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Supplementary Figures
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Figure S1. Cyclic voltammograms (CV) of L1, L2 and Fc/Fc+ in 0.1 molL-1 

tetrabutylammonium hexafluorophosphate (Bu4NPF6) acetonitrile solution.
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Figure S2. (a) Normalized film absorption spectra of L1, L2 and Y6, (b) the 

molar extinction coefficient profiles of L1 and L2 in chloroform.

Figure S3. (a) Transient photovoltage (TPV) and (b) transient photocurrent 

(TPC) measurements of L1:Y6 and L2:Y6 based devices.
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Figure S4. AFM height images (a, b) and AFM phase images (c, d) of L1:Y6 

and L2:Y6 “as cast” blend films.

Figure S5. TEM images of L1, L2 and Y6 pure film.
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Figure S6. GIWAXS two-dimensional diffraction patterns of (a) L1, (b) L2 neat 

films; (c) corresponding in-plane (the dot lines) and out-of-plane (the solid lines) 

line-cut profiles.
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Figure S7. Thermogravimetric analysis (TGA) curve of the L1 and L2 with a 

heating rate of 10 °C/min under nitrogen atmosphere.
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Figure S8. DSC traces of L1 and L2 with heating and cooling 10 ℃/min under 

nitrogen atmosphere.
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Figure S9. POM images of L1 and L2 neat films taken at different temperature. 

The angle of the polarizer and the analyzer is 90°.

Figure S10. POM images of L1 neat film taken at different polarizer and the 

analyzer angles.
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Figure S11. POM images of L2 neat film taken at different polarizer and the 

analyzer angles.
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Figure S12. Synthetic route of L1 and L2.
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Figure S13. 1H NMR spectrum of compound 3 in CDCl3.
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Figure S14. 13C NMR spectrum of 2 in CDCl3.
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Figure S15. 1H NMR spectrum of L1 in CDCl3.
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Figure S16. 13C NMR spectrum of L1 in CDCl3.
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Figure S17. 1H NMR spectrum of L2 in CDCl3.
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Figure S18. 13C NMR spectrum of L2 in CDCl3.
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Figure S19. MALDI-TOF MS of compound 2.
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Figure S20. MALDI-TOF MS of L1.

Figure S21. MALDI-TOF MS of L2.
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Supplementary Tables

Table S1. The exciton dissociation efficiency (ηdiss = Jph,SC/J ph,sat) and charge 

collection efficiency (ηcoll = J ph,max power/J ph,sat) of L1:Y6 and L2:Y6 devices. 

Parameter L1:Y6 L2:Y6

Jph, sat (mA cm-2) 26.55 26.95

J ph, SC (mA cm-2) 25.28 26.35

ηdiss = J ph, SC/J ph, sat (%) 95.20 97.80

J ph, max (mA cm-2) 21.23 22.50

ηcoll = J ph, max power/J ph, sat (%) 79.96 83.49

Table S2. Photovoltaic data for high-efficiency binary-OSCs (PCE > 10%) 

reported in recent 6 years.

Donor Acceptor VOC[V] PCE[%] FF [%] JSC [mA cm-2] Ref.

DRCN5T PC71BM 0.92 10.08 69.0 15.88 1

BTID-2F PC71BM 0.95 11.30 76.0 15.70 2

BDTTS-Cl-R PC71BM 0.96 10.78 75.3 14.92 3

DRTB-T-C4 IT-4F 0.91 11.24 68.0 18.27 4

ZnP‐TBO 6TIC 0.80 12.08 73.87 20.44 5

BTR-Cl Y6 0.86 13.60 66.0 24.17 6

ZR1 Y6 0.861 14.34 68.44 24.34 7

B1 BO-4Cl 0.83 15.3 73.0 25.27 8

L2 Y6 0.83 15.8 72.1 26.35 This Work
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Table S3. Photovoltaic data for high-efficiency thickness ASM OSCs (PCE > 

9%) reported in recent 6 years.

Active layer
Thickness 

[nm]
VOC 
[V]

PCE[%]
FF 
[%]

JSC [mA cm-

2]
Ref.

