Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2021

SI

Diana Dahliah,[†] Guillaume Brunin,[†] Janine George,[†] Viet-Anh Ha,[‡] Gian-Marco Rignanese,[†] and Geoffroy Hautier^{*,†}

†Institute of Condensed Matter and Nanoscience, Université catholique de Louvain, Chemin étoiles 8, bte L7.03.01, Louvain-la-Neuve 1348, Belgium

‡Institute of Condensed Matter and Nanoscience (IMCN), Université Catholique de

Louvain (UCL), Chemin étoiles 8, bte L7.03.01, Louvain-la-Neuve 1348, Belgium

E-mail: geoffroy.hautier@dartmouth.edu

Table 1 shows the lifetime estimated using the first principle point defect computation and the SRH model for selected PV absorbers that have been examined extensively experimentally and from first principle computations. We analyzed the HSE point defect formation energies data for all possible growth conditions that are provided in literature, assuming all materials at all growth conditions are a p-type absorbers with conduction charge concentration 10^{16} cm⁻³.

The point defects in PV absorbers that have been intensively studied both in the experiment and in first principle computations and the selected Cu-based PV materials were examined with the PBE exchange-correlation functional.^{23,24} The Brillouin zone was sampled using a $2 \times 2 \times 2$ k-point mesh. All intrinsic defects (the cation vacancies, the anion vacancies and the antisites) were considered. Their formation energies were computed at several chemical limits determined by the facets of the DFT phase diagram.²⁵ In order to overcome the effect on the defect formation energies of the underestimation of the band gap within PBE, the latter was extended to the HSE value. This was achieved by moving both

Table 1: The dominant deep defects and their transition states with respect to VBM, the theoretical life time computed with SRH model, and the experimental conversion efficiency for a set of tested structures with full HSE approach.

material	defect	transition state	theoretical life time(s)	theoretical efficiency $(\%)$	experimental efficiency $(\%)$
Si ¹	Vac Si	(2/0):0.02 (0/-2): 0.91	>> 1	33.3	25.6^{2}
$CdTe^{3}$	\mathbf{V}_{Cd} , \mathbf{Te}_{Cd}	(-2/0):0.36 $(0,2):0.42$	$2.9 imes 10^{-10} - 0.19$	21.3 - 29	22.1^{4}
$GaAs^5$	$As_{Ga} Ga_{As}$	(2,1):0.63 (0,-1):0.4	$3.9 \times 10^{-11} - 3.2 \times 10^{-4}$	9.7-33.3	28.8^{2}
$Cu_2ZnSnS_4^{6}$	Sn_{Zn}	(2,1):0.6	1.84×10^{-10} - 3.3×10^{-7}	10.2-20.9	12.6^{2}
$CuInSe_2$ ⁷	Cu_{In}	(0,-1):0.37	2.07×10^{-6}	22.7	23.35^{8}
$CuGeSe_2$ ⁷	Cu_{Ga}	(0,-1):0.33	6.67×10^{-6}	25.3	23.35^{8}
MPI_3^{9}	I_i	(-1,1)0.75	2.31×10^{-7} -0.002	24.6-27.7	25.5^{10}
InP	Vac_{In}	(0,-1): 0.696769	>> 1	33.3	22.1^{2}
$Sb_2S_3^{11}$	$Sb_S S_{Sb}$	(3,2):0.5 (0,-1):0.67	9.2×10^{-12} - 1.2×10^{-8}	8.2 -14.1	6.9^{12}
$Sb_2Se_3^{13}$	$\operatorname{Vac}_{Se} \operatorname{Se}_{Sb}$	(1,0):0.85) Se _{Sb} $(-1,1):0.62$	$10^{-16} - 1.9 \times 10^{-10}$	0-6.9	9.2^{14}
Cu_2O^{15}	V_{Cu}	(0,-1):0.42	$3.2 \times 10^{-7} - 3.2 \times 10^{-6}$	11.7-13.2	9.54^{16}
$CuSbS_2^{17}$	Cu_{Sb} Sb_{Cu}	(0,-1):0.25 $(0,2):1.15$	$6.64 \times 10^{-10} \ 7.4 \times 10^{-7}$	11.5 - 19.5	3.22^{18}
$ZnSnP_2^{19}$	V_P	(0,1): 0.7 (0,-1):1	$1.2 \times 10^{-7} - 2.8 \times 10^{-6}$	19.1 - 21.7	3.44^{20}
SnS^{21}	V_S	(0,2) 0.64	$1.98{\times}~10^{-12}{-}6.63{\times}~10^{-10}$	0-8.6	4.36^{22}

band edges with respect to a common reference in GGA and HSE computations (more details are given in Refs.^{26,27} The plots of the point defect formation energies of PV absorbers that have been intensively studied previously are shown below:

