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1 Experimental Section   

1.1 Materials 

Poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) (Mn=20,000) was supplied by J&K Scientific Ltd. N-

Bromosuccinimide (NBS), benzoyl peroxide, 2, 2’-azobis-isobutyronitrile (AIBN), trimethylamine (TMA, 

7.3 M aqueous solution), Triethylamine (TEA), chlorobenzene, diethyl ether, N-methyl-2-pyrrolidone 

(NMP, reagent grade) were acquired from Sigma-Aldrich Chemical Reagent Co., Ltd. 

 

1.2 Synthesis of AEMs 

An amount of 5.04 g of PPO was dissolved in 140 mL of chlorobenzene. Then 0.51 g (2.11 mmol) of 

benzoyl peroxide (BPO) and 2.93 g (16.42 mmol) of NBS were added under vigorous stirring at 85°C. 

After reacting for 24 h, the yellow solid (Br-PPO) was collected by filtration, washed thrice with methanol, 

and dried at 50 ℃ for 48 h. 

0.25 g Br-PPO was dissolved in 10 mL NMP and reacts with excess TMA (or excess triethylamine) 

at room temperature for 4 days: The molar ratio of TMA (or triethylamine) to polymer is 2: 1. The reacted 
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mixture was added drop-wise to diethyl ether and the quaternized PPO were obtained by filtering and 

washing via diethylether. An amount of 0.15 g of quaternized PPO copolymers was dissolved in 10 mL 

NMP and dried in an oven at 80 ℃ for 36 hours, and then the resulting membrane was soaked in 1 M NaOH 

at room temperature for 48 hours. 

 

1.3 Characterization and Measurements 

All polymers were characterized by 1H-NMR spectroscopy with a Bruker DR X400 spectrometer at 

room temperature using CDCl3 or DMSO-d6 as solvents.  

Under a nitrogen atmosphere, the membrane was dried for 48 hours and weighed to obtain the mass 

(mdry) of the dried sample. Then, the membrane was soaked in deionized water for 48 hours under nitrogen, 

and weighed to obtain the mass (mwet) of the wet sample. The water uptake (WU, %) was calculated by the 

following formula: 

100
wet dry

dry

m m
WU

m


          (1) 

Similarly, the swell ratio (SR) was calculated by the following formula: 

100
wet dry

dry

L L
SR

L


            (2) 

Where Lwet and Ldry are the lengths of the wet and dry sample at room temperature, respectively. 

The small membrane sample was soaked in 1 M NaOH solution at 60°C for a specified time from 24 

h to 168 h. After treatment, it was carefully washed with deionized water under nitrogen. When the pH of 

the membrane reached 7, it was soaked in deionized water for 40 minutes, and its ion conductivity was 

measured. The resistance value (R) of the membrane was measured by using electrochemical workstation 

(Shanghai Chen hua) via the four-electrode method. The ion conductivity was calculated by the formula 

(3): 
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d

LWR
                 (3) 

Where d is the distance between reference electrodes, and L and W are the thickness and width of the 

membrane, respectively. 

 

1.4 ANN model 

The detailed introduction of the ANN model is as follows: First, all input features are normalized to 

form a 15-dimensional vector Xi. As illustrated in Figure 1b, the number of neurons in the input layer is 

equal to the number of input features. When a set of input features are input to the input layer, each 

neuron in hidden layer 1 calculates an independent result through its activation function f(WXi+b). The 

type of activation function determines a neuron’s reaction to the complete incoming signal. The 

commonly used activation functions are as follows: 

Relu activation function (The Rectified Linear Unit): ( ) max(0, )f x x  

Tanh activation function: ( )
x x

x x

e e
f x

e e









 

Sigmoid activation function: 
1

( )
1 x

f x
e




 

Softsign activation function: ( )
1

x
f x

x



 

Softplus activation function: ( ) log(1 )xf x e   

Then the 70 calculation results of hidden layer 1 are merged into a 70-dimensional vector as the new 

input of hidden layer 2. The same procedure was repeated until the dataflow reached the output layer. The 

number of neurons in the output layer is equal to the number of output features. By considering the 

prediction error of the results of each hidden layer, the previous neurons are retrained and their 

parameters are updated. 