DR3TSBDT:PC71BM 280 0.88 9.05 65.3 15.82 9

BTR:PC71BM 310 0.94 9.50 70.0 14.50 10

DRTB-T-C4: IT-4F 300 0.893 10.18 61.0 18.68 4

BTR:NITI:PC71BM 300 0.94 13.63 73.83 19.50 11

BTR:BTR-OH:PC71BM 300 0.93 10.14 74.2 14.62 12

SM1-F:Y6 250 0.85 11.9 64.0 21.90 13

L1:Y6 300 0.81 13.8 70.5 24.31 

L2:Y6 300 0.82 14.3 71.2 24.50
This Work

Table S4. Photovoltaic data of L1:Y6 solar cells with different time of CS2 

solvent annealing. All data were obtained under illumination of AM 1.5G 

(100mW cm-2) light source.

Materials Condition VOC [V] JSC [mA cm-2] FF [%] a) PCE [%]

CS2,15s 0.83 (0.84±0.01) 24.12 (24.09±0.02) 68.6 (67.3±1.3) 13.8 (13.6±0.2)

CS2,20s 0.84 (0.83±0.01) 23.81 (24.09±0.28) 69.6 (66.8±2.8) 13.9 (13.4±0.5)

CS2,25s 0.84 (0.84±0.01) 23.67 (23.53±0.14) 67.7 (66.4±1.3) 13.6 (13.2±0.4)

L1:Y6
1.5:1

CS2,30s 0.83 (0.83±0.01) 23.68 (23.63±0.05) 68.3 (66.3±2.1) 13.5 (13.0±0.5)

a) The average parameters were calculated over 10 independent cells.
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Table S5. Photovoltaic data of L1:Y6 solar cells with thermal annealed at 

different times after CS2 solvent annealing for the same time. All data were 

obtained under illumination of AM 1.5G (100mW cm-2) light source.

Materials Condition VOC [V] JSC [mA cm-2] FF [%] a) PCE [%]

CS2,15s 0.83 (0.84±0.01) 24.12 (24.09±0.02) 68.6 (67.3±1.3) 13.8 (13.6±0.2)

CS2,15s, 110℃,2min 0.83 (0.83±0.01) 24.15 (24.25±0.10) 67.3 (66.2±1.1) 13.5 (13.3±0.2)
L1:Y6
1.5:1

CS2,15s, 110℃,5min 0.83 (0.82±0.01) 23.72 (23.61±0.11) 66.5 (65.9±0.5) 13.1 (12.8±0.3)

a) The average parameters were calculated over 10 independent cells.

Table S6. The photovoltaic data of L1:Y6 solar cells with different 

donor/acceptor ratios. All data were obtained under illumination of AM 1.5G 

(100mW cm-2) light source.

D:A ratio Condition VOC [V] JSC [mA cm-2] FF [%] a)PCE [%]

1.2:1 CS2,20s 0.82 (0.81±0.01) 24.77 (24.42±0.35) 62.5 (60.5±1.9) 12.7 (12.1±0.7)

1.3:1 CS2,20s 0.82 (0.82±0.01) 23.72 (23.75±0.03) 66.1 (62.3±3.8) 12.9 (12.2±0.7)

1.5:1 CS2,20s 0.84 (0.83±0.01) 23.81 (24.09±0.28) 69.6 (66.8±2.8) 13.9 (13.4±0.5)

1.7:1 CS2,20s 0.81 (0.81±0.01) 24.02 (23.74±0.27) 67.3 (65.8±1.5) 13.2 (12.8±0.4)

a) The average parameters were calculated over 10 independent cells.
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Table S7. Photovoltaic data of L1:Y6 solar cells with thermal annealed at the 

same times after CS2 solvent annealing for different times. All data were 

obtained under illumination of AM 1.5G (100mW cm-2) light source.

Materials Condition VOC [V] JSC [mA cm-2] FF [%] a)PCE [%]

CS2,20s,110℃,2min 0.83 (0.83±0.01) 25.75 (25.38±0.37) 67.2 (66.8±0.4) 14.2 (14.0±0.3)

CS2,30s,110℃,2min 0.83 (0.83±0.01) 25.24 (25.11±0.12) 68.8 (67.7±1.1) 14.4 (14.1±0.3)

CS2,40s,110℃,2min 0.83 (0.82±0.01) 25.28 (25.18±0.10) 69.8 (68.3±1.5) 14.6 (14.2±0.4)

CS2,50s,110℃,2min 0.83 (0.82±0.01) 25.13 (25.01±0.12) 68.9 (68.3±0.6) 14.3 (14.1±0.2)

L1:Y6
1.5:1

CS2,60s,110℃,2min 0.83 (0.82±0.01) 24.86 (25.03±0.17) 67.6 (66.1±1.5) 14.0 (13.6±0.4)

a) The average PCE values were obtained from 15 devices.

