΔH for the top and bottom of the column. The values for H_{tray} and ΔH are given in ESI Tab. S6.

$Supplementary\ Information$

The size of reboiler/condenser heat exchange area $A_{\rm R/C}$ is calculated according to ESI Equation 2 (5):

$$A_{\rm R/C} = \frac{\dot{Q}_{\rm R/C}}{k_{\rm R/C} T_{\rm log}},\tag{5}$$

³ with heat demand $\dot{Q}_{\rm R/C}$ of the reboiler or condenser of the column, heat exchange coefficient $k_{\rm R/C}$, ⁴ and logarithmic mean temperature difference $T_{\rm log}$. The values for $k_{\rm R/C}$ are given in ESI Tab. S6.

The reactor length L_{reac} and the diameter D_{reac} are determined by the volume flow \dot{V}_{reac} through a cylindrical reactor with volume V_{reac} and residence time τ_{reac} . The Volume V_{reac} is calculated through the first equality in ESI Equation (6) and the reactor length L_{reac} and the diameter D_{reac} through the second equality in ESI Equation (6) and ESI Equation (7):

$$V_{\rm reac} = \frac{\dot{V}_{\rm reac}\tau_{\rm reac}}{\epsilon} = \frac{\pi}{4}D_{\rm reac}^2 L_{\rm reac} \tag{6}$$

9

$$\frac{L_{\text{reac}}}{D_{\text{reac}}} = 4,\tag{7}$$

¹⁰ with bed voidage ϵ given in ESI Tab. S6.

¹¹ Investment costs for compressors and pumps are directly determined by their shaft power.²⁸

Parameter	Unit	Value	Reference
$F_{\rm v}$	$kg^{0.5} m^{-0.5} s^{-1}$	1.4	Peters and Timmerhaus 29
ϕ	_	0.15	Peters and Timmerhaus ²⁹
H_{tray}	m	0.5	Peters and Timmerhaus ²⁹
ΔH	m	4	Peters and Timmerhaus ²⁹
ϵ	_	0.5	
$k_{ m R}$	$kW K^{-1} m^{-2}$	0.568	Luyben ³⁰
$k_{ m C}$	$\rm kW~K^{-1}~m^{-2}$	0.852	Luyben ³⁰

Table S6: Parameters for column and reactor sizing

The costing of distillation columns, reactors, compressors, and pumps was performed according to the models provided by Guthrie²⁸. All column, tray, and heat exchanger cost parameters are taken from the original model. A M&S Index value of 1473.3 (2010) is used. Economic parameters for CAPEX calculations are given in ESI Tab. S7.

¹⁶ Cost of Manufacturing (COM) is calculated according to the procedure given in Turton *et al.*³¹

¹ and can be estimated with ESI Equation (8):³¹

$$COM = 0.280FCI + 2.73C_{OL} + 1.23(C_{UT} + C_{WT} + C_{RM}),$$
(8)

with fixed capital investment FCI, cost of operating labor C_{OL} , cost of utilities C_{UT} , cost of waste treatment C_{WT} , and cost of raw materials C_{RM} . ESI Equation (8) is a summation of several cost positions with individual cost parameters listed in Turton *et al.*³¹.

Parameter	Unit	Value
Plant capacity (w.r.t. DMM)	t a^{-1}	200000
Interest rate	%	6
Plant life time	a	10
Operating hours	$hr a^{-1}$	8000

Table S7: Economic parameters for CAPEX calculations

5 3.3 Impact on climate change

We forecast the electricity grid mixes for 2030 and 2050 based on the "beyond 2 °C scenario" of the 6 Energy Technology Perspectives by the IEA27.³⁷ For this, we use the shares of the global energy 7 generation of the IEA for each technology and both years. We model the electricity grid mixes with 8 German generation technologies maintaining consistency between country-specific LCI datasets. We 9 further neglect electricity generation by ocean and others, since its share is negligible (in 2030 <10 0.07% and in 2050 < 1.29%) and LCI datasets are missing. Carbon capture and storage (CCS) 11 technologies are also included in the "beyond 2 °C scenario" but missing in the LCA database. Thus, 12 we model electricity generation in combination with CCS by combining the conventional technology 13 for electricity generation with the remaining greenhouse gas emissions from the IPPC WGIII AR528³⁸ 14 instead of the original greenhouse gas emissions. 15