Table 2: The dominant deep defects and their transition states with respect to VBM and the theoretical life time computed with SRH model for the set of tested structures with GGA+HSE approach.

material	defect	transition state	theoretical life time(s)	experimental efficiency $(\%)$
Si	—	-	>> 1	25.6^{2}
CdTe	V_{Cd}	(-2, -1): 0.58	$2.34 \times 10^{-3} - \gg 1$	22.1 [?]
InP	—	_	$\gg 1$	22.1^{2}
GaP	Ga_P, P_{Ga}	(0,1):0.76, (1,2):0.717	$4.8 \times 10^{-11} - 2 \times 10^{-4}$	2.42^{28}
ZnTe	V_{Zn}	(0,-1):0.48	$5.53 \times 10^{-8} - 4.4 \times 10^{-6}$	5.9^{29}
CuSbS_2	Sb_{Cu}	(1,2):0.90594	$7.72 \times 10^{-9} - 3.07 \times 10^{-7}$	3.22^{18}
$\mathrm{Sb}_2\mathrm{S}_3$	v_S	(1,2):0.87	$1.56 \times 10^{-18} - 1.87 \times 10^{-12}$	6.9^{12}
Sb_2Se_3	V_{Se}	(0,2):0.65	2.48×10^{-11} - 4.11 $\times 10^{-9}$	9.2^{14}
SbSI	$V_S, V_I Sb_S$	(0,2):0.94,(-1,1):1.29,(1,3):0.87	$2.48 \times 10^{-26} - 1.21 \times 10^{-20}$	3.5^{30}
SnS	V_S	$(1,2):0.543 \ 8.2 \ \times 10^{-13} \ -3.4 \ \times \ 10^{-10}$		4.36^{22}
SnSe	$\mathrm{Se}_{\mathrm{Sn}}$	(2,3): 0.731	$2.18 \times 10^{-18} - 1.46 \times 10^{-10}$	6.44^{31}
$\mathrm{Zn}\mathrm{Sn}\mathrm{P}_2$	V_P	(0,1):0.3	$1.08 \times 10^{-8} - 6.72 \times 10^{-7}$	3.44^{20}
Bi2S3	V_S	(0,1):1.1	$3.54 \times 10^{-18} - 3.4 \times 10^{-14}$	5.9^{32}
Cu_2O	_	_	$\gg 1$	9.54^{16}

Figure 1: GGA+HSE intrinsic defect formation energies as a function of the Fermi energy for Bi_2S_3 , CdTe, Cu₂O, CuSbS₂, GaAs, and GaP. The zero in Fermi energy corresponds to the VBM, and the CBM is indicated with a vertical dashed line.

Figure 2: GGA+HSE intrinsic defect formation energies as a function of the Fermi energy for InP, Sb₂S₃, Sb₂Se₃, SbSi, Si, SnI₂. The zero in Fermi energy corresponds to the VBM, and the CBM is indicated with a vertical dashed line.

Figure 3: GGA+HSE intrinsic defect formation energies as a function of the Fermi energy for SnS, SnSe, ZnSnP₂, ZnTe. The zero in Fermi energy corresponds to the VBM, and the CBM is indicated with a vertical dashed line.

Figure 4: Theoretical efficiency from GGA+HSE approach for selected materials compared to their experimental efficiency. The range in theoretical efficiency corresponds to different growing conditions, hence different defects present in each material. The middle of the range is indicated by white circles. The green regions, indicating efficiencies lower (resp. larger) than 15%, correspond to correctly predicted low- (resp. high-) efficiency materials. The red regions correspond to false positives (upper left) and negatives (lower right).

