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1 Experimental Section
1.1 Materials

Poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) (Mn=20,000) was supplied by J&K Scientific Ltd. N-
Bromosuccinimide (NBS), benzoyl peroxide, 2, 2’-azobis-isobutyronitrile (AIBN), trimethylamine (TMA,
7.3 M aqueous solution), Triethylamine (TEA), chlorobenzene, diethyl ether, N-methyl-2-pyrrolidone

(NMP, reagent grade) were acquired from Sigma-Aldrich Chemical Reagent Co., Ltd.

1.2 Synthesis of AEMs

An amount of 5.04 g of PPO was dissolved in 140 mL of chlorobenzene. Then 0.51 g (2.11 mmol) of
benzoyl peroxide (BPO) and 2.93 g (16.42 mmol) of NBS were added under vigorous stirring at 85<C.
After reacting for 24 h, the yellow solid (Br-PPO) was collected by filtration, washed thrice with methanol,
and dried at 50 °C for 48 h.

0.25 g Br-PPO was dissolved in 10 mL NMP and reacts with excess TMA (or excess triethylamine)
at room temperature for 4 days: The molar ratio of TMA (or triethylamine) to polymer is 2: 1. The reacted
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mixture was added drop-wise to diethyl ether and the quaternized PPO were obtained by filtering and
washing via diethylether. An amount of 0.15 g of quaternized PPO copolymers was dissolved in 10 mL
NMP and dried in an oven at 80 °C for 36 hours, and then the resulting membrane was soaked in 1 M NaOH

at room temperature for 48 hours.

1.3 Characterization and Measurements

All polymers were characterized by 1H-NMR spectroscopy with a Bruker DR X400 spectrometer at
room temperature using CDCls or DMSO-ds as solvents.

Under a nitrogen atmosphere, the membrane was dried for 48 hours and weighed to obtain the mass
(mary) of the dried sample. Then, the membrane was soaked in deionized water for 48 hours under nitrogen,
and weighed to obtain the mass (mwet) Of the wet sample. The water uptake (WU, %) was calculated by the

following formula:

m,.—m
WU = % %100 (1)

Similarly, the swell ratio (SR) was calculated by the following formula:

bt = oy %100 (2)

dry

SR =

Where Lwetand Lary are the lengths of the wet and dry sample at room temperature, respectively.

The small membrane sample was soaked in 1 M NaOH solution at 60<C for a specified time from 24
h to 168 h. After treatment, it was carefully washed with deionized water under nitrogen. When the pH of
the membrane reached 7, it was soaked in deionized water for 40 minutes, and its ion conductivity was
measured. The resistance value (R) of the membrane was measured by using electrochemical workstation
(Shanghai Chen hua) via the four-electrode method. The ion conductivity was calculated by the formula

(3):
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Where d is the distance between reference electrodes, and L and W are the thickness and width of the

membrane, respectively.

1.4 ANN model

The detailed introduction of the ANN model is as follows: First, all input features are normalized to
form a 15-dimensional vector Xi. As illustrated in Figure 1b, the number of neurons in the input layer is
equal to the number of input features. When a set of input features are input to the input layer, each
neuron in hidden layer 1 calculates an independent result through its activation function f(WXi+b). The
type of activation function determines a neuron’s reaction to the complete incoming signal. The

commonly used activation functions are as follows:

Relu activation function (The Rectified Linear Unit): f (x) = max(0, x)

gf—e™*
Tanh activation function: f(X) =——
" +e
Sigmoid activation function: f(x) = 1
1+e™>
) . . X
Softsign activation function: f(X)=——
1+]X

Softplus activation function: f(x)=log(l+e")

Then the 70 calculation results of hidden layer 1 are merged into a 70-dimensional vector as the new
input of hidden layer 2. The same procedure was repeated until the dataflow reached the output layer. The
number of neurons in the output layer is equal to the number of output features. By considering the
prediction error of the results of each hidden layer, the previous neurons are retrained and their
parameters are updated.

Here previous neurons were calculated by formula:

m 0 1
A= m3

”y_hN,b (X)||2 = —(yi —ai(n') . f '(Zi(nl)))
where f(z)=f(W'x)=h,,(X), Wis weight, b is bias (parameters in neuron).
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2 Supplementary figures and tables
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Figure S1. Distribution of (a) R’ values and (b) Rmse of the ANN for variable numbers of hidden layers
and neurons in the hidden layer. The best ANN model (maximum R’ and minimum Rmse) were obtained

by grid search of combinations of different numbers of hidden layers and neurons.
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Figure S2. The loss curves on the training set and the split training set used for validation in the training

process of the artificial neural network
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Figure S3. Summary of the Rmse and R? values for ANN model with different number of input features.
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Figure S4. Regression correlation coefficient (R?) of (a) TOP5, (b) TOP10 for test set under the same
structure of the database. The top 5 features (TOP5) or the top 10 features (TOP10) are used as inputs to

build regression models, respectively. The R? value of the model increases with the number of input features.