$\operatorname{Product/utility}$	Dataset name	Region	Scenario	Comment
Hydrogen	PEM electrolysis	N/A	Worst	specific energy consumption $= 5.0 \mathrm{kWh}\mathrm{Nm}^{-3}$ ³²
$\operatorname{Hydrogen}$	SOEC electrolysis	N/A	Best	specific energy consumption = $3.7 \mathrm{kWh}\mathrm{Nm}^{-3}$ ³²
$ m Hydrogen~^{a,c}$	DE: Hydrogen (steam reforming	DE	N/A	For sensitivity analysis of carbon-intensity of electricity
	from natural gas)			supply only.
Carbon dioxide	CO_2 from direct air capture	N/A	Worst	von der Assen <i>et al.</i> ³³
Carbon dioxide	CO_2 from ethylene oxide plant	N/A	Best	von der Assen <i>et al.</i> ³³
Electricity, grid mix ^{b,c}	Market for electricity, medium	DE	Worst	N/A
	voltage, DE			
Electricity, wind on-	Electricity production, wind, 1 MW	DE	Best	N/A
shore $^{\rm b,c}$	to $3 \mathrm{MW}$ turbine, onshore, DE			
Thermal energy	Steam production, as energy car-	Europe	Worst	N/A
$(T < 90 ^{\circ}C) ^{b,c}$	rier, in chemical industry, RER			
Thermal energy	Heat pump	N/A	Best	COP = 3.28, averaged from David <i>et al.</i> ³⁴ , Fig. 3: blue
(T < 90 °C)				bars with: $T_{source} = 9 ^{\circ}C$ to $15 ^{\circ}C$, $T_{operating} = 90 ^{\circ}C$
Thermal energy	Steam production, as energy car-	Europe	Worst	N/A
$(90 \text{ °C} < T < 250 \text{ °C})^{b,c}$	rier, in chemical industry, RER			
Thermal energy	Electrode boiler	N/A	Best	$\eta = 0.95^{-35}$
$(90~^{\circ}{ m C}{<}{ m T}{<}250~^{\circ}{ m C})$				
Thermal energy	Heat production, natural gas, at	Europe	Worst	N/A
$(T>250 ^{\circ}C) ^{b,c}$	boiler modulating $>100\mathrm{kW}$, Eu-			
	ropa without Switzerland			
Thermal energy (90 °C <t<250 td="" °c)<=""><td>Electrode boiler</td><td>N/A</td><td>Best</td><td>$\eta = 0.95^{-35}$</td></t<250>	Electrode boiler	N/A	Best	$\eta = 0.95^{-35}$
Cooling energy	Vapor recompression refrigeration	N/A	N/A	Estimation via carnot cycle with $\eta_{\text{exergy}} = 0.50$ (own as-
	system			sumption), $T_{sink} = 25 ^{\circ}C$, $T_{cool} = -25 ^{\circ}C$
Process water ^{b,c}	market for water, deionised, Eu-	Europe	N/A	N/A
	rope without Switzerland			
Waste water treat- ment ^{b,c}	Treatment of wastewater, average capacity $1 \times 10^9 \mathrm{La}^{-1}$. Europe with-	Europe	N/A	N/A
	out Switzerland			
Methyl formate ^{b,c}	Methyl formate production, RER	Europe	N/A	Only relevant if avoided burdens for side products are considered.
Dimethyl ether ^{b,c}	Dimethyl ether production, RER	Europe	N/A	Only relevant if avoided burdens for side products are con- sidered.

Supplementary Information

Table S8: LCA datasets for the evaluation of the reaction pathways for DMM synthesis. Abbreviation: LCIA = Life Cycle Impact Assessment

^c LCIA Method: ILCD 2.0 midpoint, climate change total.

^b LCA Database: ecoinvent 3.6, cut-off.

^a LCA Database: GaBi³⁶.