(E_{hull})	lso the	hybrid	
e hull	ass),a]	with	
above	ron m	d gap	
nergy	elect	ad ban	
d by €	n_o -free	orrecte	
easure	n_{3p} (n	the co	
ity me	and r) and	
stabil,	m_{p2}	ps (E_a^a)	2
(SG),	es m_p]	ect ga	
group	mass	nd dir	
space g	fective	(E_g) a	
nula, s	nole ef	ental (
r, Forr	cipal ł	ındam	
umbei	e prine	BE fu	
tion n	, three	sses, F	
ntifica	tom)	ve ma	
ect ide	neV/\hat{s}	effecti	
s Proje	ram (1	ctron	3).
terials	e diag	pal ele	HSE0(
3: ma	phase	princij	onal (.
Table	in the	three	functi

mpID	formula	SG	E_{hull}	m_{p1}	m_{p2}	m_{p3}	m_{n1}	m_{n2}	m_{n3}	E_g	E_g^d	Δgap	HSE-gap
17916	Y3CuGeSe7	$P6_{-3}$	0	0.659	0.659	3.915	0.28	0.645	0.645	1.118	1.118	0	1.9805
8446	K2CuP	Cmcm	0	2.175	2.744	3.624	0.227	0.754	0.812	1.142	1.223	0.081	1.9847
15684	K2CuAs	Cmcm	0	2.06	2.564	2.801	0.292	0.295	0.309	1.068	1.176	0.109	2.037
14205	K3Cu3As2	R-3m	0	1.272	1.272	1.922	0.36	0.36	0.761	1.296	1.317	0.037	2.0842
7439	K3Cu3P2	R-3m	0	1.236	1.236	2.144	0.392	0.392	0.705	1.309	1.345	0.055	2.1388
8017	AlCuTe2	I-42d	0	0.492	0.763	0.764	0.107	0.119	0.12	1.024	1.019	0	2.2581
3934	Cu3PS4	$Pmn2_{-}1$	0	0.734	1.304	1.478	0.268	0.448	0.466	1.02	1.033	0.012	2.3069
568954	Nd3CuGeSe7	$P6_{-3}$	0	0.765	0.765	4.176	0.357	0.804	0.804	1.194	1.205	0.012	2.0877
570226	Sm3CuGeSe7	$P6_{-3}$	0	0.702	0.702	3.861	0.336	0.741	0.741	1.165	1.17	0.008	2.0465
505558	Dy3CuGeSe7	$P6_{-3}$	0	0.641	0.641	3.651	0.29	0.636	0.636	1.113	1.115	0.002	2.0434
510011	La3CuGeSe7	$P6_{-3}$	0	1.135	1.135	4.399	0.381	0.869	0.869	1.185	1.222	0.038	2.2571
571347	Pr3CuGeSe7	$P6_{-3}$	0	0.796	0.796	4.275	0.376	0.848	0.848	1.206	1.219	0.014	2.1428
567428	Tb3CuGeSe7	$P6_{-3}$	0	0.659	0.659	3.68	0.293	0.648	0.648	1.127	1.127	0	2.059
7374	Ba(CuO)2	$I4_{-}1/amd$	0	1.008	3.786	3.796	0.301	0.302	0.815	1.379	1.379	0	2.5552
18685	SrCu2GeS4	$P3_221$	0	0.836	0.836	4.411	0.191	0.191	0.257	1.05	1.055	0.009	2.5616

