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Supplement S1. Estimate of the efficiency loss in conventional thermoelectric modules 

In the main text, it is claimed that modules lose an additional 30 to 50 % of the thermoelectric efficiency 
over the zT of the thermoelectric material.  This figure is arrived at as follows.    The effective module ZT 
can be estimated from the modules specified maximum temperature drop in refrigeration mode DTM by the 
formula DTM = (ZT/2) TC.1  DTM =72K is typical for modules that operate between 280 and 350 K: this gives 
ZT=0.52.  The maximum zT of commercial semiconductor elements typically used in such modules is 0.95 
for n-type material and 1.1 for p–type material but averages to 0.85 for n-type and 0.95 for p-type material2 
over the 280-350K temperature range, for a 42% loss between material zT and module ZT.  It should be 
pointed out that the module ZT can be adjusted by the manufacturers by simply cutting the semiconductor 
elements shorter or longer, thereby altering the relative effect of the contact resistances compared to the 
element resistance but also altering the materials cost.  This variation is the basis for the 30-50% bracket 
cited in the main text. 
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Supplement S2: Transverse Thermopower and zxyT in terms of IP and CP materials properties 

 

The transverse thermopower αxy (see Fig. 1c) is derived from the thermopowers along the in-plane (αIP) 
and cross-plane (αCP) directions, by rotating the coordinate system from the (x,y) axes to the (IP, CP) axes 
using a rotation tensor.3  The thermopower tensor along the high-symmetry directions (IP, CP) of the crystal, 
has bloy hypothesis no off-diagonal components: the electric fields remains parallel to the temperature 
gradient along both IP and CP directions, albeit with a different ratio depending on whether the direction is 
IP or CP: 

 

𝛼 = $𝑎!" 0
0 𝛼#"

'                   (S2.1) 

 

Since x and y are not necessarily high-symmetry axes of the crystal, however, the thermopower tensor in 
the (x,y) system can have off-diagonal components, and in general looks like 

 

   𝛼′ = )
𝛼$$ 𝛼$%
𝛼%$ 𝛼%%*                   (S2.2) 

 

If the (x,y) and the (IP, CP) axes are both normal but rotated by an angle q with respect to each other, one 
can transform one tensor into the other by applying a rotation tensor 𝑅  as 𝛼! = 𝑅	𝛼	𝑅": 
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     (S2.3) 

 

from which Eq. (2) follows immediately.   axy is maximized for q=45o, in a material in which αIP and αCP are 
of opposite polarity, and |αIP| and |αCP| are as large as possible.  Zhou et al4 derived the thermal conductivity, 
electrical resistivity and zxyT expressed in the (x,y) coordinate system in terms of their equivalent in the 
(IP,CP) system: electrical resistivities rIP, rCP and thermal conductivities kIP, kCP.  They also calculated the 
angle qOPT for which the zxyT  is maximized, which is different from the value that maximizes axy :  

 

  cos2𝜃(") = 41 + 7*#$/*%$
,#$/,%$

8
&'

          (S2.4)   

 

For Re4Si7, qOPT ~ 52 o at 980 K, and changes slightly at different temperatures. With this value of the angle, 
the zxyT now becomes: 

 

  𝑧$%𝑇 =
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Figure S1: Material characterization. a, PXRD of Re4Si7 crystal used for study. b,  Laue diffraction pattern 
for a [100] face, Re4Si7. c,  Laue diffraction pattern for c[001] edge, Re4Si7.  For b and c experimental Laue 
diffraction patterns are in black, predicted Laue patterns are in red. 
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Supplement S3. Non-monotonic thermopower in intrinsic semiconductors 

 

In practice all semiconductors have a residual non-intentional doping level, which at low temperature pins 
the chemical potential in either the conduction or the valence bands.  Under those circumstances, the partial 

thermopower is 𝜶 = '𝝅
𝟐

𝟐
( '𝒌𝑩

𝒆
( '𝒌𝑩𝑻

𝑬𝑭
( (assuming acoustic phonon scattering) and increases with increasing 

T.  If the non-intentional doping level is small enough that above a certain temperature (TM) both electrons 
and holes become thermally activated in sufficient numbers as to overwhelm the non-intentional carriers, 
the semiconductor is called intrinsic.  In the presence of both electron and hole carrier types, the total 
thermopower is given by the conductivity-weighted average of the partial thermopowers: 

 

  𝛼 = (𝛼4𝜎4 + 𝛼5𝜎5)(𝜎4 + 𝜎5)&'          (S3.1) 

 

Since ah>0 and ae<0, the partial thermopowers of electrons and holes compensate each other and  

in an intrinsic semiconductor (at T>TM), the total thermopower decreases with increasing T.    