Process	Dataset	Reference
Wind	EU-28: Electricity from wind power	36
Norway	NO: Electricity grid mix	36
France	FR: Electricity grid mix	36
Photovoltaics ^a	DE: Electricity from photovoltaic	36
Global 2030	N/A	cf. ESI Tab. S10
Global 2050	N/A	cf. ESI Tab. S10
Switzerland	CH: Electricity grid mix	36
Finland	FI: Electricity grid mix	36
Denmark	DK: Electricity grid mix	36
Austria	AT: Electricity grid mix	36
EU	EU-28: Electricity grid mix	36
Italy	IT: Electricity grid mix	36
Germany	DE: Electricity grid mix	36
USA	CH: Electricity grid mix	36

Table S9: Life Cycle Inventory (LCI) dataset for the electricity supply

^a German dataset is used since an European dataset was not available.

Table S10: Life Cycle Inventory (LCI) for the forecast of the global electricity grid mix in 2030 and 2050 based on the "beyond $2\,^{\circ}$ C scenario" of the IEA³⁷

Process	Dataset		e [%]	Reference
		2030	2050	
Biomass and waste ^a	DE: Electricity from biomass (solid) and DE: Electricity from waste	6.3	8.2	36
Biomass CCS $^{\rm b}$	DE: Electricity from biomass (solid)	0	2.7	N/A
Geothermal ^c	IS: Electricity from geothermal	1.1	2.3	36
Coal	DE: Electricity from hard coal	11.3	0	36
Coal CCS $^{\rm b}$	DE: Electricity from hard coal	1	4.1	N/A
Hydro	DE: Electricity from hydro power	18.5	18.2	36
Gas	DE: Electricity from natural gas	23.8	1.5	36
Gas CCS $^{\rm b}$	DE: Electricity from natural gas	0.5	4.1	N/A
Nuclear	DE: Electricity from nuclear	15.4	16.2	36
Oil	DE: Electricity from heavy fuel oil	1.3	0.2	36
Solar ^d	DE: Electricity from photovoltaic	7.3	22.8	36
Wind ^e	DE: Electricity from wind power	13.5	19.8	36

 $^{\rm a}\,50\,\%$ biomass and $50\,\%$ waste.

^b CCS remaining greenhouse gas emissions:³⁸ biomass: $0 g_{CO_2-eq.} kWh^{-1}$, coal: $200 g_{CO_2-eq.} kWh^{-1}$, gas: $170 g_{CO_2-eq.} kWh^{-1}$.

^c Dataset for Germany not available.

^d Solar includes photovoltaics and concentrated solar power. For both technologies the dataset of photovoltaic is assumed due to the lack of data.

^e Onshore and offshore.

¹ 4 Mass and energy balances

Pathway			Mass []	kg kg ⁻¹]		
		${\rm H}_2$			CO_2	
	L1	L2	L3	L1	L2	L3
Established	0.238	0.264	0.265	1.735	1.923	1.925
Oxidative	0.238	0.253	0.254	1.735	1.840	1.851
Reductive	0.212	0.219		1.735	1.791	
Dehydrogenative	0.212	0.258		1.735	2.251	
Transfer-hydrogenative	0.212			1.735		

Table S11: DMM-specific material input for each pathway and level

Pathway						Mass []	tg kg ⁻¹]					
		MF			DME			CO_2			$\rm H_2O$	
	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Established	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.176	0.176	1.184	1.223	1.223
Oxidative	0.000	0.000	0.000	0.000	0.005	0.007	0.000	0.057	0.058	1.184	1.219	1.224
Reductive	0.000	0.000		0.000	0.000		0.000	0.042		0.947	0.956	
Dehydrogenative	0.000	0.255		0.000	0.025		0.000	0.078		0.947	1.141	
Transfer-hydrogenative	0.000			0.000			0.000			0.947		