Here previous neurons were calculated by formula: 

   
2 ( ) ( )
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where ,( ) ( ) ( )T

W bf z f W x h x  , W is weight, b is bias (parameters in neuron). 



 

S4 

 

 

 

 

2 Supplementary figures and tables 

 

 

Figure S1. Distribution of (a) R2 values and (b) Rmse of the ANN for variable numbers of hidden layers 

and neurons in the hidden layer. The best ANN model (maximum R2 and minimum Rmse) were obtained 

by grid search of combinations of different numbers of hidden layers and neurons. 
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Figure S2. The loss curves on the training set and the split training set used for validation in the training 

process of the artificial neural network 
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Figure S3. Summary of the Rmse and R2 values for ANN model with different number of input features. 
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Figure S4. Regression correlation coefficient (R2) of (a) TOP5, (b) TOP10 for test set under the same 

structure of the database. The top 5 features (TOP5) or the top 10 features (TOP10) are used as inputs to 

build regression models, respectively. The R2 value of the model increases with the number of input features. 

In order to increase the accuracy of the model, a more complex model (15 input features) was selected. 

  



 

S8 

 

 

 

Figure S5. Computation cost under different combinations of the numbers of neurons and hidden layers by 

a) TOP5, and b) TOP10 (a server equipped with GTX 1050Ti and the CUDA7.5 framework). It can be 

observed that the differences between the times under different combinations of the numbers of neurons 

and hidden layers were small (in the same order of magnitude). Considering the accuracy of the model, it 

is worth for sacrificing some time cost. 
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Figure S6. Regression correlation coefficient (R2) of without temperature feature for test set under the 

same structure of the database in Figure 4. 
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Figure S7. Regression correlation coefficient (R2) of (a) GPR, (b) SVR, (c) RFR, (d) XGR, and (e) ANN 

algorithms for training set under the same structure of the database. (f) Summary of the Rmse and R2 values 

for each machine learning algorithm. By modifying the random seed number, different training and test sets 

were generated to verify the robustness of the algorithms. 
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Figure S8. The chemical structure of the polymers predicted by the artificial neural network (listed in Table 

S5). However, there are 15 input parameters for the ANN model, these parameters may be contradictory to 

each other. For example, the swelling ratio and water uptake of Polymer 1 is set to be 1.92% and 55.64%, 

respectively. However, such a design is difficult to be realized experimentally. Due to the inherent 

shortcomings of the ANN model, the optimal chemical structures of AEMs given by the AI were not 

adopted in this work. Although ANN was not used to obtain the possible best performances, it can still 

guide our experimental design, due to its high accuracy (R2 =0.9978). 
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Figure S9. The chemical structures and NMR spectra of four AEMs investigated in this work.  
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Table S1. Hammett and modified Swain-Lupton constants of substitution group* 

 σm σp F R ref(s) 