The final result for the thermopower of a near-intrinsic semiconductor such as Re4Si7 is a curve for |a(T)| 
that has a maximum near TM..   

 

A rule of thumb in semiconductor physics is that at all temperatures, the product of the temperature and the 
thermopower must be smaller than the energy gap Eg, or  |𝛼|𝑇 < 𝐸-. Empirically, it is found that in most 
conventional semiconductors, Eg » 2|a|T:  

 

Ge5: maximum |a|T=0.3 eV,  Eg=0.6 eV, 

Si6: maximum |a|T = 0.5 eV at 450 K, Eg=1 eV, 

 

While the inequality holds more narrowly in narrow-gap materials:   

 

PbTe7: Maximum at 600K (1019 doped) => |a|T=0.18 eV, Eg=0.2 eV, 

Bi2Te38: Maximum at 400 K (1019 doped) => |a|T=0.1 eV, Eg= 0.11 eV, 

 

The CP thermopower of Re4Si7 (Fig. 2a) is an exception to the |𝛼|𝑇 < 𝐸- rule, but it is not the only one.  
The narrow-gap semiconductor Bi82Sb18,9 has Eg=0.011 eV, but a33= -100 µV K-1 at 300 K giving |a33|T 
=0.03 eV.  Exceptions occur in narrow gap semiconductors with a very large difference between electron 
and hole mobilities, which decreases the effectiveness of the compensation of the majority carrier 
thermopower by the minority carriers. 
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Figure S2: Thermoelectric data for near intrinsic Re4Si7 crystal 2. a, Temperature-dependent 
longitudinal thermopower coefficient from 100-980 K. b, Temperature-dependent electrical resistivity from 
100-980 K. c, Transverse thermopower coefficient, 330-900 K. 
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Supplement S4: Estimation of the Ambipolar Thermal Conductivity  

In the main text, we extrapolate the thermal conductivity at high temperature using the Wiedemann-Franz 
law assuming a Lorenz number (L0) of 2.44 x 10-8 WWK-2 and by assuming a constant lattice thermal 
conductivity.   

However, we can also extrapolate the thermal conductivity by considering an ambipolar contribution to 
the electronic component as well as more precisely modeling the drop in lattice component above the 
Debye temperature.  Here we show that extrapolating the high temperature thermal conductivity using 
this method leads to a slightly smaller thermal conductivity estimate.  

Assuming a two-carrier system, the thermal conductivity of Re4Si7 at high temperature can potentially 
contain an ambipolar contribution. Using a formula for ambipolar thermal conductivity from the literature,10 
the Lorenz number for the ambipolar term is given by:  

𝐿6789 =
8

('28)&
(|𝑆4| + |𝑆5|):     (S4.1) 

Where 

𝑏 = ;.<.
;/</

       (S4.2)  

And the ambipolar thermal conductivity is given by 

𝜅6789 = 𝐿6789𝜎𝑇       (S4.3) 
Since our sample of Re4Si7 exhibits negligible magnetothermopower and the Hall resistivity is linear in 
field, the in-plane thermopower is assumed to be dominated by holes and cross-plane thermopower by 
electrons, so that the in-plane and cross-plane Lorenz number is: 

𝐿678=B⃖BBBBBBBB⃗ = $
𝐿9> 0
0 𝐿?>

' = D

8
('28)&

𝑆5: 0

0 8
('28)&

𝑆4:
E   (S4.4) 

There are still 2 parameters in this formula, which are the carrier density ratio ne/nh and the mobility ration 
me/mh.  Assuming a constant scattering time approximation for both electrons and holes (which has been 
also approximated by Gu et al.)11, the mobility ratio is calculated by the product of effective mass. 

𝜇′ = <.
</
= @./7∗

.
@//7∗/

∼ 7∗
/

7∗.
     (S4.5) 

From our DFT calculations (Fig 1F), the effective mass ratios along the cross-plane and in-plane 
directions are: 

Cross-plane: 

𝜇'A&'B =
0.26
7.7 = 0.034 

 

In-plane: 

𝜇CA&'B = A.EF
A.'