In order to increase the accuracy of the model, a more complex model (15 input features) was selected.
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Figure S5. Computation cost under different combinations of the numbers of neurons and hidden layers by
a) TOP5, and b) TOP10 (a server equipped with GTX 1050Ti and the CUDA7.5 framework). It can be
observed that the differences between the times under different combinations of the numbers of neurons

and hidden layers were small (in the same order of magnitude). Considering the accuracy of the model, it

is worth for sacrificing some time cost.
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Figure S6. Regression correlation coefficient (R?) of without temperature feature for test set under the

same structure of the database in Figure 4.
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Figure S7. Regression correlation coefficient (R?) of (a) GPR, (b) SVR, (c) RFR, (d) XGR, and (¢) ANN

algorithms for training set under the same structure of the database. (f) Summary of the Rmse and R? values

for each machine learning algorithm. By modifying the random seed number, different training and test sets

were generated to verify the robustness of the algorithms.
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Figure S8. The chemical structure of the polymers predicted by the artificial neural network (listed in Table
S5). However, there are 15 input parameters for the ANN model, these parameters may be contradictory to
each other. For example, the swelling ratio and water uptake of Polymer 1 is set to be 1.92% and 55.64%,
respectively. However, such a design is difficult to be realized experimentally. Due to the inherent
shortcomings of the ANN model, the optimal chemical structures of AEMs given by the Al were not
adopted in this work. Although ANN was not used to obtain the possible best performances, it can still

guide our experimental design, due to its high accuracy (R? =0.9978).
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Figure S9. The chemical structures and NMR spectra of four AEMs investigated in this work.
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Table S1. Hammett and modified Swain-Lupton constants of substitution group*

Om op F R ref(s)
Br 0.39 0.23 0.45 -0.22 !
CF3 0.43 0.54 0.38 0.16 !
CF2CF3 0.47 0.52 0.44 0.08 2
CF2CF.CF3 0.44 0.48 0.42 0.06 !
CH2NH; -0.03 -0.11 0.04 -0.16 !
CHs -0.07 -0.17 0.01 -0.18 !
CaHs -0.07 -0.15 0 -0.15 !
CsHz -0.06 -0.13 0.01 -0.14 13
(CH2)sCHs -0.08 -0.16 -0.01 -0.15 34
(CH2)4 -0.48 -0.48 -0.4 -0.08 3
SO2CeHs 0.62 0.68 0.58 0.1 !
OCsHs 0.25 -0.03 0.37 -0.4 13
CN 0.56 0.66 0.51 0.15 !
CeHs 0.06 -0.01 0.12 -0.13 !
CeFs 0.26 0.27 0.27 0 4
CeH4-4-Br 0.15 0.12 0.18 -0.06 !
CeHs-4-Cl 0.15 0.12 0.18 -0.06 !
CeHa-4-F 0.12 0.06 0.17 -0.11 !
OCH2CH2CHs 0.1 -0.25 0.26 -0.51 !
CONH: 0.28 0.36 0.26 0.1 35
COCsHs 0.28 0.3 0.31 -0.01 !
NO 0.62 0.91 0.49 0.42 5
SOs 0.3 0.35 0.29 0.06 !
SO -0.02 -0.05 0.03 -0.08 2

Cl 0.37 0.23 0.42 -0.19 !
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NHNH: -0.02 -0.55 0.22 -0.77 3

COz -0.1 0 -0.1 0.1 1
NH -0.16 -0.66 0.08 -0.74 1
CHBr, 0.31 0.32 0.31 0.01 3
CHCI; 0.31 0.32 0.31 0.01 3
CHF; 0.29 0.32 0.29 0.03 4
OMe 0.12 -0.27 0.29 -0.56 1
CH,OH 0 0 0.03 -0.03 5
OCOMe 0.39 0.31 0.42 -0.11 1
COOMe 0.37 0.45 0.34 0.11 2
NHCOMe 0.21 0 0.31 -0.31 1
CONHMe 0.35 0.36 0.35 -0.01 4
COEt 0.38 0.48 0.34 0.14 3
CH,OCOMe 0.04 0.05 0.07 -0.02 3
C(Me)s -0.1 -0.2 -0.02 -0.18 1
CsCls 0.25 0.24 0.27 -0.03 4
OCsHs 0.25 -0.03 0.37 -0.4 1
(CH2)sCHs -0.07 -0.16 0 -0.16 5
C=CCsHs 0.14 0.16 0.15 0.01 2