Br 0.39 0.23 0.45 -0.22 1 

CF3 0.43 0.54 0.38 0.16 1 

CF2CF3 0.47 0.52 0.44 0.08 2 

CF2CF2CF3 0.44 0.48 0.42 0.06 1 

CH2NH2 -0.03 -0.11 0.04 -0.16 1 

CH3 -0.07 -0.17 0.01 -0.18 1 

C2H5 -0.07 -0.15 0 -0.15 1 

C3H7 -0.06 -0.13 0.01 -0.14 1,3 

(CH2)3CH3 -0.08 -0.16 -0.01 -0.15 3,4 

(CH2)4 -0.48 -0.48 -0.4 -0.08 3 

SO2C6H5 0.62 0.68 0.58 0.1 1 

OC6H5 0.25 -0.03 0.37 -0.4 1,3 

CN 0.56 0.66 0.51 0.15 1 

C6H5 0.06 -0.01 0.12 -0.13 1 

C6F5 0.26 0.27 0.27 0 4 

C6H4-4-Br 0.15 0.12 0.18 -0.06 1 

C6H4-4-Cl 0.15 0.12 0.18 -0.06 1 

C6H4-4-F 0.12 0.06 0.17 -0.11 1 

OCH2CH2CH3 0.1 -0.25 0.26 -0.51 1 

CONH2 0.28 0.36 0.26 0.1 3,5 

COC6H5 0.28 0.3 0.31 -0.01 1 

NO 0.62 0.91 0.49 0.42 5 

SO3
- 0.3 0.35 0.29 0.06 1 

SO2
- -0.02 -0.05 0.03 -0.08 2 

Cl 0.37 0.23 0.42 -0.19 1 
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NHNH2 -0.02 -0.55 0.22 -0.77 3 

CO2
- -0.1 0 -0.1 0.1 1 

NH2 -0.16 -0.66 0.08 -0.74 1 

CHBr2 0.31 0.32 0.31 0.01 3 

CHCl2 0.31 0.32 0.31 0.01 3 

CHF2 0.29 0.32 0.29 0.03 4 

OMe 0.12 -0.27 0.29 -0.56 1 

CH2OH 0 0 0.03 -0.03 5 

OCOMe 0.39 0.31 0.42 -0.11 1 

COOMe 0.37 0.45 0.34 0.11 2 

NHCOMe 0.21 0 0.31 -0.31 1 

CONHMe 0.35 0.36 0.35 -0.01 4 

COEt 0.38 0.48 0.34 0.14 3 

CH2OCOMe 0.04 0.05 0.07 -0.02 3 

C(Me)3 -0.1 -0.2 -0.02 -0.18 1 

C6C15 0.25 0.24 0.27 -0.03 4 

OC6H6 0.25 -0.03 0.37 -0.4 1 

(CH2)6CH3 -0.07 -0.16 0 -0.16 5 

C=CC6H6 0.14 0.16 0.15 0.01 2 

*The Hammett equation (and its extended forms) is one of the most widely used means for the study 

and interpretation of organic reactions and their mechanisms. Building on the success and power of the 

Hammett constants, efforts into further delineating the effect of field and resonance effects were undertaken. 

There seems to be good agreement on the magnitude of the parameter’s values, hereafter called the F (for 

field) and R (for resonance) and generally termed Swain-Lupton values. 
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Table S2. Input factors and corresponding range of factors* 

 Factor 
Range (minimum value-maximum 

value) 

Conductivity (mS·cm-1) 0.79 – 137.08  

IEC (mmol·g-1) 0.27 – 3.89  

Water uptake (%) 5.64 – 136.1  

Swelling ratio (%)  1.92 – 117 

 Maximum elongation (%)  1.8 – 345.45 

Maximum stress /Mpa 1.8 – 310.21 

Membrane thickness / um 10 – 265 

Ether aryl contribution -1.38 – 0.55 

Alkyl chain contribution -5.1 – 3.4 

Sulfone contribution -3.4 – 6.8 

Spacer -1.57 – 0.45 

Extender -2.26 – -0.39 

Alkali temperature (℃)  25 – 90 

Alkali concentration (mol·L-1)  1 – 10 

*All input comes from the reported literature.6-90 In these input factors, the polymer structure 

information (such as alkyl chain contribution, sulfonic group contribution, ether aryl contribution, extender, 

spacer, and ion exchange capacity) are determined by the structure of the AEMs. The conductivity, water 

uptake, swelling ratio, maximum elongation, maximum stress, and membrane thickness were physical and 

chemical properties of AEMs. Alkali temperature and alkali concentration were operating conditions of 

long-term stability experiments. 
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Table S3. Confusion matrix describing the decision tree’s predict precision on degradation rate based on 

the atomic numbers 

 Real type Total 

Under 

88% 

(predict) 

Over 88% 

(predict) 
Precision 

Training 

set 

Under 

88% 
102 102 0 100% 

Over 88% 39 1 38 97% 

Testing 

set 

Under 

88% 
19 12 7 60% 

Over 88% 6 3 3 50% 

 