= 4.9      

𝜇A'AB = A.GC
A.:H

= 3.5  
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Along the in-plane direction, the effective mass ratio is between 3.5 and 4.3 whereas along the out-of-
plane direction, the holes have very low mobility.  

With different carrier density ratio , the factor b and thus the ambipolar Lorenz number Lambi 

can be calculated. Since we know that the carrier concentration of holes is much higher than that of 
electrons, here we assume a value of 1 for simplicity. This brings the factor b to be. 𝑏12 = 4.9, 𝑏32 = 0.034. 
We then plug the values into the ambipolar formula, and the results are shown below; 

 
Figure S3 Thermopower and ambipolar Lorenz number ratio of Re4Si7 (crystal 1). In-plane 
thermopower (ain) and cross-plane thermopower (across) (solid black circles and stars, respectively).  In-
plane ratio of ambipolar Lorenz number to L0 (2.44 x 10-8 WWK-2) and cross-plane ratio of ambipolar Lorenz 
number to L0 (empty blue circles and stars, respectively). 

 

At temperatures below 400 K, the ambipolar Lorenz number increase with temperature up to 20% and 
then decrease to about 10% at ~1000 K. From this quick estimation, the ambipolar term is not dominating 
the thermal conductivity. 

 

Though it is a rough estimation, we can confirm that the holes in the cross-plane direction are extremely 
immobile which leads to electrons dominating the transport in that direction.  Therefore, the transport is 
like a single carrier case and the ambipolar conductivity is a small portion. 

 

The total thermal conductivity in the manuscript has been calculated assuming lattice contribution is 
constant at high temperature while ignoring an ambipolar contribution.  However, this clearly 
overestimates the lattice contribution at high temperature to ultimately give a lower bounds on the 
anisotropic zT values. 

 

Next, we will reevaluate the lattice thermal conductivity and extrapolate the total thermal conductivity to 
high temperature including the ambipolar term.  First, we subtract the electronic contribution from our 
experimental data and fit the lattice contribution with a power function, shown below. 

' /e hn n n=
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Figure S4 Lattice thermal conductivity Re4Si7 (crystal 1). In-plane lattice thermal conductivity (filled 
black circles) and cross-plane lattice thermal conductivity (filled red stars) each fit with a power function, 
respectively.  Values derived from total thermal conductivity through by subtracting electronic contribution 
from experimental data using W-F law. 

Finally, we extrapolate the total thermal conductivity with this lattice extrapolation and the new 
electronic/ambipolar contribution, shown below.   

 

Figure S5 Thermal conductivity adjusted for ambipolar electronic contribution. In-plane electronic 
component of thermal conductivity plus ambipolar contribution (ke+ambi,ip) and cross-plane electronic 
component of thermal conductivity plus ambipolar contribution (ke+ambi,cp) (empty black circles and empty 
red stars, respectively). In-plane total thermal conductivity adjusted for ambipolar contribution (ktotal,ip) and 
cross-plane total thermal conductivity adjusted for ambipolar contribution (ktotal,cp)) (filled black circles and 
filled red stars, respectively). 
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Despite including the ambipolar term, these extrapolated thermal conductivity tensors are on average 
lower than those reported in the main text mainly due to the reduction of the lattice component to thermal 
conductivity at high temperature.   Thus, the ambipolar thermal conductivity does not significantly 
contribute to the total thermal conductivity. 
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Figure S6: Re4Si7 αxy control measurement. Experimental transverse thermopower with heat passed 
along in-plane direction, transverse voltage measured along cross-plane direction. 
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Supplement S5: Efficiency of Re4Si7 Transverse Thermoelectric Generator Device 

The output power of the generator device is dictated by the transverse thermoelectric voltage (Vxy) and 
sample resistance (R) which were measure separately along the orientation shown in Figure 3c, and is 
determined by: 

𝑃456 =
7$%&

8
      S5.1 

The device efficiency (η) then relates output power to heat input into the sample (Qs) from the polyimide 
resistance heater: 

𝜂 = 9'()
:*

       S5.2 

The normalized device efficiency (ηN) as a fraction of Carnot (𝜂; = 1 − 𝑇;/𝑇<) then becomes:   