1.5257	0	0.604	0.604	0.432	0.093	0.093	6.601	0.338	0.338	0	$P6_{-3}/mmc$	KCuTe	7436
3.306	0	0.444	0.444	0.248	0.248	0.248	3.188	3.188	3.188	0	Pa3	CuCl	23287
1.6776	0	0.362	0.362	0.133	0.127	0.122	2.16	1.98	0.541	0	$Pmn2_{-}1$	CdCu2GeS4	13982
1.6018	0.026	0.45	0.424	0.235	0.183	0.116	3.416	2.946	0.705	0	Ama2	BaCu2SnSe4	12364
1.5248	0	0.452	0.452	0.382	0.227	0.138	2.234	1.139	0.187	0	Pnma	BaCu4S3	654109
1.2931	0	0.82	0.82	0.879	0.704	0.352	1.352	1.103	0.477	0	Pnma	BaLaCuTe3	17063
1.236	0.032	0.634	0.617	0.538	0.538	0.207	2.057	2.057	0.688	0	$\rm P6_{-}3/mcm$	Ba6NaCu3Te14	569168
2.4162	0	0.561	0.561	0.252	0.252	0.252	1.784	1.784	1.784	0	F-43m	CuCl	22914
2.4315	0.008	0.974	0.971	0.245	0.193	0.193	3.3843	0.951	0.951	0	$P3_{-}121$	CuBiPbS3	17947
2.4026	0	0.98	0.98	0.249	0.19	0.186	2.771	2.18	0.534	0	$Pmn2_{-}1$	CdSi(CuS2)2	6449
2.25	0	0.706	0.704	0.152	0.151	0.137	0.952	0.951	0.533	0	I-42d	GaCuS2	5238
2.2932	0	0.892	0.896	0.136	0.133	0.121	1.037	1.037	0.494	0	I-42d	AlCuSe2	8016
1.6232	0.135	0.882	0.751	0.219	0.219	0.19	3.378	3.378	2.319	0	R-3m	K5CuSb2	27999
1.93	0	0.815	0.815	0.313	0.265	0.265	1.787	1.787	1.444	0	$P6_{-}3mc$	Cu6GeWS8	557225
1.707	0.055	0.714	0.678	0.793	0.716	0.159	1.438	0.585	0.57	0	Cmcm	Na2CuAs	15685
1.826	0.13	0.788	0.677	0.898	0.852	0.1	1.545	0.731	0.619	0	Cmem	Na2CuP	7639
2.8971	0.091	1.864	1.794	0.892	0.892	0.733	4.779	0.935	0.935	0	$P6_{-3}$	Sm3CuGeS7	555978
3.0779	0	1.694	1.694	0.234	0.233	0.21	1.76	1.759	1.018	0	I-42d	AlCuS2	4979
2.7088	0	1.743	1.743	0.742	0.402	0.399	1.071	1.071	0.932	0	I-42d	CuBS2	12954

			C										
29136	Sr6Cu3N5	$P4_2mc$	0	1.525	5.859	5.859	0.422	0.607	0.607	0.483	0.608	0.132	1.6424
9194	SmCuSeO	P4/nmm	1.18	0.653	0.653	2.936	0.224	0.224	0.339	1.286	1.286	0	2.6161
22863	CuI	P4/nmm	1.63	0.73	0.73	1.634	0.231	0.231	0.244	1.572	1.572	0	2.9193
570081	CuI	P-3m1	1.63	2	2	4.858	0.206	0.277	0.277	1.634	1.634	0	2.9916
32750	CuI	m R3m	1.63	1.09	1.09	1.393	0.163	0.173	0.173	1.164	1.164	0	2.758
673245	CuI	\mathbf{Pc}	1.63	0.895	0.916	1.054	0.164	0.173	0.176	1.145	1.145	0	2.7244
569346	CuI	$P6_{-}3mc$	1.63	1.053	1.053	1.513	0.159	0.179	0.179	1.217	1.217	0	2.7432
22895	CuI	F-43m	1.63	0.863	0.863	0.863	0.174	0.174	0.174	1.136	1.136	0	2.6699
5970	Ba(CuS)2	Pnma	2.40	0.347	1.73	2.168	0.207	0.256	0.695	0.903	0.903	0	1.9518
542302	CuBi3PbS6	$ m Pmc2_{-}1$	4.05	1.118	1.876	2.196	0.212	0.55	0.627	0.622	0.622	0	1.4473
16179	SrCu2GeSe4	Ama2	4.22	0.425	3.078	3.774	0.208	0.284	0.435	0.592	0.723	0.135	1.8776
23431	CsCu2I3	Cmcm	4.27	1.236	2.206	2.361	0.268	0.283	0.313	1.901	1.901	0	3.364
21390	La2InCuSe5	Pnma	7.301	1.15	2.24	4.664	0.247	0.251	0.882	0.509	0.509	0	1.4084
23353	Cu2HgI4	I-42m	7.56	1.059	1.059	1.842	0.225	0.226	0.252	0.565	0.559	0	1.8524
624191	CuBiPbS3	Pnma	9.30	0.766	0.942	1.097	0.276	0.323	0.431	0.633	0.651	0.038	1.735
7434	NaCuTe	P4/nmm	9.62	0.425	0.425	1.526	0.113	0.113	0.113	0.633	0.633	0	1.6734
15895	SiCu2S3	C_{c}	10.07	0.609	1.678	2.926	0.187	0.3	0.302	1.112	1.112	0	1.7747
18126	Tb3CuSnSe7	$P6_{-3}$	12.61	0.647	0.647	4.058	0.253	0.862	0.862	1.018	1.015	0	1.866

