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Supplementary Fig. 1 Electrochemical performance of the Li||A-LCO cells with different
electrolytes. The specific capacities (a), Coulombic efficiencies (b), and corresponding voltage
profiles (c, d) as a function of cycle number with 1 M LiPF¢ in EC/EMC (3:7 wt) and 1.2 M LiPFq
in EC/EMC (3:7 wt) electrolytes. (e, f) Voltage profile of the Li||A-LCO cell with 1 M LiFSI in
EC/EMC (3:7 wt) and LiPF¢ in DMCF;SA electrolytes, respectively.

As shown in (a~d), we compared the cycling performance of the LCO cathode using 1 M LiPFg in
EC/EMC (3:7 wt) and 1.2 M LiPFg4 in EC/EMC (3:7 wt) electrolytes. Better capacity retention and
slightly higher CE were noted for 1.2 M LiPF¢ in EC/EMC (3:7 wt) electrolyte.

We also conducted further experiments trying to fix the salt in both carbonate and sulfonamide
solvents. If 1 M LiFSI salt was used in carbonate, yielding 1 M LiFSI in EC/EMC (3:7 wt)
electrolyte, Al corrosion by LiFSI salt cannot be avoided (e). LiPF¢-sulfonamide combination does
not have Li-ion conductivity because LiPF4 cannot be dissolved in DMCF;SA (f).
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Supplementary Fig. 2 Electrochemical performance of Li||[S-LCO cells with different electrolytes.
Cycling performance and corresponding voltage profiles with upper cut-off voltages of 4.5 Vy; (a,
b, ¢) and 4.55 Vi, (d, e, 1), respectively. The current densities for charging and discharging were 50
mA g ! and 150 mA g7!, respectively. 10 mA g™!' charging-discharging was used for the initial 1%
cycle. Minor peaks at 4.1~4.2 V; in voltage profiles (b, c, e, f) were indicated by red circles, which
are associated with order-disorder transitions of undoped LCO materials.
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Supplementary Fig. 3 Cycling performance of the Li||A-LCO and Li||S-LCO cells with an upper
cut-off voltage of 4.5 V; using the sulfonamide-based and carbonate-based electrolytes. A-LCO is
a commercial LCO from BTR, China with doping and coating. S-LCO has no doping or coating
purchased from Sigma Aldrich.
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Supplementary Fig. 4 Voltage profiles of the Li||A-LCO cells with the sulfonamide-based (a) and
carbonate-based (b) electrolytes. The cells were cycled at an upper cut-off voltage of 4.55 V; and
charging/discharging rates of 50/150 mA g™'. 10 mA g™!' charging-discharging was used for the
initial 1% cycle. The amounts of the sulfonamide-based and carbonate-based electrolytes were 15
pL and 50 pL per cell, respectively. 350 um Li foils were used.
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Supplementary Fig. 5 Cycling performance of the Li||A-LCO cells with different electrolytes under
an upper cut-off voltage of 4.6 Vy;. The current densities for charging and discharging were 50 mA
g ' and 150 mA g7!, respectively. 10 mA g~! charging-discharging was used for the initial two

cycles.
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Supplementary Fig. 6 GITT plots of the Li||A-LCO cell with the carbonate electrolyte after 100
cycles (4.55 Vy; cut-off and 50/150 mA g™! for charging/discharging) before and after changing a
fresh Li metal and refilling with fresh electrolyte. The almost identical plots indicate that with
abundant Li metal anode (350 um Li foil), electrolyte (50 uL) and a slow charging rate of 50 mA g
(~0.63 mA cm™2), the capacity decay and overpotential growth are mostly from the cathode side. The
degradation of Li metal anode has almost no influence on the performance, which makes the comparison

with the sulfonamide-based electrolyte sufficiently fair.
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Supplementary Fig. 7 Electrochemical performance of Li||T-LCO cells with different electrolytes.
Cycling performance and corresponding voltage profiles with upper cut-off voltages of 4.65 Vi, (a,
b) and 4.7 Vy; (c, d), respectively. The current densities for charging and discharging were 50 mA
g 'and 100 mA g!, respectively. 10 mA g™! charging-discharging was used for the first 2 cycles.
The amounts of the sulfonamide-based and carbonate-based electrolytes were 15 pL and 50 pL per
cell. respectively. 350 um Li foils were used.
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Supplementary Fig. 8 Electrochemical performance of Li||T-LCO cells with the sulfonamide-based
electrolyte with an upper cut-off voltage of 4.55 V; and discharging rate of 100 mA g™! at 45 °C
(20 mA g! charging/discharging for the first two cycles). The capacity retention is 97.6% and the
average CE is 99.88% calculated from the 3™ cycle to the 70% cycle.
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Supplementary Fig. 9 EIS plots of the Li||A-LCO cells after 200 cycles in different electrolytes
with an upper cut-off voltage of 4.55 V;. The enlarged high-frequency area on the right side
clearly indicates a much smaller charge transfer resistance (R) of the cell cycled in the sulfonamide-