level
and
pathway
each
for
output
material
specific
-
DN
S12:
Table

Pathway			Energy [MJ kg ⁻¹]			
		Heat		E	lectricit	y
	L1	L2	L3	L1	L2	L3
Established	0.000	2.101 (90 °C)	1.465 (80 °C)	0.000	1.148	1.421
Oxidative	0.000	$\begin{array}{c} 1.545~(58^{\circ}\mathrm{C})\\ -0.351~(-25^{\circ}\mathrm{C}) \end{array}$	$-0.161 (1000 ^{\circ}\text{C}) -0.206 (-20 ^{\circ}\text{C})$	0.000	2.422	2.640
Reductive	0.000	10.949 (86 °C) 1.111 (64 °C)		0.000	1.079	
Dehydrogenative Transfer-hydrogenative	$\begin{array}{c} 0.000\\ 0.000\end{array}$	23.590 (100 °C)		$\begin{array}{c} 0.000\\ 0.000\end{array}$	1.739	

Table S13: DMM-specific energy streams for each pathway and level. Negative values denote outgoing energy streams. Heat integration was performed via pinch analysis

Table S14: Stoichiometric H_2 consumption for the synthesis of various e-fuels from H_2 and CO_2 relative to their heating values (both LHV and HHV). For DMM synthesis, the non-oxidative pathways are considered. The specific LHV and HHV of fossil diesel is 42.6 MJ kg^{-1} and 45.6 MJ kg^{-1} , respectively

	Unit	DMM	Ethanol	Methanol	DME	Methane
Molar H_2 consumption	$[\text{mol}\text{mol}^{-1}]$	8	6	3	6	4
Molar mass	$[\operatorname{g} \operatorname{mol}^{-1}]$	76.1	46.1	32.0	46.1	16.0
Specific LHV	$[MJ kg^{-1}]$	23.3	26.7	19.9	28.9	50
Specific HHV	$[{ m MJkg^{-1}}]$	25.7	29.7	23.0	31.7	55.5
Molar LHV	$[MJ mol^{-1}]$	1.77	1.23	0.64	1.33	0.80
Molar HHV	$[MJ mol^{-1}]$	1.96	1.37	0.74	1.46	0.89
${\rm H}_2$ consumption/LHV	$[molMJ^{-1}]$	4.5	4.9	4.7	4.5	5.0
${\rm H}_2$ consumption/HHV	$[molMJ^{-1}]$	4.1	4.4	4.1	4.1	4.5

¹ 5 Production cost

Figure S1: DMM production cost dependence on $\rm CO_2$ price. The base case $\rm H_2$ price is $5\,{\rm kg^{-1}}.^{39}$

Category)	Cost [M\$	a^{-1}]							
	Щ	Istablishe	q	Ū	Dxidative		Re	ductive		Dehyd	rogenativ	/e	Transfer		
													hydrogei	native	
	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
OPEX	262.23	296.62	314.06	262.23	310.02	307.31	235.67	273.34		235.67	349.06		235.67		
${ m H}_2$	239.04	264.97	265.34	239.04	253.54	253.57	212.48	219.92		212.48	259.06		212.48		
$\overline{\rm CO}_2$	23.19	25.71	25.75	23.19	24.60	24.61	23.19	23.94		23.19	30.10		23.19		
Heating		3.27	6.60		2.40	0		18.77			36.71				
Cooling		2.66	4.30		9.03	6.16		1.17			7.82				
$\operatorname{Electricity}$		10.15	12.08		21.42	22.98		9.54			15.38				
CAPEX			9.26			4.08									
Columns			7.16			2.80									
$\operatorname{Reactors}$			0.11			0.06									
Pumps			0.01			0.02									
Compressors			1.99			1.21									

Table S15: Operating (OPEX) and investment (CAPEX) cost for each pathway and level

Category	$\operatorname{Cost}[\mathbb{N}]$	[\$ a ⁻¹]
	Established pathway	Oxidative pathway
Direct Manufacturing Costs (DMC)	333.19	322.08
Raw materials $(C_{\rm RM})$	291.09	278.18
Waste treatment $(C_{\rm WT})$	0	0
Utilities $(C_{\rm UT})$	22.98	29.14
Operating labor (C_{OL})	1.60	0.78
Direct supervisory and clerical labor	0.29	0.14
Maintenance and repairs	4.09	1.80
Operating supplies	0.61	0.27
Laboratory charges	0.24	0.17
Patents and royalities	12.29	11.66
Fixed Manufacturing Costs (FMC)	15.04	6.68
Depreciation	9.26	4.08
Local taxes and insurances	2.18	0.96
Plant overhead costs	3.59	1.63
General Manufacturing Costs (GM)	66.46	62.57
Administration costs	0.90	0.41
Distribution and selling costs	45.07	42.74
Research and development	20.49	19.43
Total costs	414.69	391.33
Total costs in $\left[\$ L_{diesel-eq.}^{-1} \right]$	3.19	3.02