2.0263	0	0.753	0.753	0.438	0.283	0.187	2.617	0.975	0.263	70.87	Pnma	Li2Cu4S3	766447
3.5525	0	1.981	1.981	0.352	0.27	0.267	2.219	0.537	0.532	69.33	Pbcn	Li3CuS2	753737
1.4943	0.012	0.421	0.409	0.162	0.13	0.126	2.572	1.858	1.386	52.24	$Pmn2_{-1}$	Si(Cu4Se3)2	10428
2.6477	0.017	1.582	1.58	0.474	0.28	0.244	3.753	2.939	1.682	49.41	Cc	LiCuS	774736
2.5327	0	1.291	1.291	0.325	0.321	0.315	2.975	2.931	2.215	49.41	Pbcn	LiCuS	766467
2.4835	0	1.076	1.076	0.298	0.246	0.244	1.312	1.208	0.419	49.41	Pnma	LiCuS	753826
1.8792	0	0.598	0.598	0.204	0.203	0.179	3.245	2.004	1.595	43	$\mathrm{Pnm2_{-}1}$	Cu8GeS6	5546
2.4315	0	0.598	0.598	0.204	0.203	0.179	3.245	2.004	1.595	42.85	$Pmn2_{-}1$	BaCu2GeS4	5546
2.987	0	0.486	0.486	0.17	0.17	0.17	1.33	1.33	1.33	41.42	F-43m	CuBr	22913
2.987	0	0.448	0.448	0.167	0.166	0.163	1.449	1.438	1.437	41.42	I-4m2	CuBr	32880
2.5011	0	0.995	0.995	0.306	0.269	0.269	3.283	1.642	1.642	41.42	P4/nmm	CuBr	22917
1.6063	0	0.486	0.486	0.279	0.137	0.122	1.733	1.456	0.224	34.40	Pnma	${\rm Ba}({\rm CuSe})2$	4473
2.753	0	1.525	1.525	0.392	0.209	0.208	4.401	1.261	1.255	32.65	$I4_1/amd$	Ca(CuO)2	754501
Hg is toxic	0	0.445	0.445	0.213	0.192	0.174	2.792	1.815	0.93	20.43	$Pna2_1$	CuHgSI	542426
2.3208	0	1.05	1.05	0.728	0.193	0.193	0.927	0.586	0.586	20.28	P3m1	$\mathrm{ErCuSe2}$	675180
2.103	0	0.851	0.851	0.606	0.145	0.145	4.864	0.365	0.365	19.71	$P6_{-3}/mmc$	LiCuS	774712
1.6203	0.098	0.612	0.518	0.129	0.129	0.129	0.804	0.804	0.804	18.78	F-43m	Al5CuSe8	37405
1.8972	0	0.99	0.993	0.809	0.809	0.232	4.236	0.671	0.671	17.91	$P6_{-3}$	Dy3CuSnSe7	510539
2.5154	0	1.18	1.18	0.324	0.197	0.197	2.615	0.599	0.599	15.42	P4/nmm	DyCuSeO	9304

3.0414	3.0661
0	0
1.642	1.614
1.642	1.614
0.479	0.47
0.324	0.318
0.324	0.318
4.89	4.35
0.977	0.945
0.977	0.945
94.6	98.12
P4/nmm	P4/nmm
6166 PrCuSO	42314 NdCuSO

References

- (1) Śpiewak, P.; Kurzydłowski, K. J. Formation and migration energies of the vacancy in Si calculated using the HSE06 range-separated hybrid functional. *Physical Review B* 2013, 88, 195204.
- (2) Polman, A.; Knight, M.; Garnett, E. C.; Ehrler, B.; Sinke, W. C. Photovoltaic materials: Present efficiencies and future challenges. *Science* **2016**, *352*, aad4424.
- (3) Yang, J.-H.; Park, J.-S.; Kang, J.; Metzger, W.; Barnes, T.; Wei, S.-H. Tuning the Fermi level beyond the equilibrium doping limit through quenching: The case of CdTe. *Physical Review B* 2014, 90, 245202.