𝜂= =
9'()
:*∙?+

      S5.3 

A piece of quartz shaped to the dimensions of the Re4Si7 sample was used to quantify the degree of heat 
loss (QL) from the resistance heater (Qin) into our generator device using the same DT that was used in the 
device (kQ<<kRe4Si7). Quartz is an excellent standard for estimating the amount of heat loss from the source 
into the sample, since it has a well-known, low thermal conductivity (1.67 W m-1 K-1 at 560 K).12  The amount 
of heat conducted through the quartz glass (QG) is accounted for by measuring the temperature gradient 
using the known thermal conductivity of quartz at (QG= κQ • ∆T). The heat losses are then determined by: 

𝑄@ = 𝑄1A − 𝑄B      S5.4 

The net heat that is passed through the device (QD) can now be determined by: 

𝑄C = 𝑄D − 𝑄@      S5.5 

The device efficiency (η) after factoring in heat losses from the sample then becomes: 

𝜂 = 9'()
:,

       S5.6 

The normalized device efficiency as a fraction of Carnot is then: 

 	
𝜂= =

?
?+

       S5.7 

Finally, the device transverse figure of merit, ZxyT, corresponding to these measured device efficiencies 
can be extracted.  For a resistive load matched to sample resistance, the device efficiency, η, is: 

𝜂 = "-E"+
"-

∙ F
GHI$%"EG

FGEI$%"H
.-
.+

     S5.8 

The corresponding device ZxyT can then be solved: 
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𝑍JK𝑇	(𝜂, 𝑇< , 𝑇;) = 𝜂 ∙ 𝑇< ∙
(E"+

&∙?∙"-EM∙"+
/H?∙"-

/HM"-
&∙"+)

"+
&∙(?∙"-E"-H"+)&

    S5.9 

 

The in-plane and cross-plane 𝛂IP and 𝛂CP were measured using isothermal conditions, which were then 
used to calculate 𝛂xy. However, both our transverse	𝛂xy measurement for determining zxyT setup, as well 
as our device measurement setup ZxyT, correspond to measurement configurations that are midway 
between adiabatic and isothermal due to the shape of the brass heat spreaders above and below the 
sample. We show in Figure 3d that the respective material (zxyT) and device (ZxyT) figures of merit are in 
excellent agreement, confirming the absence of losses in efficiency that are prevalent in longitudinal 
thermoelectric devices.   
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Supplement S6: Axis-dependent thermopower polarity in semiconductors 

The anisotropic conduction polarity in near-intrinsic Re4Si7 has been previously attributed to a multi-
carrier mechanism, in which conduction and valence band carriers have a large difference in mobility.11, 13, 

14  The mechanism also requires that either the electron or the hole mobilities, or both are very anisotropic.  
In this section, we illustrate how this generates large anisotropic Seebeck coeffcients using a simplified 
model for possible configurations of conduction and valence bands in semiconductors. 

Consider the case of a nearly intrinsic semiconductor, at a temperature sufficient to thermally excite 
both electrons and holes.  The electrons have a concentration ne,  

 

  𝑛4 = ∫ 𝑔4(𝐸)𝑓IJ(𝐸)𝑑𝐸
¥
K#

                           (S6.1) 

 

where fFD is the Fermi-Dirac distribution, 

 

        (S6.2) 

 

and ge(E) is the density of states.  Assuming that the electrons and holes fill bands with parabolic dispersion, 
and using the effective electron mass: 

 

𝑔4(𝐸) =
GL√:
5O

𝑚4
N/:V𝐸 − 𝐸#                             (S6.3) 

 

where the electron effective mass tensor can be calculated from the curvature of the conduction band at its 
minimum, 

 

         	(𝑚4)9O&' =
'
ℏ&

Q&K
QRPQRQ

X
KSK#

                                   (S6.4) 

 

The electron and hole mobilities are tensors, expressed in the in-plane/cross-plane (IP/CP) axes system 
as, 

𝜇4 = $
𝜇4,!" 0
0 𝜇4,#"

' , 𝜇5 = $
𝜇5,!" 0
0 𝜇5,#"

'                   (S6.5) 

 

whose IP and CP components are given by 

µ = 4t
7.