Table S16: Cost of Manufacturing (COM) for the established and oxidative pathway on Level 3

6 Impact on climate change

1

Figure S4: Sensitivity of the cradle-to-grave impact on climate change of DMM with respect to the impact on climate change of electricity supply for different DMM synthesis pathways on Level 1 and fossil diesel. The impact on climate change is calculated using the stoichiometric mass balances of each pathway. H₂ is supplied by SOEC instead of conventional steam methane reforming below $260 g_{CO_2-eq.} kWh^{-1}$. The solid black lines at the top of the graph represent the impact on climate change of country-specific grid mixes and two forecasts for the global grid mix of 2030 and 2050 that are based on the "beyond 2°C scenario" of the International Energy Agency.³⁷ The dotted gray lines (established and oxidative) are on top of each other and the dashed gray lines (reductive, dehydrogenative, and transfer-hydrogenative) are on top of each other.

Figure S5: Sensitivity of the cradle-to-grave impact on climate change of DMM with respect to the impact on climate change of electricity supply for different DMM synthesis pathways on Level 3 and fossil diesel. The impact on climate change is calculated using the current catalyst performance of each pathway. Avoided burdens for co-produced side products and excess heat are not considered. H_2 is supplied by SOEC instead of conventional steam methane reforming below $260 g_{CO_2-eq.} kWh^{-1}$. The solid black lines at the top of the graph represent the impact on climate change of country-specific grid mixes and two forecasts for the global grid mix of 2030 and 2050 that are based on the "beyond 2°C scenario" of the International Energy Agency.³⁷

¹ 7 Pathway potential at equilibrium conditions

Figure S6: DMM yield dependence on reactor pressure for the reductive pathway (cf. Reaction (R6)). Restricted equilibrium conversion (considering perfect DMM selectivity) has been considered throughout the entire pressure range. Equilibrium conversion was calculated with an REquil reactor model in Aspen Plus v11. For the 'No selective suppression of side reactions' case additional DME and carbon monoxide (CO) formation was considered.

Table S17: DMM-specific material and energy balances for each pathway at equilibrium conversion and perfect selectivity on Level 2. Negative values denote outgoing energy streams. Heat integration was performed via pinch analysis

Pathway			Mass []	kg kg ⁻¹]			Energy [M.	J kg ⁻¹]
	Inj	put		Out	put			
	${\rm H}_2$	$\rm CO_2$	MF	DME	CO_2	H_2O	Heat	Electricity
Reductive	0.218	1.780	0.000	0.000	0.039	0.953	1.491 (100 °C) 0.802 (58 °C)	1.072
Dehydrogenative	0.223	1.819	0.001	0.000	0.057	0.968	5.823 (100 °C)	1.327
Transfer-hydrogenative without H_2 recycling	0.248	1.804	0.000	0.000	0.056	0.945	-1.256 (230 °C)	1.076
Transfer-hydrogenative with H_2 recycling	0.221	1.804	0.000	0.000	0.056	0.945	0.476 (78 °C) 9.764 (630 °C)	1.268
$\begin{array}{l} {\rm Transfer-hydrogenative} \\ {\rm with} \ {\rm H}_2 \ {\rm recycling} \\ {\rm at} \ {\rm no} \ {\rm cost} \end{array}$	0.221	1.804	0.000	0.000	0.056	0.945	−1.256 (230 °C)	1.268

Figure S7: Potential improvements of the reductive pathway if restricted equilibrium methanol conversion (15.7%) instead of experimental conversion (10.1%) and perfect DMM selectivity instead of experimental selectivity (81.8%) at a reaction temperature of 80 °C is assumed. The results on impact on climate change are given for the worst case scenario.