- (4) Romeo, A.; Artegiani, E. CdTe-Based Thin Film Solar Cells: Past, Present and Future. Energies 2021, 14, 1684.
- (5) Komsa, H.-P.; Pasquarello, A. Intrinsic defects in GaAs and InGaAs through hybrid functional calculations. *Physica B: Condensed Matter* **2012**, 407, 2833–2837.
- (6) Kim, S.; Park, J.-S.; Hood, S. N.; Walsh, A. Lone-pair effect on carrier capture in Cu 2 ZnSnS 4 solar cells. *Journal of Materials Chemistry A* 2019, 7, 2686–2693.
- (7) Huang, B.; Chen, S.; Deng, H.-X.; Wang, L.-W.; Contreras, M. A.; Noufi, R.; Wei, S.-H. Origin of Reduced Efficiency in Cu (In, Ga) Se _2 Solar Cells With High Ga Concentration: Alloy Solubility Versus Intrinsic Defects. *IEEE Journal of Photovoltaics* 2013, 4, 477–482.
- (8) Nakamura, M.; Yamaguchi, K.; Kimoto, Y.; Yasaki, Y.; Kato, T.; Sugimoto, H. Cd-free

Cu (In, Ga)(Se, S) 2 thin-film solar cell with record efficiency of 23.35%. *IEEE Journal* of Photovoltaics **2019**, *9*, 1863–1867.

- (9) Meggiolaro, D.; De Angelis, F. First-principles modeling of defects in lead halide perovskites: best practices and open issues. ACS Energy Letters 2018, 3, 2206–2222.
- (10) Energy, N. T. Best research-cell efficiency chart. 2020; https://www.nrel.gov/pv/ cell-efficiency.html.
- (11) Guo, L.; Zhang, B.; Li, S.; Zhang, Q.; Buettner, M.; Li, L.; Qian, X.; Yan, F. Scalable and efficient Sb2S3 thin-film solar cells fabricated by close space sublimation. *APL Materials* 2019, 7, 041105.
- (12) Han, J.; Wang, S.; Yang, J.; Guo, S.; Cao, Q.; Tang, H.; Pu, X.; Gao, B.; Li, X. Solution-Processed Sb2S3 Planar Thin Film Solar Cells with a Conversion Efficiency of

6.9% at an Open Circuit Voltage of 0.7 V Achieved via Surface Passivation by a SbCl3
Interface Layer. ACS Applied Materials & Interfaces 2019, 12, 4970–4979.

- (13) Savory, C. N.; Scanlon, D. O. The complex defect chemistry of antimony selenide. Journal of Materials Chemistry A 2019, 7, 10739–10744.
- (14) Li, Z.; Liang, X.; Li, G.; Liu, H.; Zhang, H.; Guo, J.; Chen, J.; Shen, K.; San, X.; Yu, W.; Schropp, R. E.; Mai, Y. 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells. *Nature Communications* **2019**, *10*, 1–9.
- (15) Scanlon, D. O.; Morgan, B. J.; Watson, G. W.; Walsh, A. Acceptor levels in p-type Cu
 2 O: rationalizing theory and experiment. *Physical Review Letters* 2009, 103, 096405.
- (16) Liu, Y.; Zhu, J.; Cai, L.; Yao, Z.; Duan, C.; Zhao, Z.; Zhao, C.; Mai, W. Solution-Processed High-Quality Cu2O Thin Films as Hole Transport Layers for Pushing the

Conversion Efficiency Limit of Cu2O/Si Heterojunction Solar Cells. Solar RRL 2020, 4, 1900339.

- (17) Yang, B.; Wang, L.; Han, J.; Zhou, Y.; Song, H.; Chen, S.; Zhong, J.; Lv, L.; Niu, D.; Tang, J. CuSbS2 as a promising earth-abundant photovoltaic absorber material: a combined theoretical and experimental study. *Chemistry of Materials* 2014, 26, 3135– 3143.
- (18) Banu, S.; Ahn, S. J.; Ahn, S. K.; Yoon, K.; Cho, A. Fabrication and characterization of cost-efficient CuSbS2 thin film solar cells using hybrid inks. *Solar Energy Materials* and Solar Cells **2016**, 151, 14–23.
- (19) Kumagai, Y.; Choi, M.; Nose, Y.; Oba, F. First-principles study of point defects in chalcopyrite ZnSnP2. *Physical Review B* 2014, 90, 125202.

