Supplementary information for

Flexible-Spacer Incorporated Polymer Donors Enable Superior Blend Miscibility for High-Performance and Mechanically-Robust Polymer Solar Cells

Jin-Woo Lee,^{†,a} Dahyun Jeong,^{†,a} Dong Jun Kim,^b Tan Ngoc-Lan Phan,^a Jin Su Park,^a Taek-Soo Kim^b and Bumjoon J. Kim^{*,a}

^{*a*}Department of Chemical and Biomolecular Engineering, ^{*b*}Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea

* All correspondence should be addressed to B. J. K. (E-mail: <u>bumjoonkim@kaist.ac.kr</u>)

KEYWORDS: polymer solar cell; polymer donor; non-fullerene small-molecule acceptor; mechanical robustness; high efficiency.

Table of Contents

Additional experiments

Supplementary Figures

Fig. S1 Collected ¹H NMR spectra of PM6-CX $P_{\rm D}$ s.

Fig. S2 (a) UV-vis absorption spectra of the $P_{\rm D}$ s and Y7 acceptor in film state. (b) Cyclic voltammograms and (c) energy diagrams for the $P_{\rm D}$ s.

Fig. S3 Temperature-dependent UV-V is absorption spectra for the pristine $P_{\rm D}$ s in solutions.

Fig. S4 J_{ph} vs. V_{eff} curves for the P_D :Y7 blends.

Fig. S5 AFM height images of the $P_{\rm D}$:Y7 blends.

Fig. S6 DSC thermograms of (a) PM6-CX $P_{\rm D}$ s and (b) Y7 for the 1st heating cycle.

Fig. S7 Normalized UV-vis absorption spectra of the P_D :Y7 blends in film state.

Fig. S8 GIXS linecut profiles of the pristine $P_{\rm D}$ s in the (a) IP and (b) OOP directions, (c) $L_{\rm c}$ values of the (100) scattering peaks for both IP and OOP directions depending on the $P_{\rm D}$ s; (d) $L_{\rm c}$ values extracted from (100) scattering peaks at different polar angles.

Fig. S9 2D GIXS images of the pristine $P_{\rm D}$ s.

Fig. S10 GIXS linecut profiles for the P_D :Y7 blends in the (a) IP and (b) OOP directions.

Fig. S11 (a) Sample structure for the DCB tests; (b) G_c values of the blend films depending on the $P_{\rm DS}$.

Fig. S12 Load vs. displacement curves from the DCB tests for the blends with (a) PM6, (b) PM6-C5, (c) PM6-C10, (d) PM6-C20 and (e) PM6-C30 $P_{\rm D}$ s.

Fig. S13 (a) Experimental setup for the bending tests for the flexible devices, and (b) picture of the flexible devices.

Fig. S14 (a) *J-V* curves of the flexible devices without bendings; (b) normalized PCE vs. bending cycles of the $P_{\rm D}$:Y7 blends.

Supplementary Tables

Table S1 SCLC mobilities and thickness information for the P_D :Y7 blends.

Table S2 λ_{max} values in the lower energy band measured from UV-Vis absorption spectroscopy of the blend films.

Table S3 PCE and COS values of the binary PSC systems using SMA or SMA-polymerized acceptor in other works and this work.

Table S4 Photovoltaic parameters of the flexible devices.

Table S5 PCE values of the flexible devices depending on the bending cycles.

Materials: 4,8-Bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane) (BDT monomer), 1,3-bis(5-bromothiophen-2-yl)-5,7-bis(2-ethylhexyl)benzo[1,2-c:4,5-c']dithiophene-4,8-dione (BDD monomer) were purchased from *SunaTech* Incorporation. The FS unit, 1,10-bis(5-bromothiophen-2-yl)decane, was synthesized by the method reported in the literature.¹ Y7 SMA was purchased from *Derthon*. 2,9-bis(3-((3-(dimethylamino)propyl)anino)propyl)anthra[2,1,9-*def*:6,5,10-*d'e'f'*]diisoquinoline-

1,3,8,10(2*H*,9*H*)-tetraone (PDINN) interlayer was synthesized by following the method in the previous report.² All other materials including catalysts were purchased from *Sigma Aldrich*.

Fabrication of polymer solar cell (PSC): The PSC device structure was indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene:polystyrene sulfonic acid) (PEDOT:PSS, AI4083 from Heraeus)/active layer/PDINN/Ag. ITO-coated glass substrates were washed by ultrasonication with acetone and isopropyl alcohol, and dried in an oven at 80 °C. The washed ITO-coated glass was plasma-treated for 10 min and PEDOT:PSS solution was spin-casted (3000 rpm, 30 s). Then, the substrates were thermally annealed (165 °C, 20 min) and moved into a glove-box. The bulk-heterojunction (BHJ) solutions with optimal conditions (20 mg mL⁻¹ in chlorobenzene, donor:acceptor = 1:1 and 1 vol% of 1-chloronaphthalene) were spin-coated onto the substrates (2000 rpm, 20 s), and baked at 100 °C for 5 min. Next, the PDINN solution (1 mg mL⁻¹ in methanol) was casted onto the BHJ layer (3000 rpm, 20 s) and top electrode (Ag, 120 nm) was thermally deposited. The photoactive area for PSC measurement was 0.164 cm². The results of more than ten PSC devices were collected for each active system and the average/maximum photovoltaic parameters of the data are presented in **Table 2** to determine data reliability.