Figure S8: Potential improvements of the dehydrogenative pathway if restricted equilibrium methanol conversion (9.8%) at 300 °C instead of the experimental conversion (3.6%) at 200 °C and perfect DMM selectivity instead of experimental selectivity (80.3%) is assumed. The results on impact on climate change are given for the worst case scenario.

¹ 7.2 Impact on climate change

Figure S9: Cradle-to-grave impact on climate change for the worst case scenario of DMM synthesis via the reductive, dehydrogenative, and three variations of the transfer-hydrogenative route at Level 2 with perfect selectivity and equilibrium conversion. Avoided burdens for excess heat and co-production of MF are not considered. The functional unit is "the provision of 1 MJ of enthalpy of combustion".

Figure S10: Cradle-to-grave impact on climate change for the best case scenario of DMM synthesis via the reductive, dehydrogenative, and three variations of the transfer-hydrogenative pathway at Level 2 with perfect selectivity and equilibrium conversion. Avoided burdens for excess heat and co-production of MF are not considered. The functional unit is "the provision of 1 MJ of enthalpy of combustion".

Figure S11: Sensitivity of the cradle-to-grave impact on climate change of DMM with respect to the impact on climate change of electricity supply for different DMM synthesis pathways on Level 2 and fossil diesel. The impact on climate change is calculated considering equilibrium conversion and perfect selectivity of each pathway. H₂ is supplied by SOEC instead of conventional steam methane reforming below $260 g_{CO_2-eq.} kWh^{-1}$. The solid black lines at the top of the graph represent the impact on climate change of country-specific grid mixes and two forecasts for the global grid mix of 2030 and 2050 that are based on the "beyond 2 °C scenario" of the International Energy Agency.³⁷

¹ 7.3 Maximum potential of non-oxidative pathways

(a) Exergy efficiency of the DMM synthesis routes from H_2 and CO_2 (bars) and for the entire system for the worst (\blacktriangle) and best (\bigtriangledown) case scenario. The dashed lines correspond to the established and oxidative pathway evaluated on Level 2 considering actual reaction performance.

(b) Cost of DMM production. The dashed lines correspond to the established and oxidative pathway evaluated on Level 2 considering actual reaction performance.

(c) Impact of DMM on climate change for the worst (\checkmark) and best (\blacktriangle) case scenario. The dashed lines correspond to the worst case scenario for the established and oxidative pathway evaluated on Level 2 considering actual reaction performance.

Figure S12: Exergy efficiency (ESI Fig. S12a), production cost (ESI Fig. S12b), and impact on climate change (ESI Fig. S12c) for DMM production via the reductive, dehydrogenative, and transferhydrogenative synthesis route considering perfect selectivity and equilibrium conversion evaluated on Level 2. For the transfer-hydrogenation, EB dehydrogenation at no cost has been considered.

8 Process flowsheets

1

Figure S13: Process concept for the transfer-hydrogenative pathway on Level 2. All possible distillation sequences have been screened and the least energy-intensive sequence has been chosen. Styrene is added to the reactor in such a way that it is completely converted to EB and simultaneously consumes co-produced H₂ completely. Modeling detail is identical to that of the alternative non-oxidative pathways with the process step for EB dehydrogenation as an exception. Ethylbenzene dehydrogenation is modeled as a black box with process parameters at equilibrium conditions from the literature.⁴⁰

¹ 9 Future research directions

Table S18: Bottlenecks of each reaction pathway, their impact on key performance indicators, and potential measures for improvements