Table S8. The photovoltaic data of the L2:Y6 solar cells with thermal annealed 

at different temperature after CS2 solvent annealing for the same time. All data 

were obtained under illumination of AM 1.5G (100mW cm-2) light source.

Materials Condition VOC [V] JSC [mA cm-2] FF [%] a) PCE [%]

100℃,10min, CS2,30s 0.83 (0.83±0.01) 23.2 (23.1±0.1) 70.6 (68.6±2.0) 13.53 (13.20±0.33)

105℃,10min, CS2,30s 0.82 (0.82±0.01) 22.5 (22.4±0.1) 73.1 (72.1±1.0) 13.49 (13.30±0.19)

110℃,10min, CS2,30s 0.79 (0.81±0.02) 23.7 (23.6±0.1) 74.9 (71.3±3.6) 14.02 (13.60±0.41)

120℃,10min, CS2,30s 0.81 (0.80±0.01) 23.7 (23.6±0.1) 71.3 (69.9±1.4) 13.64 (13.29±0.35)

130℃,10min, CS2,30s 0.83 (0.81±0.02) 23.7 (23.5±0.2) 64.4 (63.0±1.4) 12.69 (12.02±0.67)

L2:Y6
1.5:1

140℃,10min, CS2,30s 0.80 (0.79±0.01) 23.8 (23.9±0.1) 64.5 (60.0±4.5) 12.28 (11.37±0.92)

a) The average PCE values were obtained from 10 devices.

Table S9. The photovoltaic data of the L2:Y6 solar cells with different ratios. 

All data were obtained under illumination of AM 1.5G (100mW cm-2) light 

source.
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D:A ratio Condition VOC [V] JSC [mA cm-2] FF [%] a) PCE [%]

1.4:1
110℃,10min, 

CS2,30s
0.82 (0.82±0.01) 22.8 (23.6±0.2) 66.9 (61.7±5.2) 12.53 (11.91±0.62)

1.5:1
110℃,10min, 

CS2,30s
0.81 (0.80±0.01) 23.7 (23.6±0.1) 71.3 (69.9±1.4) 13.64 (13.29±0.35)

1.6:1
110℃,10min, 

CS2,30s
0.82 (0.81±0.01) 23.5 (23.4±0.1) 63.5 (62.1±1.4) 12.31 (11.84±0.47)

a) The average PCE values were obtained from 10 devices.

Table S10. The photovoltaic data of L2:Y6 solar cells with thermal annealed at 

different times after CS2 solvent annealing for the same time. All data were 

obtained under illumination of AM 1.5G (100mW cm-2) light source.

Materials Condition VOC [V] JSC [mA cm-2] FF [%] a) PCE [%]

CS2,30s,110℃,1min 0.82 (0.82±0.01) 25.31 (25.10±0.21) 70.9 (70.3±0.6) 14.8 (14.5±0.3)

CS2,30s,110℃,2min 0.82 (0.82±0.01) 25.78 (25.01±0.77) 69.8 (70.1±0.2) 14.9 (14.5±0.4)

CS2,30s,110℃,5min 0.82 (0.82±0.01) 25.15 (25.13±0.02) 71.4 (69.7±1.7) 14.7 (14.4±0.4)

L2:Y6
1.5:1

CS2,30s,110℃,10min 0.82 (0.82±0.01) 24.94 (24.44±0.50) 69.7 (69.4±0.3) 14.3 (13.9±0.4)

a) The average PCE values were obtained from 10 devices.
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Table S11. Photovoltaic data of L2:Y6 solar cells with thermal annealed at the 

same times after CS2 solvent annealing for different times. All data were 

obtained under illumination of AM 1.5G (100mW cm-2) light source.

Materials Condition VOC [V] JSC [mA cm-2] FF [%] a) PCE [%]

CS2,20s,110℃,2min 0.84 (0.84±0.01) 25.65 (25.30±0.35) 68.0 (67.9±0.1) 14.6 (14.4±0.2)

CS2,30s,110℃,2min 0.82 (0.82±0.01) 25.78 (25.01±0.77) 69.8 (70.1±0.2) 14.9 (14.5±0.4)

CS2,40s,110℃,2min 0.83 (0.82±0.01) 25.77 (25.59±0.18) 72.8 (72.4±0.4) 15.5 (15.3±0.3)

CS2,50s,110℃,2min 0.82 (0.81±0.01) 26.13 (26.25±0.12) 70.4 (68.0±2.4) 15.1 (14.6±0.3)

L2:Y6
1.5:1

CS2,60s,110℃,2min 0.83 (0.82±0.01) 26.60 (26.59±0.10) 67.8 (65.7±2.2) 14.9 (14.4±0.4)

a) The average PCE values were obtained from 10 devices.