based electrolyte than the one cycled in the carbonate-based electrolyte.
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Supplementary Fig. 10 Low-magnification SEM images of the A-LCO cathodes after 200 cycles in
the carbonate-based (a) and sulfonamide-based (b) electrolytes at 4.55 V; cut-off voltage.
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Supplementary Fig. 11 XRD patterns of pristine A-LCO cathodes after cycling in different
electrolytes with an upper cut-off voltage of 4.55 V;.
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Supplementary Fig. 12 In-situ DEMS analysis of the SO,, NO, and NO, evolution during first
charging the A-LCO to 4.7 V; in the sulfonamide-based electrolyte.
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Supplementary Fig. 13 In-situ FT-IR spectra on LCO surfaces in the sulfonamide-based electrolyte
at regular intervals during holding the potential at 4.8 V; (a) (after charging to 4.8 V; in Fig. 4c, d)
and subsequent resting at open circuit potential (b).
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Supplementary Fig. 14 XPS analysis of the CEIs retrieved from the Li||A-LCO cells at 4.55 V; for 100
cycles for C 1s (a), F 1s (b), and Co 2p (c).
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Supplementary Fig. 15 C K-edge (a), O K-edge (b), and F K-edge (c) sXAS TEY spectra and F K-edge
PFY spectra (d) of the pristine and cycled A-LCO cathodes in different electrolytes with an upper cut-
off voltage of 4.55 V.

The evolution of CEls formed on A-LCO cathode surfaces in different electrolytes was
examined by XPS and sXAS. XPS and the total electron yield (TEY) mode of sXAS are
sensitive to the surface (~5 nm) and the partial fluorescence yield (PFY) mode of sXAS can
collect information from the bulk (~100 nm). Such a combination will provide more
information on the CEI structure and underneath.
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Supplementary Fig. 16 XPS spectra of the CEI formed on the A-LCO cathodes after 100 cycles in
the sulfonamide-based electrolyte at an upper cut-off voltage of 4.55 Vi;. (a) N 1s and (b) S 2p.
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Supplementary Fig. 17 Cycling performance (a) and corresponding voltage profiles (b) of an anode-
free A-LCO)||Cu cell in 1 m LiFSI/DMCF;SA electrolyte with a bare Cu as the anode. 2.5 mAh ¢cm™
LCO cathode and lean electrolyte (electrolyte/capacity ratio, E/C ratio ~3.2 g Ah™!) were used with
C/5 charging and C/2 discharging (C/10 charging-discharging for the initial 3 cycles) between 3~4.5

V at room temperature.
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Supplementary Fig. 18 XPS spectra of the SEIs on Li metal anode retrieved from the Li||A-LCO
cells after 100 cycles in different electrolytes with an upper cut-off voltage of 4.55 Vy;. (a) N 1s and

(b) S 2p.



Supplementary Table 1 Comparison of our work with recent electrolyte works on high-voltage LCO

Cathode side Li-Anode
Composition Cut-off Cyclability
Cathode Highest capacity CE CE (Li-Cu)*
voltage
1 m LiFSI/DMCF;SA (our Commercial LCO (BTR, 455V, 200.8 mAh g™! ~99.84% 89% (200 cycles)
~99.7%
work) China and Targray. Co) 4.6 Vy; 219.6 mAh g! ~99.55% 85% (100 cycles)
1.2 M LiPFs in
LCO (unspecified source) 4.5Vy, ~184 mAh g! e 83.6% (300 cycles) ~98%
FEC/DMC/HFE (1:1:1 v)i
LiFSI-1.0 DME-3 TTE (mol Commercial LCO (BTR,
4.5V ~184 mAh g™! ~99.9% 92.9% (300 cycles)
ratio)l?! China)
poly (butyl vinyl ether-alt-
Commercial LCO (CATL,
maleic anhydride) based 4.45Vy; ~181 mAh g! — 96% (150 cycles) —
China)
polymer electrolytel®]
FN + 1 M LiPF-EC/ Commercial LCO (Hunan
4.5V ~188 mAh g™! —_— 95.7% (120 cycles) —
EMC/DECH Shanshan)
PPFPN+1 M Commercial LCO (Hunan
4.5Vy ~185 mAh g™! — 90% (300 cycles) —
LiPF¢-EC/DMCFE! Shanshan)
ADN+THFPB+CHB+1 M Commercial LCO (CATL,
445 Vy ~174 mAh g! —_— 77% (100 cycles) —_—
LiPF¢+EC+EMC+DEC] China)
0.4 M LiODFB +0.6 M Commercial LCO
LiPFs-(TMTA- (Amperex Technology Co. 4.4 Vy, ~143 mAh g! e 105% (90 cycles)
TESI)/DMC!! China)
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Supplementary Table 2 Costs of the chemicals used for DMTMSA solvent synthesis

Formula Role Price Vendor
Dimethylamine (CH3),NH Raw material $600/ton Industry
Trifluoromethanesulfonyl ) Aaron
. CF;S0,Cl Raw material $2.,670,000/ton ]

chloride Chemicals
Dichloromethane CH,CI, Solvent $615/ton Industry
Tetrahydrofuran C4HgO Solvent $1,700/ton Industry

. . Removing
Triethylamine N(C,Hs)3 $1,400/ton Industry
byproduct HCI1

LiFSI LiF,NO,S, Salt $150,000/ton Industry

The cost of carbonate-based electrolytes is around ~$6,000/ton.
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