Reaction Pathways	Bottlenecks	Impact on KPIs	Improvement measures
Established	High H_2 consumption due to oxidative FA production	High	FA prod. via methanol dehydro- genation
	Three process steps	Low	none ^a
Oxidative	High ${\rm H}_2$ consumption due to oxidative in-situ FA formation	High	none ^a
	High DMM dilution in reactor effluent	Medium	Pure oxygen as oxidant and methanol excess
	High cooling demand	Medium	Application of an alternative gas separation
Reductive	Gap to chemical equilibrium	Medium	Further catalyst optimization to suppress catalyst deactivation
Dehydrogenative	Low equilibrium conversion	High	In-situ H_2 removal (e.g., by membrane reactor)
	Comparatively low DMM selectivity	Medium	Further catalyst optimization to suppress side reactions
	Gas separation for ${\rm H}_2$ recycling necessary	Medium	none ^a
Transfer- hydrogenative	Gap to chemical equilibrium	High	Further catalyst optimization to suppress catalyst deactivation
	Currently only model substrate as hydro- gen carrier	High	Extending the reaction to use industrially viable hydrogen ac- ceptors

^a Intrinsically given by reaction pathway.

Acknowledgments The authors gratefully acknowledge funding by the German Federal Ministry
of Education and Research (BMBF) within the Kopernikus Project P2X: Flexible use of renewable
resources – exploration, validation and implementation of "Power-to-X" concepts (FKZ 03SFK2A)
and the project NAMOSYN: Nachhaltige Mobilität durch synthetische Kraftstoffe (FKZ 03SF0566P0).
This work is further funded by Deutsche Forschungsgesellschaft (DFG, German Research Foundation)
under Germany's Excellence Strategy – Cluster of Excellence 2186 "The Fuel Science Center" – ID:
390919832.

References

- [1] J.-O. Weidert, J. Burger, M. Renner, S. Blagov and H. Hasse, Industrial & Engineering Chemistry
 Research, 2017, 56, 575–582.
- ¹¹ [2] W. Wang, S. Wang, X. Ma and J. Gong, *Chemical Society Reviews*, 2011, 40, 3703.
- ¹² [3] É. S. Van-Dal and C. Bouallou, *Journal of Cleaner Production*, 2013, **57**, 38–45.
- [4] M. Pérez-Fortes, J. C. Schöneberger, A. Boulamanti and E. Tzimas, *Applied Energy*, 2016, 161, 718–732.
- [5] O.-S. Joo, K.-D. Jung, I. Moon, A. Y. Rozovskii, G. I. Lin, S.-H. Han and S.-J. Uhm, *Industrial & Engineering Chemistry Research*, 1999, 38, 1808–1812.
- [6] G. Reuss, W. Disteldorf, A. Gamer and A. Hilt, *Formaldehyde*, Ullmann's Encyclopedia of Industrial Chemistry, 2000.
- ¹⁹ [7] R. Sun, I. Delidovich and R. Palkovits, ACS Catalysis, 2019, 9, 1298–1318.
- ²⁰ [8] Z. Fan, H. Guo, K. Fang and Y. Sun, *RSC Advances*, 2015, **5**, 24795–24802.
- [9] K. Thenert, K. Beydoun, J. Wiesenthal, W. Leitner and J. Klankermayer, Angewandte Chemie,
 2016, 128, 12454–12457.
- ²³ [10] B. G. Schieweck and J. Klankermayer, Angewandte Chemie, 2017, **129**, 10994–10997.
- [11] M. Siebert, M. Seibicke, A. F. Siegle, S. Kräh and O. Trapp, Journal of the American Chemical
 Society, 2019, 141, 334–341.