Fabrication of flexible polymer solar cell (FPSC): The device fabrication procedures were based on the previous literature.³ We used thermoplastic polyurethane (TPU) as the substrate because it has high transmittance and bendability. For the bottom electrode, we used PEDOT:PSS (Heraeus CleviosTM PH1000) to replace ITO and included additives to enhance the properties of the PEDOT:PSS. In detail, 5 vol% of dimethyl sulfoxide (DMSO) for better electrical properties, 2 vol% polyethylene glycol (PEG) for better mechanical properties, and 0.5 vol% of Zonyl fluorosurfactant (Zonyl FS-30) as a dopant were added into the PEDOT:PSS solution. The rest of the devices including active layer, electron transporting layer, and electrode were fabricated following the same processes with the PSC fabrication.

Fig. S1 Collected ¹H NMR spectra of PM6-CX $P_{\rm D}$ s.

Fig. S2 (a) UV-vis absorption spectra of the $P_{\rm D}$ s and Y7 acceptor in film state. (b) Cyclic voltammograms and (c) energy diagrams for the $P_{\rm D}$ s in this study.

Fig. S3 Temperature-dependent UV-Vis absorption spectra for the pristine $P_{\rm D}$ s in chlorobenzene solutions.

Fig. S4 $J_{\rm ph}$ vs. $V_{\rm eff}$ curves for the $P_{\rm D}$:Y7 blends.

Table S1 SCLC mobilities and thickness information for the P_D :Y7 blends.

	P _D	$\mu_{\rm h} ({\rm cm}^2 {\rm V}^{-1} {\rm s}^{-1})$	$\mu_{\rm e} ({\rm cm}^2 {\rm V}^{-1} {\rm s}^{-1})$	Thickness (nm) ^a
_	PM6	1.6×10^{-4}	2.1×10^{-4}	107
	PM6-C5	4.0×10^{-4}	2.9×10^{-4}	115
	PM6-C10	3.6×10^{-4}	2.0×10^{-4}	110
	PM6-C20	8.4×10^{-5}	7.6×10^{-5}	121
	PM6-C30	5.3×10^{-5}	6.0×10^{-5}	118

^aThicknesses of the blend films are same as those in PSC fabrication.

Fig. S5 AFM height images of the P_D :Y7 blends (scale bars are 1 μ m).

Fig. S6 DSC thermograms of (a) PM6-CX $P_{\rm D}$ s and (b) Y7 for the 1st heating cycle.

Fig. S7 Normalized UV-vis absorption spectra of the P_D :Y7 blends in film state.

Table S2 λ_{max} values in the lower energy band measured from UV-Vis absorption spectroscopy of the blend films.

P _D	λ_{\max} (nm)
РМ6-С0	842
PM6-C5	837
PM6-C10	838
PM6-C20	843
PM6-C30	847

Fig. S8 GIXS linecut profiles of the pristine $P_{\rm D}$ s in the (a) IP and (b) OOP directions; (c) coherence length ($L_{\rm c}$) values of the (100) scattering peaks for both IP (face-on) and OOP (edge-on) directions depending on the $P_{\rm D}$ s; (d) $L_{\rm c}$ values extracted from (100) scattering peaks at different polar angles.

Fig. S9 2D GIXS images of the pristine $P_{\rm D}$ s.

Fig. S10 GIXS linecut profiles for the P_D :Y7 blends in the (a) IP and (b) OOP directions.

Fig. S11 (a) Sample structure for the DCB tests; (b) G_c values of the blend films depending on the $P_{\rm D}$ s.

Fig. S12 Load vs. displacement curves from the DCB tests for the blends with (a) PM6, (b) PM6-C5, (c) PM6-C10, (d) PM6-C20 and (e) PM6-C30 $P_{\rm D}$ s.