*The Hammett equation (and its extended forms) is one of the most widely used means for the study
and interpretation of organic reactions and their mechanisms. Building on the success and power of the
Hammett constants, efforts into further delineating the effect of field and resonance effects were undertaken.
There seems to be good agreement on the magnitude of the parameter’s values, hereafter called the F (for

field) and R (for resonance) and generally termed Swain-Lupton values.
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Table S2. Input factors and corresponding range of factors*

Range (minimum value-maximum

Factor
value)
Conductivity (mS €m™) 0.79 - 137.08
IEC (mmol g1) 0.27 —3.89
Water uptake (%) 5.64 - 136.1
Swelling ratio (%) 1.92 -117
Maximum elongation (%) 1.8 -345.45
Maximum stress /Mpa 1.8 -310.21
Membrane thickness / um 10 - 265
Ether aryl contribution -1.38-0.55
Alkyl chain contribution -5.1-34
Sulfone contribution -34-6.8
Spacer -1.57-0.45
Extender -2.26 —-0.39
Alkali temperature (°C) 25-90
Alkali concentration (mol 1) 1-10

*All input comes from the reported literature.>% In these input factors, the polymer structure
information (such as alkyl chain contribution, sulfonic group contribution, ether aryl contribution, extender,
spacer, and ion exchange capacity) are determined by the structure of the AEMs. The conductivity, water
uptake, swelling ratio, maximum elongation, maximum stress, and membrane thickness were physical and
chemical properties of AEMs. Alkali temperature and alkali concentration were operating conditions of

long-term stability experiments.

S15



Table S3. Confusion matrix describing the decision tree’s predict precision on degradation rate based on

the atomic numbers

nder
Real type Total 88LiA)de Cz;fer d?f:)/o Precision
(predict)
Training 852‘1” 102 102 0 100%
et Over 88% 39 1 38 97%
Testing ;/:der 19 12 7 60%
et Over 88% 6 3 3 50%

Table S4. Confusion matrix describing the decision tree’s predict precision on degradation rate based on

the Hammett substituent constants

Under
Over 88% ..
Real type Total 88% (Vre dict)o Precision
(predict) P
.. Under
Z:;“”'”g 88% 102 102 0 100%
Over 88% 39 0 39 100%
) Under
STe‘is“”g 88% 19 12 7 60%
Over 88% 6 1 5 &83%
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Table S5. The optimum conditions for the extraction ANN model.*

Polymer 1 Polymer 2 Polymer 3 Polymer 4
Conductivity (30 °C, mS-cm™) 40.79 40.79 40.79 40.79
IEC (mmol-g™) 1.97 1.97 1.97 1.97
Water uptake (30 °C, %) 55.64 55.64 5.64 5.64
Swelling ratio (30 °C, %) 1.92 2.92 242 3.92
Maximum elongation (%) 21.8 21.8 21.8 21.8
Maximum stress (Mpa) 9.8 9.8 61.8 61.8
Membrane thickness (um) 210 210 110 110
Ether aryl contribution -0.11 -0.11 -0.11 -0.11
Alkyl chain contribution -0.89 -0.89 -0.89 -0.89
Sulfone contribution 0 0 0 0
Spacer 0.39 0.39 0.28 0.28
Extender -1.53 -1.71 -1.71 -1.53
Alkaline Temperature (°C) 60 60 60 60
Alkaline concentration (mol-L) 1 1 1 1
Time (h) 168 168 168 168
Predicted conductivity retention (%) 95.42 96.56 94.12 94.23

S17



Table S5. Continued.
Polymer 5 Polymer 6 Polymer 7 Polymer 8
Conductivity (30 °C, mS-cm™) 50.79 60.79 60.79 60.79
IEC (mmol-g™) 2.27 1.27 3.27 3.27
Water uptake (30 °C, %) 55.64 55.64 55.64 55.64
Swelling ratio (30 °C, %) 51.92 1.92 31.92 31.92
Maximum elongation (%) 1.8 1.8 151.8 151.8
Maximum stress (Mpa) 31.8 31.8 31.8 31.8
Membrane thickness (um) 210 110 110 110
Ether aryl contribution 0 0 0 0
Alkyl chain contribution 1.0 1.0 1.0 1.0
Sulfone contribution 0 0 0 0
Spacer 0.18 0.18 0.45 0.45
Extender -1.68 -1.83 -1.83 -1.68
Alkaline Temperature (°C) 60 60 60 60
Alkaline concentration (mol-L") 1 1 1 1
Time (h) 168 168 168 168
93.69 99.29 91.50 91.52

Predicted conductivity retention (%)
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Table S5. Continued.