Supplementary Information

- [12] R. Sun, C. Mebrahtu, J. P. Hofmann, D. Bongartz, J. Burre, C. H. Gierlich, P. J. Hausoul,
 A. Mitsos and R. Palkovits, *Sustainable Energy and Fuels*, in press.
- ³ [13] O. Osterthun and J. Klankermayer, Angewandte Chemie, submitted.
- [14] D. Bongartz, J. Burre and A. Mitsos, Industrial & Engineering Chemistry Research, 2019, 58,
 4881–4889.
- ⁶ [15] A. Fredenslund, R. L. Jones and J. M. Prausnitz, AIChE Journal, 1975, 21, 1086–1099.
- ⁷ [16] G. Maurer, AIChE Journal, 1986, **32**, 932–948.
- ⁸ [17] H. Hasse, I. Hahnenstein and G. Maurer, AIChE Journal, 1990, 36, 1807–1814.
- 9 [18] I. Hahnenstein, H. Hasse, C. G. Kreiter and G. Maurer, Industrial & Engineering Chemistry
 10 Research, 1994, 33, 1022–1029.
- ¹¹ [19] M. Albert, B. C. García, C. Kreiter and G. Maurer, AIChE Journal, 1999, 45, 2024–2033.
- ¹² [20] M. Albert, B. C. García, C. Kuhnert, R. Peschla and G. Maurer, *AIChE Journal*, 2000, 46,
 ¹³ 1676–1687.
- [21] M. Albert, I. Hahnenstein, H. Hasse and G. Maurer, Journal of Chemical & Engineering Data,
 2001, 46, 897–903.
- [22] C. Kuhnert, M. Albert, S. Breyer, I. Hahnenstein, H. Hasse and G. Maurer, Industrial & Engineering Chemistry Research, 2006, 45, 5155–5164.
- [23] C. B. Dirk-Faitakis, W. An, T.-B. Lin and K. T. Chuang, *Chemical Engineering and Processing: Process Intensification*, 2009, 48, 1080–1087.
- [24] C. F. Breitkreuz, N. Schmitz, E. Ströfer, J. Burger and H. Hasse, *Chemie Ingenieur Technik*,
 2018, 90, 1489–1496.
- ²² [25] S. Deutz, D. Bongartz, B. Heuser, A. Kätelhön, L. S. Langenhorst, A. Omari, M. Walters,
 J. Klankermayer, W. Leitner, A. Mitsos, S. Pischinger and A. Bardow, *Energy & Environmental Science*, 2018, 11, 331–343.
- [26] S. Kossack, K. Kraemer and W. Marquardt, Industrial & Engineering Chemistry Research, 2006,
 45, 8492–8502.

- [27] K. Kraemer, S. Kossack and W. Marquardt, Industrial & Engineering Chemistry Research, 2009,
 48, 6749–6764.
- ³ [28] K. M. Guthrie, Chem. Engng., 1969, 24, 114–142.
- [29] M. S. Peters and K. D. Timmerhaus, *Plant design and economics for chemical engineers*, McGraw Hill, Inc., 1980.
- ⁶ [30] W. L. Luyben, AIChE Journal, 2010, **57**, 655–670.
- [31] R. Turton, R. C. Bailie, W. B. Whiting and J. A. Shaeiwitz, Analysis, synthesis and design of
 chemical processes, Pearson Education, 2008.
- 9 [32] A. Buttler and H. Spliethoff, Renewable and Sustainable Energy Reviews, 2018, 82, 2440–2454.
- [33] N. von der Assen, L. J. Müller, A. Steingrube, P. Voll and A. Bardow, *Environmental Science & Technology*, 2016, **50**, 1093–1101.
- ¹² [34] A. David, B. V. Mathiesen, H. Averfalk, S. Werner and H. Lund, *Energies*, 2017, 10, 578.
- [35] L. J. Müller, A. Kätelhön, M. Bachmann, A. Zimmermann, A. Sternberg and A. Bardow, Frontiers
 in Energy Research, 2020, 8, 15.
- [36] thinkstep AG, GaBi 9.2.0.58: Software-System and Database for Life Cycle Engineering, DB 8.7
 SP 39, 2019, Leinfelden-Echterdingen, Germany.
- ¹⁷ [37] IEA, International Energy Agency, Energy Technology Perspectives 2017: Catalysing Energy
 ¹⁸ Technology Transformation, 2017.
- ¹⁹ [38] IPPC, The Intergovernmental Panel on Climate Change, Climate change 2014: Working Group
 ²⁰ III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate
 ²¹ Change, 2014, Cambridge University Press.
- 22 [39] T. Grube, L. Doré, A. Hoffrichter, L. E. Hombach, S. Raths, M. Robinius, M. Nobis, S. Schiebahn,
- V. Tietze, A. Schnettler, G. Walther and D. Stolten, Sustainable Energy & Fuels, 2018, 2, 1500–
 1515.
- ²⁵ [40] N. Mimura and M. Saito, *Catalysis Today*, 2000, **55**, 173–178.

Supplementary Information