Table S12. The photovoltaic data of L2:Y6 solar cells with thermal annealed at 

different times after CS2 solvent annealing for the same time. All data were 

obtained under illumination of AM 1.5G (100mW cm-2) light source.

Materials Condition VOC [V] JSC [mA cm-2] FF [%] a)PCE [%]

CS2,40s,80℃,2min 0.84 (0.84±0.01) 25.31 (25.17±0.13) 69.0 (67.3±1.7) 14.7 (14.2±0.5)

CS2,40s,90℃,2min 0.83 (0.83±0.01) 25.57 (25.36±0.21) 72.3 (72.2±0.1) 15.4 (15.2±0.2)

CS2,40s,110℃,2min 0.83 (0.82±0.01) 26.35 (26.24±0.11) 72.1 (70.4±1.6) 15.8 (15.4±0.4)

L2:Y6
1.5:1

CS2,40s,120℃,2min 0.83 (0.82±0.01) 25.39 (25.33±0.06) 70.8 (68.4±2.4) 14.8 (14.3±0.5)

a) The average PCE values were obtained from 10 devices.
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Table S13. The photovoltaic data of the L2:Y6 solar cells with different ratios. 

All data were obtained under illumination of AM 1.5G (100mW cm-2) light 

source.

D:A ratio Condition VOC [V] JSC [mA cm-2] FF [%] a) PCE [%]

1.4:1 CS2,40s,90℃,2min 0.82 (0.83±0.01) 25.02 (25.01±0.01) 66.8 (66.6±0.2) 13.9 (13.8±0.1)

1.5:1 CS2,40s,90℃,2min 0.83 (0.83±0.01) 25.57 (25.36±0.21) 72.3 (72.2±0.1) 15.4 (15.2±0.2)

1.6:1 CS2,40s,90℃,2min 0.83 (0.83±0.01) 25.25 (25.01±0.24) 71.4 (70.4±1.0) 15.1 (14.6±0.5)

a) The average PCE values were obtained from 10 devices.

Table S14. Detailed GIWAXS (100) peak information IP and OOP of L1:Y6 

and L2:Y6 blend film.

a)Component Peak Peak location (Å
−1

)
FWHM 
(Å−1)

Crystal coherence 
length(nm)

(100) IP 0.309 0.091 62.14 
L1:Y6 As Cast

(010) OOP 1.68 0.213 26.55 

(100) IP 0.326 0.039 145.00 
(100) OOP 0.323 0.062 91.21 
(200) OOP 0.647 0.068 83.16 

L1:Y6, CS2 40s, TA 
2min

(010) OOP 1.683 0.194 29.15 

(100) IP 0.301 0.085 66.53 
L2:Y6 As Cast

(010) OOP 1.68 0.208 27.19 

(100) IP 0.303 0.032 176.71 
(100) OOP 0.313 0.038 148.81 
(200) OOP 0.645 0.056 100.98 

L2:Y6, 
CS2 40s, TA 2min

(010) OOP 1.689 0.159 35.57 

a)TA: 110℃.
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Table S15. Detailed GIWAXS (100) peak information IP and OOP of L1 and 

L2 neat film.

Component Peak Peak location (Å−1) FWHM (Å−1)
Crystal coherence 

length(nm)

(100) OOP 0.323 0.063 89.76 

(200) OOP 0.665 0.05 113.10 

(300) OOP 0.998 0.068 83.16 

(100) IP 0.325 0.039 145.00 

L1

(010) IP 1.666 0.15 37.70 

(100) OOP 0.312 0.078 72.50 

(200) OOP 0.646 0.044 128.52 

(300) OOP 0.973 0.066 85.68 

(100) IP 0.319 0.036 157.08 

L2

(010) IP 1.674 0.147 38.47 

Table S16. Dark J–V curves of the OSCs: a) electron-only diodes and hole-only; 

The solid lines are fit to the experimental data according to the equation 2. 

Active layer μh [×10-4 cm2 V−1 s−1] μe [×10-3 cm2 V−1 s−1] μh /μe

L1:Y6 6.43±2.51 1.29±1.44 0.50

L2:Y6 7.72±1.83 1.51±1.08 0.51
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