(20) Akari, S.; Chantana, J.; Nakatsuka, S.; Nose, Y.; Minemoto, T. ZnSnP2 solar cell with (Cd, Zn) S buffer layer: Analysis of recombination rates. *Solar Energy Materials and Solar Cells* **2018**, *174*, 412–417.

- (21) Polizzotti, A.; Faghaninia, A.; Poindexter, J. R.; Nienhaus, L.; Steinmann, V.; Hoye, R. L.; Felten, A.; Deyine, A.; Mangan, N. M.; Correa-Baena, J. P.; Sik Shin, S.; Jaffer, S.; Bawendi, M. G.; Lo, C.; Buonassisi, T. Improving the carrier lifetime of tin sulfide via prediction and mitigation of harmful point defects. *The journal of physical chemistry letters* **2017**, *8*, 3661–3667.
- (22) Baig, F.; Khattak, Y. H.; Soucase, B. M.; Beg, S.; Khani, N. A. K. Efficiency limits of SnS thin film solar cells. *Materials Focus* **2018**, *7*, 807–813.
- (23) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made

simple. Physical Review Letters 1996, 77, 3865.

- (24) Freysoldt, C.; Grabowski, B.; Hickel, T.; Neugebauer, J.; Kresse, G.; Janotti, A.; Van de Walle, C. G. First-principles calculations for point defects in solids. *Reviews of Modern Physics* 2014, *86*, 253.
- (25) Zhang, S.; Northrup, J. E. Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion. *Physical Review Letters* **1991**, *67*, 2339.
- (26) Alkauskas, A.; Broqvist, P.; Pasquarello, A. Defect energy levels in density functional calculations: Alignment and band gap problem. *Physical Review Letters* 2008, 101, 046405.
- (27) Alkauskas, A.; Broqvist, P.; Pasquarello, A. Defect levels through hybrid density functionals: Insights and applications. *Physica Status Solidi* (b) **2011**, 248, 775–789.

- (28) Lu, X.; Huang, S.; Diaz, M. B.; Kotulak, N.; Hao, R.; Opila, R.; Barnett, A. Wide band gap gallium phosphide solar cells. *IEEE Journal of Photovoltaics* **2012**, *2*, 214–220.
- (29) Lee, K. S.; Oh, G.; Chu, D.; Pak, S. W.; Kim, E. K. High power conversion efficiency of intermediate band photovoltaic solar cell based on Cr-doped ZnTe. *Solar Energy Materials and Solar Cells* **2017**, *170*, 27–32.
- (30) Nie, R.; Yun, H.-s.; Paik, M.-J.; Mehta, A.; Park, B.-w.; Choi, Y. C.; Seok, S. I. Efficient Solar Cells Based on Light-Harvesting Antimony Sulfoiodide. Advanced Energy Materials 2018, 8, 1701901.
- (31) Shi, W.; Gao, M.; Wei, J.; Gao, J.; Fan, C.; Ashalley, E.; Li, H.; Wang, Z. Tin selenide (SnSe): growth, properties, and applications. *Advanced Science* 2018, 5, 1700602.
- (32) Xu, B.; Wang, G.; Fu, H. 23327Enhanced photoelectric conversion efficiency of dye-

sensitized solar cells by the incorporation of flower-like Bi 2 S 3: Eu 3+ submicrospheres. *Scientific reports* **2016**, *6*, 1–9.