Polymer 9 Polymer 10 Polymer 11 Polymer 12

Conductivity (30 °C, mS-cm™) 0.79 0.79 0.79 0.79
IEC (mmol-g™) 0.27 0.27 0.27 0.27
Water uptake (30 °C, %) 5.64 5.64 5.64 5.64
Swelling ratio (30 °C, %) 1.92 1.92 1.92 1.92
Maximum elongation (%) 1.8 1.8 1.8 1.8
Maximum stress (Mpa) 1.8 1.8 1.8 1.8
Membrane thickness (um) 10 10 10 10
Ether aryl contribution -1.38 -1.38 -1.38 -1.38
Alkyl chain contribution -5.1 -5.1 -5.1 -5.1
Sulfone contribution -3.4 -3.4 -0.4 -0.4
Spacer -0.97 -0.97 -0.67 -0.67
Extender -2.26 -1.76 -2.26 -1.76
Alkaline Temperature (°C) 60 60 60 60
Alkaline concentration (mol-L) 1 1 1 1
Time (h) 168 168 168 168
Predicted conductivity retention (%) 100.07 100.08 99.99 100.03
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Table S5. Continued.

Polymer 13 Polymer 14 Polymer 15 Polymer 16

Conductivity (30 °C, mS-cm™) 20.79 20.79 20.79 20.79
IEC (mmol-g™) 1.27 1.27 1.27 0.27
Water uptake (30 °C, %) 5.64 5.64 5.64 5.64
Swelling ratio (30 °C, %) 1.92 1.92 1.92 1.92
Maximum elongation (%) 1.8 1.8 1.8 1.8
Maximum stress (Mpa) 1.8 1.8 1.8 1.8
Membrane thickness (um) 10 10 110 110
Ether aryl contribution -1.38 -1.38 -0.18 -0.18
Alkyl chain contribution -5.1 -5.1 2.9 2.9
Sulfone contribution -0.4 -0.4 -3.4 -3.4
Spacer -0.67 -0.67 -0.67 -0.67
Extender -1.26 -0.76 -1.26 -0.76
Alkaline Temperature (°C) 60 60 60 60
Alkaline concentration (mol-L) 1 1 1 1
Time (h) 168 168 168 168
Predicted conductivity retention (%) 99.99 99.98 94.30 92.42

*For polymers 9-12, the conductivity of AEMs was 0.79 mS €m™ and the ion exchange capacity of AEMs
was 0.27. Low conductivity anion exchange membrane has no application value. Since the correspondence
between polymer structure and Hammett constant is in a single direction (each substituent corresponds to

a Hammett constant, while some values do not correspond to substituents), machine learning gives some
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non-existent polymers. For Polymers 13-16, machine learning gives these prediction result: Ether aryl
contribution was -1.38, Alkyl chain contribution was -5.1, and Sulfone contribution was -0.4, as far as we

know, no polymer structure corresponds to these values.

Table S6. Physical and chemical properties of synthetic AEMs and operating conditions

PPO-MTMA PPO-ETMA PPO-DMBA PPO-DMHA

Conductivity (mS-cm™) 126.68 101.82 55.99 23.16
IEC (mmol-g™) 2.28 2.08 2.39 2.46
Water uptake (%) 47.05 39.82 50.41 103.92
Swelling ratio (%) 80.70 32.96 14.22 74.76
Membrane thickness (um) 63 48 108 97
Ether aryl contribution -0.11 -0.11 -0.11 -0.11
Alkyl chain contribution -0.89 -0.89 -0.89 -0.89
Sulfone contribution 0 0 0 0
Spacer -0.17 -0.17 -0.17 -0.17
Extender -0.51 -0.45 -0.82 -0.59
Alkaline Temperature (°C) 60 60 60 60
Alkaline concentration (mol-L!) 1 1 1 1
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Table S7. Hyperparameters of the machine learning algorithms for different purposes

Algorithm Hyperparameter Value/tpye

. max depth 11
Decision tree (based on P

the atomic numbers )

criterion gini
. max depth 15
Decision tree (based on P
the Hammett constants ) L -
criterion gini
Gaussian Process
default default
Regressor
coef0 100
degree 2
Supprot Vector )
epsilon 0.1
Regressor
gamma auto
kernel rbf
max_iter 600
max_depth 15
Random Forest max_features auto
min_samples_leaf 2
min_samples_split 4
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Table S7. Continued.

alpha
lambda
learning_rate
XGBoost max_depth

n_estimators

0.1

0.1

0.01

11

8000

objective reg:squarederror
subsample 0.5
learning_rate 0.05
neurons 70
Hidden layer 5
AI::(i;:I(\:,i(;':lrIkNeural regularizer_term 0.00001
dropout 0
batch_size_number 60
activation softsign
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