 

Table S4. Confusion matrix describing the decision tree’s predict precision on degradation rate based on 

the Hammett substituent constants 

 Real type Total 

Under 

88% 

(predict) 

Over 88% 

(predict) 
Precision 

Training 

set 

Under 

88% 
102 

102 0 100% 
Over 88% 39 0 39 100% 

Testing 

set 

Under 

88% 
19 

12 7 60% 
Over 88% 6 1 5 83% 
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Table S5. The optimum conditions for the extraction ANN model.* 

 Polymer 1 Polymer 2 Polymer 3 Polymer 4 

Conductivity (30 ℃, mS·cm-1) 40.79 40.79 40.79 40.79 

IEC (mmol·g-1) 1.97 1.97 1.97 1.97 

Water uptake (30 ℃, %) 55.64 55.64 5.64 5.64 

Swelling ratio (30 ℃, %) 1.92 2.92 2.42 3.92 

Maximum elongation (%) 21.8 21.8 21.8 21.8 

Maximum stress (Mpa) 9.8 9.8 61.8 61.8 

Membrane thickness (um) 210 210 110 110 

Ether aryl contribution -0.11 -0.11 -0.11 -0.11 

Alkyl chain contribution -0.89 -0.89 -0.89 -0.89 

Sulfone contribution 0 0 0 0 

Spacer 0.39 0.39 0.28 0.28 

Extender -1.53 -1.71 -1.71 -1.53 

Alkaline Temperature (℃) 60 60 60 60 

Alkaline concentration (mol·L-1) 1 1 1 1 

Time (h) 168 168 168 168 

Predicted conductivity retention (%) 95.42 96.56 94.12 94.23 
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Table S5. Continued. 

 Polymer 5 Polymer 6 Polymer 7 Polymer 8 

Conductivity (30 ℃, mS·cm-1) 50.79 60.79 60.79 60.79 

IEC (mmol·g-1) 2.27 1.27 3.27 3.27 

Water uptake (30 ℃, %) 55.64 55.64 55.64 55.64 

Swelling ratio (30 ℃, %) 51.92 1.92 31.92 31.92 

Maximum elongation (%) 1.8 1.8 151.8 151.8 

Maximum stress (Mpa) 31.8 31.8 31.8 31.8 

Membrane thickness (um) 210 110 110 110 

Ether aryl contribution 0 0 0 0 

Alkyl chain contribution 1.0 1.0 1.0 1.0 

Sulfone contribution 0 0 0 0 

Spacer 0.18 0.18 0.45 0.45 

Extender -1.68 -1.83 -1.83 -1.68 

Alkaline Temperature (℃) 60 60 60 60 

Alkaline concentration (mol·L-1) 1 1 1 1 

Time (h) 168 168 168 168 

Predicted conductivity retention (%) 93.69 99.29 91.50 91.52 
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Table S5. Continued. 

 Polymer 9 Polymer 10 Polymer 11 Polymer 12 

Conductivity (30 ℃, mS·cm-1) 0.79 0.79 0.79 0.79 

IEC (mmol·g-1) 0.27 0.27 0.27 0.27 

Water uptake (30 ℃, %) 5.64 5.64 5.64 5.64 

Swelling ratio (30 ℃, %) 1.92 1.92 1.92 1.92 

Maximum elongation (%) 1.8 1.8 1.8 1.8 

Maximum stress (Mpa) 1.8 1.8 1.8 1.8 

Membrane thickness (um) 10 10 10 10 

Ether aryl contribution -1.38 -1.38 -1.38 -1.38 

Alkyl chain contribution -5.1 -5.1 -5.1 -5.1 

Sulfone contribution -3.4 -3.4 -0.4 -0.4 

Spacer -0.97 -0.97 -0.67 -0.67 

Extender -2.26 -1.76 -2.26 -1.76 

Alkaline Temperature (℃) 60 60 60 60 

Alkaline concentration (mol·L-1) 1 1 1 1 

Time (h) 168 168 168 168 

Predicted conductivity retention (%) 100.07 100.08 99.99 100.03 
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Table S5. Continued. 