                        (S6.6) 

 

fFD (E) =
1

1+ exp (E − EF ) (kBT )⎡⎣ ⎤⎦



14 

 

and so on for the other components of indices CP and mh.  We approximate the energy dependence of the 
average scattering time by the standard expression 

 

𝜏(𝐸) = 𝜏A𝐸&U           (S6.7) 

 

with l= –1/2 , assuming acoustic phonons as the dominant scatterers. The partial electron conductivities 
are then also tensors: 

 

                                       (S6.8) 

  

We further assume that the partial thermopowers of electrons and holes, ae and ah, are scalars, because 
they are directly related to the entropy of the quasi-particles divided by their charge.  We cthen compute 
𝜎R , 𝜎S, 𝛼R, 𝛼S	 from transport integrals.15 

 

The total thermopower is given by the conductivity-weighted average of the partial thermopowers, 
as in (Eq S3.1), except that here the thermopower is a tensor: 

 

𝛼 = (𝛼4𝜎4 + 𝛼5𝜎5)(𝜎4 + 𝜎5)&'          (S6.9) 

 

This can be worked out separately for the IP and CP directions to give: 

 

𝛼!" =
..2

T/U/,%$
T.U.,%$

./

'2
T/U/,%$
T.U.,%$

 ;   𝛼#" =
..2

T/U/,#$
T.U.,#$

./

'2
T/U/,#$
T.U.,#$

       (S6.10) 

 

Equation (6.10) contains all the ingredients necessary to understand the axis-dependent conduction polarity 
behavior that shows up at specific doping levels of the semiconductor (Fig. S7).   

 

 

 

 

 

 

 

 

!
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!
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!
σ h ≈ nhe

!
µh  
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Figure S7 Illustration of the multi-carrier mechanism. a, Band diagram of a Eg= 0.12 eV gapped material 
having an isotropic conduction and valence band, with me = |mh| = 0.2 m0.  b, The predicted in-plane and 
cross-plane 300 K thermopowers at different EF for the band structure shown in a.  c, Band diagram and d, 
EF dependent 300 K thermopowers for a Eg = 0.12 eV gapped material having an isotropic conduction and 
valence band with me = 0.2 m0 and mh = 1.0 m0.   e, Band diagram and f, EF dependent 300 K thermopowers 
for the anisotropic Re4Si7-like material having a  Eg= 0.12 eV gap, a relatively isotropic conduction band 
with me,CP = 0.26 m0, me,IP = 0.49 m0 and an anisotropic hole pocket with |mh,CP| = 7.7 m0 and |mh,IP| = 0.1 
m0.     

 

For all materials, in plane corresponds to the (h00) direction, cross plane corresponds to the (00l) direction.   
In the frames a, c and e of Fig. S7, we plot toy model band diagrams of a simple layered 0.12 eV gap 
semiconductor with a single conduction and valence band. Here, in-plane corresponds to the (h00) 
directions with isotropic properties in the plane, while cross-plane corresponds to the (00l) direction and EF 
= 0 is set at the mid-gap.  In frames b, d and f, we calculate the IP and CP thermopowers for these 
semiconductors at 300 K as a function of the position of the chemical potential on the y-axis.  The y-axes 
of frame a and b are identical, as with c and d, and e and f.  In other words, frames b, d and f represent the 
values of the IP (yellow) and CP (grey) thermopowers, as a function of chemical potential and thus doping 
level. 
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In frames a and b, we consider the case of an isotropic semiconductor (i.e. µIP=µCP) with symmetric 
conduction and valence bands where me = |mh| = 0.2 m0.  The IP and CP thermopowers are the same at 
all chemical potentials.  With the chemical potential in the conduction band, the thermopower is negative.  
Its absolute value increases as it approaches the band edge, because in metals and degenerate 
semiconductors, the partial thermopower ae µ 1/EF, where EF is the Fermi level measured from the band 
edge.  As long as the chemical potential is high in the conduction band, there are few holes so the term 
A0W0
A1W1

→ 0 in equation S6.10. When the chemical potential enters the gap, nh starts increasing, and so does 

the A0W0
A1W1

𝛼Sterm, limiting any further increase in |a|.  When the chemical potential is at mid-gap, A0W0
A1W1

= 1 

and because the bands are symmetric, ae = -ah   giving a = 0.  As the chemical potential further nears the 
valence band edge, and then enters it, the process above repeats, with the signs reversed.  Consequently, 
the curve of thermopower versus chemical potential is perfectly antisymmetric, as shown in Fig. S7b. 

In frames c and d, we consider the case of an isotropic semiconductor (i.e. µIP=µCP) with the 
conduction band having a lower effective mass (me = 0.2 m0) than the valence bands  (|mh| = 1.0 m0), and 
thus µe>µh.  The process above repeats, because when W0

W1
< 1 the term A0W0

A1W1
≠ 1  when the chemical 

potential is at mid-gap.  As a result, the point where a=0 is shifted toward the conduction band. The curve 
of a as function of the chemical potential is no longer antisymmetric.  At the same time, the maximum n-
type thermopower has a smaller absolute value than the maximum p-type thermopower.  Again, the IP and 
CP thermopowers are identical at all chemical potentials.   