Blend	PCE _{max} (%)	COS (%) ^a	Reference
PM6:IDIC16	4.9	1.4	3
PM6:PF2-DTC	8.3	11.3	3
PM6:PF2-DTSi	10.8	8.6	3
PM6:PF2-DTGe	8.1	6.7	3
PTB7:PC ₇₁ BM (1:1.5)	0.3	2.1	4
PTB7:PC ₇₁ BM (1:1)	0.1	4.3	4
PBDTTTPD:PC61BM	6.1	0.1	5
PTB7-Th:FOIC (BHJ)	11.0	3.1	6
PTB7-Th:FOIC (P-i-N)	12.0	11.5	6
PTB7-Th:PC71BM	6.0	1.1	7
PTB7-Th:ITIC	6.4	3.4	7
PTB7-Th:P-15K	3.1	6.0	7
PTB7-Th:P-20K	3.4	11.2	7
PTB7-Th:PC71BM	8.4	1.1	8
PBDB-T:Y5-2BO	7.0	2.3	9
PBDB-T:P(BDT2BOY5-H)	8.8	19.3	9
PBDB-T:P(BDT2BOY5-F)	9.8	16.7	9
PBDB-T:P(BDT2BOY5-Cl)	11.1	15.9	9
PM6:Y6	15.4	5.8	10
PBDB-T:PYT (BHJ)	14.1	8.5	11
PBDB-T:PYT (LbL)	15.2	10.5	11
PM6-C5:Y7	16.7	12.1	This work

Table S3 PCE and COS values of the binary PSC systems using SMA or SMA-polymerized acceptor in other works and this work.⁴⁻¹²

^a The presented COSs stand for the values measured by pseudo free-standing tensile method.

Fig. S13 (a) Experimental setup for the bending tests for the flexible devices, and (b) picture of the flexible devices.

Fig. S14 (a) *J-V* curves of the flexible devices without bendings; (b) normalized PCE vs. bending cycles of the $P_{\rm D}$:Y7 blends.

Table S4 Photovoltaic parameters of the flexible devices (without bending).

P _D	V _{oc} (V)	J _{sc} (mA cm ⁻²)	FF	PCE (%)
РМ6-С0	0.81	21.99	0.58	10.29
PM6-C5	0.82	21.97	0.65	11.64

Cycle P _D	0	200	500	1000	1500
РМ6-С0	10.29	9.01	8.39	7.40	6.81
PM6-C5	11.64	11.39	10.32	9.63	9.14

Table S5 PCE values of the flexible devices depending on the bending cycles.

References

1. B. C. Schroeder, Y. C. Chiu, X. D. Gu, Y. Zhou, J. Xu, J. Lopez, C. Lu, M. F. Toney and Z. N. Bao, *Adv. Electron. Mater.*, 2016, **2**, 1600104.

2. J. Yao, B. B. Qiu, Z. G. Zhang, L. W. Xue, R. Wang, C. F. Zhang, S. S. Chen, Q. J. Zhou, C. K. Sun, C. Yang, M. Xiao, L. Meng and Y. F. Li, *Nat. Commun.*, 2020, **11**, 2726.

3. J.-W. Lee, N. Choi, D. Kim, T. N.-L. Phan, H. Kang, T.-S. Kim and B. J. Kim, *Chem. Mater.*, 2021, **33**, 1070-1081.

4. Q. P. Fan, W. Y. Su, S. S. Chen, W. Kim, X. B. Chen, B. Lee, T. Liu, U. A. Mendez-Romero, R. J. Ma, T. Yang, W. L. Zhuang, Y. Li, Y. W. Li, T. S. Kim, L. T. Hou, C. Yang, H. Yan, D. H. Yu and E. G. Wang, *Joule*, 2020, 4, 658-672.

5. J. H. Kim, J. Noh, H. Choi, J. Y. Lee and T. S. Kim, *Chem. Mater.*, 2017, **29**, 3954-3961.

6. T. Kim, J. H. Kim, T. E. Kang, C. Lee, H. Kang, M. Shin, C. Wang, B. W. Ma, U. Jeong, T. S. Kim and B. J. Kim, *Nat. Commun.*, 2015, **6**, 8547.

7. Y. L. Wang, Q. L. Zhu, H. B. Naveed, H. Zhao, K. Zhou and W. Ma, *Adv. Energy Mater.*, 2020, **10**, 1903609.

J. Choi, W. Kim, S. Kim, T. S. Kim and B. J. Kim, *Chem. Mater.*, 2019, **31**, 9057-9069.
 W. Lee, J. H. Kim, T. Kim, S. Kim, C. Lee, J. S. Kim, H. Ahn, T. S. Kim and B. J. Kim, *J. Mater. Chem. A*, 2018, **6**, 4494-4503.

10. J. W. Lee, C. Sun, B. S. Ma, H. J. Kim, C. Wang, J. M. Ryu, C. Lim, T. S. Kim, Y. H. Kim, S. K. Kwon and B. J. Kim, *Adv. Energy Mater.*, 2021, **11**, 2003367.

11. J. H. Han, F. Bao, D. Huang, X. C. Wang, C. M. Yang, R. Q. Yang, X. G. Jian, J. Y. Wang, X. C. Bao and J. H. Chu, *Adv. Funct. Mater.*, 2020, **30**, 2003654.

12. Q. Wu, W. Wang, Y. Wu, Z. Chen, J. Guo, R. Sun, J. Guo, Y. Yang and J. Min, *Adv. Funct. Mater.*, 2021, **31**, 2010411.