(33) Brunin, G.; Miranda, H. P. C.; Giantomassi, M.; Royo, M.; Stengel, M.; Verstraete, M. J.; Gonze, X.; Rignanese, G.-M.; Hautier, G. Phonon-limited electron mobility in Si, GaAs, and GaP with exact treatment of dynamical quadrupoles. *Phys. Rev. B* 2020, *102*, 094308.

composition	Cu ₈ GeS ₆
MP-id	5546
space group	Pnm2 ₁
hole effective mass	[1.595, 2.004, 3.245]
electron effective mass	[0.179, 0.203, 0.204]
HSE band gap (indirect/direct) (eV)	1.9/1.9
energy above hull (eV/atom)	0.044
life time (ns)	0.0

Energy (eV)

composition	K5CuSb2	
MP-id	27999	4
space group	R3m	
hole effective mass	[2.319, 3.378, 3.378]	
electron effective mass	[0.19, 0.219, 0.219]	
HSE band gap (indirect/direct) (eV)	1.44 / 1.59	
energy above hull (eV/atom)	0.0	
life time (ns)	2.6	<u> </u>
Chr. Sh Gen Chr.	3 Þ	$-4 \xrightarrow{\ \ L \ B_1 \mid B \ \ Z \ \ \Gamma \ X \mid Q \ FP_1 \ \ Z \mid LP} Wave vector$
- 1.0 coefficient 10 coefficient 10	1 5 6 1	() () () () () () () () () ()
d.2.	/ /	Vac _K $$ Vac _{Cu} $$ Cu _K $$ Cu _K
		- Vac _K $-$ Vac _{Sb} $-$ Cu _K $-$ K _{Cu}
	ergy (eV)	—— Vас _к

Г

Figure 5: Theoretical efficiency from GGA+HSE approach for the 20 Cu based materials. The range in theoretical efficiency corresponds to different growing conditions, hence different defects present in each material. The middle of the range is indicated by diamonds.

Figure 6: Theoretical efficiency of typical PV absorbers and our outlined candidates versus their reserved HHI. The different colored regions correspond to typical limits. The color of the circles indicates the metal companionality (M.C.) in %.

Figure 7: Electron mobility at 300 K in Na₂CuP as a function of the **k** and **q** meshes used for the integrations, see the main text. The **q** is the same as the **k** mesh for the matrix elements but a **q** mesh twice as dense in each direction is used for the energies in the delta distributions for the lifetimes (double-grid method of Ref.³³ The MRTA is used.

Figure 8: Electron mobility at 300 K in $K_3Cu_3P_2$ as a function of the **k** and **q** meshes used for the integrations, see the main text. The **q** is the same as the **k** mesh for the matrix elements but a **q** mesh twice as dense in each direction is used for the energies in the delta distributions for the lifetimes (double-grid method of Ref.³³ The MRTA is used.

Figure 9: The defect formation energy as a function of Fermi level of intrinsic defects for KCuTe at all possible chemical potentials regions that determined from the facets of the phase diagram.

Figure 10: The defect formation energy as a function of Fermi level of intrinsic defects for NaCuTe at all possible chemical potentials regions that determined from the facets of the phase diagram.

Figure 11: The defect formation energy as a function of Fermi level of intrinsic defects for LiCuS at all possible chemical potentials regions that determined from the facets of the phase diagram.

Figure 12: COHP analysis (a,b,c,d,e,f) for all orbitals in pure bulk, averaged for each bond type for Al₅CuSe₈, AlCuTe, BaCu₂S₂, BaCu₂Se₂, BaCu₂SnSe₄, BaCu₄S₃. The VBM and CBM are represented by horizontal red dashed lines.

Figure 13: COHP analysis (a,b,c,d,e,f) for all orbitals in pure bulk, averaged for each bond type for CdCuGeS₄, Cu₂SiS₃, Cu₃PS₄, Cu₈SiSe₆, Cu₆GeWS₈, Cu₈GeS₆. The VBM and CBM are represented by horizontal red dashed lines.

Figure 14: COHP analysis (a,b,c,d,e,f) for all orbitals in pure bulk, averaged for each bond type for ErCuSe₂, K₂CuP, K₃Cu₃As₂, K₃Cu₃P₂, K₅CuSb₂, KCuTe. The VBM and CBM are represented by horizontal red dashed lines

Figure 15: COHP analysis (a,b,c,d,e,f) for all orbitals in pure bulk, averaged for each bond type for $Li_2Cu_4S_3$, LiCuS, Na_2CuAs , Na_2CuP , NaCuTe, $Sr_6Cu_3N_5$. The VBM and CBM are represented by horizontal red dashed lines

Figure 16: COHP analysis (a,b) for all orbitals in pure bulk, averaged for each bond type for $SrCu_2GeSe_4$, $Y_3CuGeSe_7$. The VBM and CBM are represented by horizontal red dashed lines