In frames e and f, we now consider the case of an anisotropic semiconductor with the bands having 
similar effective masses to Re4Si7. Here, we assume a relatively isotropic conduction band with me,CP = 
0.26 m0, me,IP = 0.49 m0.  Along the IP direction, the valence band has a similar effective mass |mh,IP| = 0.1 
m0 to the conduction band.  Along the CP direction, the valence band has a much larger effective mass 
|mh,CP| = 7.7 m0 than the conduction band.  Therefore, µe,IP ≅ µe,CP ≅ µh,IP>µh,CP , which affects the balancing 
of electron and hole contributions differently for aIP and aCP in (Eq. S6.10).   In particular, since µ h,CP/µe,CP 
> 30,  aCP becomes dominated by ae, and thus will be much more negative than aIP close to the band 
edges.   Additionally, as the density of states is determined by the full mass tensor, the evolution of nh and 
ne with chemical potential will be different in frame f, compared to frame b and d.  Overall, both of these 
effects combine to cause aCP to shift down in energy, and flip from negative to positive sign at chemical 
potentials close to the valence band, whereas aIP will change sign when the chemical potential is slightly 
above mid gap. As a result, there exists a range of chemical potentials (from E-EF = -0.08  to +0.04 eV in 
Fig. S7f) where simultaneously aIP>0 and aCP<0.    

Again, Fig. S7f represents schematically a simplified two-band, band structure with effective 
masses close to those in Re4Si7.  Remarkably, this analytical model predicts values of the thermopower 
that are in close agreement with the values measured for crystal 1. Specifically, at 0.02 eV above midgap, 
the predicted 300 K aIP is +120 µV K-1 and aCP is -230 µV K-1, which is nearly identical to our measured aIP 
of 119 µV K-1  and aCP  of -243 µV K-1.   Finally, this model indicates that in a narrow gap semiconductor 
that has a highly anisotropic valence band, and an isotropic conduction band, axis-dependent conduction 
polarity will maximize at chemical potentials close to the valence band.  
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Supplement S7. DFT calculations supporting Si vacancies as p-type dopants. 

 

DFT calculations were performed to evaluate the behavior of Si vacancies as dopants in Re4Si7.  Indeed 
these calculations show that Si vacancies in Re4Si7 act as p-type dopants. Figure S7 shows the calculated 
energy dependent density of states (DOS) for a 352 atom Re4Si7 super cell (Re128Si224)  along with the 
density of states for the same supercell with a single neutral silicon vacancy (Re128Si223). In both cases, 0 
eV corresponds to the valence band maximum.  The red dashed line is the calculated Fermi level for the 
unit cell with Si vacancies. Since this Fermi level cuts through the valence band, it shows that the Si 
vacancies act as p-type dopants.   

Figure S8: DOS for stoichiometric and Si-deficient Re4Si7. Calculated DOS for a supercell of Re4Si7 
containing a stoichiometric Re128Si224 ratio (green) and Si-deficient Re128Si223 ratio (red).  In both plots 0 eV 
corresponds to the valence band maximum.   The Fermi level for the Si-deficient compound is depicted at 
the dashed line. 

  



18 

 

 

 
Figure S9: Hall, Nernst, Magnetoresistance for near-intrinsic Re4Si7 crystal 1. a, Temperature-
dependent Hall coefficient. b,  Temperature-dependent Nernst thermopower. c, Field-dependent electrical 
resistivity showing little to no magnetoresistance. 

 

 

 
Figure S10:  Hall, Nernst, Magnetoresistance for Re4Si7 crystal 3. a, Temperature-dependent Hall 
coefficient. b,  Temperature-dependent Nernst thermopower. c, Field-dependent electrical resistivity 
showing little to no magnetoresistance. 
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Figure S11: Comparison of reported zxyT values in other material systems Re4Si7. Bi/Cu, 
zxyT=0.042(predicted)16; Bi0.5Sb1.5Te3/Ni, zxyT=0.05717; Bi2Te3/Pb, zxyT=0.07418; Re4Si7 (this work), 
zxyT=0.7±0.15 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 
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