 Polymer 13 Polymer 14 Polymer 15 Polymer 16 

Conductivity (30 ℃, mS·cm-1) 20.79 20.79 20.79 20.79 

IEC (mmol·g-1) 1.27 1.27 1.27 0.27 

Water uptake (30 ℃, %) 5.64 5.64 5.64 5.64 

Swelling ratio (30 ℃, %) 1.92 1.92 1.92 1.92 

Maximum elongation (%) 1.8 1.8 1.8 1.8 

Maximum stress (Mpa) 1.8 1.8 1.8 1.8 

Membrane thickness (um) 10 10 110 110 

Ether aryl contribution -1.38 -1.38 -0.18 -0.18 

Alkyl chain contribution -5.1 -5.1 2.9 2.9 

Sulfone contribution -0.4 -0.4 -3.4 -3.4 

Spacer -0.67 -0.67 -0.67 -0.67 

Extender -1.26 -0.76 -1.26 -0.76 

Alkaline Temperature (℃) 60 60 60 60 

Alkaline concentration (mol·L-1) 1 1 1 1 

Time (h) 168 168 168 168 

Predicted conductivity retention (%) 99.99 99.98 94.30 92.42 

*For polymers 9-12, the conductivity of AEMs was 0.79 mS·cm-1 and the ion exchange capacity of AEMs 

was 0.27. Low conductivity anion exchange membrane has no application value. Since the correspondence 

between polymer structure and Hammett constant is in a single direction (each substituent corresponds to 

a Hammett constant, while some values do not correspond to substituents), machine learning gives some 
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non-existent polymers. For Polymers 13-16, machine learning gives these prediction result: Ether aryl 

contribution was -1.38, Alkyl chain contribution was -5.1, and Sulfone contribution was -0.4, as far as we 

know, no polymer structure corresponds to these values. 

 

Table S6. Physical and chemical properties of synthetic AEMs and operating conditions  

 PPO-MTMA PPO-ETMA PPO-DMBA PPO-DMHA 

Conductivity (mS·cm-1) 126.68 101.82 55.99 23.16 

IEC (mmol·g-1) 2.28 2.08 2.39 2.46 

Water uptake (%) 47.05 39.82 50.41 103.92 

Swelling ratio (%) 80.70 32.96 14.22 74.76 

Membrane thickness (um) 63 48 108 97 

Ether aryl contribution -0.11 -0.11 -0.11 -0.11 

Alkyl chain contribution -0.89 -0.89 -0.89 -0.89 

Sulfone contribution 0 0 0 0 

Spacer -0.17 -0.17 -0.17 -0.17 

Extender -0.51 -0.45 -0.82 -0.59 

Alkaline Temperature (℃) 60 60 60 60 

Alkaline concentration (mol·L-1) 1 1 1 1 
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Table S7. Hyperparameters of the machine learning algorithms for different purposes 

Algorithm Hyperparameter Value/tpye 

Decision tree (based on 

the atomic numbers ) 

max depth 11 

criterion gini 

Decision tree (based on 

the Hammett constants ) 

max depth 15 

criterion gini 

Gaussian Process 

Regressor 
default default 

Supprot Vector 

Regressor 

coef0 100 

degree 2 

epsilon 0.1 

gamma auto 

kernel rbf 

Random Forest 

max_iter 600 

max_depth 15 

max_features auto 

min_samples_leaf 2 

min_samples_split 4 

 

 

  



 

S23 

 

 

Table S7. Continued. 

XGBoost 

alpha 0.1 

lambda 0.1 

learning_rate 0.01 

max_depth 11 

n_estimators 8000 

objective reg:squarederror 

subsample 0.5 

Artificial Neural 

Network 

learning_rate 0.05 

neurons 70 

Hidden layer 5 

regularizer_term 0.00001 

dropout 0 

batch_size_number 60 

activation softsign 
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