Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2021

1 1 Supplementary information

2

Supplementary table 1 – Model parameters

Parameter	Specification
Battery round trip efficiency	90%
Electrolyser efficiency	55 kWh kg ⁻¹ H ₂
Electrolyser turndown	95%
Hydrogen production	36,500 tonnes H ₂ yr ⁻¹
Electrolyser capacities tested	400 to 900 MW at 20 MW intervals

3

4

Supplementary table 2 - Production model decision rules

	Result		
Condition	Solar-battery scenario	Solar-grid scenario	Notes
			Surplus solar fed to battery or
	Send surplus to battery	Export surplus to grid	grid. Electrolyser runs at full
			capacity.
ELSE IF SOLAR > MIN.	No battory flows	No grid flows	Electrolysor load follows solar
ELECTROLYSER CAPACITY	No battery nows		
			Electrolyser runs at min. load.
ELSE IF SOLAR < MIN.	Discharge battery if	Import difference from	Battery or grid supplies
ELECTROLYSER CAPACITY	sufficiently charged	grid	difference. If battery not
			charged, register as not-run.

5

6

Supplementary table 3 – Solar farm specifications

Parameter	Specification
Solar modules	Tier 1, 340 watt
Canacity	Solar-battery baseline 1,010 MW-dc
	Solar-grid baseline 940 MW-dc
Tracking	single axis, north-south orientation of rotating axis
Solar cell type	multi-crystalline silicon
Panel efficiency	16.8% 63
	solar modules 30 years
Component lifetime	inverters 10 years
	structure 60 years
	1,890 hectares based on 20 m ² kW-dc ⁻¹ , based on
Site area	Australian sites, e.g. Tailem Bend 16 m ² kW ⁻¹ , Limondale
	26 m ² kW ⁻¹
Solar module shinning	Volume-based estimate for 340 watt panel,
	1956×992×40 mm, 572 panels per 40' HQ container ¹⁰⁴
Solar balance-of-plant shipping	Mass-based estimate assuming 20 tonne load per 40'
	HQ unit.

Supplementary table 4 – Battery specifications

Parameter	Specification
Battery chemistry	Li-ion, nickel manganese cobalt (NMC)
Round trip efficiency	assume 90% based on reported values of 85-95% 70
Lifetime	10 years
Maximum depth-of-discharge	80%
Design storage capacity	scaled by 1.2 to account for capacity fade of 20% 70
Design power capacity	set to 4 hour charge or discharge (i.e. 400 MWh gives
	100 MW)
Battery cooling system	100 kW cooling capacity per MW ⁶⁹ , assume chiller COP
	of 3
Site area	45 m ² MWh ⁻¹ , estimated from Hornsdale South Australia
	battery 194 MWh using online mapping.
Battery mass	9.5 t MWh ^{-1 74} of which 60% of the mass is due to
	battery cells.
Battery shinning	Mass-based estimate assuming 20 tonne load per 40'
	HQ ISO container, equal to 2.1 MWh per container.

Supplementary table 5 – Electrolyser specifications

Parameter	Specification
Туре	Alkaline electrolyser (AE)
Electrical system power per stack	3.9 MW-e
Hydrogen output per stack	760 Nm ³ hr ⁻¹ (68 kg hr ⁻¹)
	55 kWh kg ⁻¹ H ₂ with respect to AC power input, including
Electrolyser efficiency	pumps, chillers, and AC to DC rectifier losses to power the
	electrolyser stack
Electroluto	25% potassium hydroxide (KOH) solution. 720 kg of 90% KOH is
	required per MW of capacity
Cells per stack	139
Cell diameter	1.6 metres
Operating pressure	30 bar
Hydrogen output temperature	40°C, dry hydrogen
Potassium hydroxide (90%) mass	2 800 kg replaced after 10 years
and lifetime	
Site area – electrolyser building	27,500 m ² based on 50 m ² MW ⁻¹ for 550 MW
Site area – transformer & rectifier	5,500 m ² based on 10 m ² MW ⁻¹ for 550 MW
Electrolyser component shipping	Mass-based estimate assuming 20 tonne load per 40' HQ unit.

Supplementary table 6 – Pressure vessel specifications

Parameter	Specification
Туре	Steel, cylindrical, ellipsoidal heads
Steel grade	304 stainless ⁸¹
Pressure vessel dimensions	2.4 diameter x 20 metres long, 100 mm wall thickness
Pressure vessel mass	126 tonnes
Pressure vessel capacity	Each vessel 82 m ³ , 527 kg H ₂ @ 80 bar, 298 K
Number of vessels	380 vessels to store 200 tonnes H ₂
Site area	30,000 m ² , based on 0.15 m ² kg ⁻¹ H ₂ , estimated from
	Energiepark Mainz plant in Germany,

Supplementary table 7 – Electrical transmission specifications

Parameter	Specification
Туре	Overhead
Conductor material	Aluminium alloy, galvanised steel conductors
Voltage	275/330 kV AC, 3 phase
Distance	20 km baseline, 100/300 km sensitivity
Easement width	40 metres

Supplementary table 8 – Transmission distance sensitivity

		Transmission distance		
	units	20 km	100 km	300 km
Voltage	kV AC	275	275	330
Phases		3	3	3
Real power at solar farm	MW	1,010	1,032	1,054
Power factor		0.9	0.9	0.9
Maximum current	amps	2,356	2,407	2,049
Transformer losses (x 2)	%	2	2	2
Line losses	%	2	4	6
Real power at destination	MW	951	951	951
Mass of aluminium in	tonnes	89	1.085	4.601
conductors			,	,
Mass of steel in conductors	tonnes	138	1,680	7,126

Supplementary table 9 – Water system specifications

Parameter	Specification
Туре	Reverse osmosis
Feedwater demand	329 ML yr ⁻¹ based on 9 litres per kg H ₂
Plant efficiency	3.8 kWh kL ^{-1 105}
Seawater extraction and brine	Hamersley Channel off the coast of Karratha
discharge location	
Brine discharge	Hamersley Channel, off the coast of Karratha
Dried sludge	89 kg per day, 10wt% solids ¹⁰⁵
Site area	4,000 m ² based on 0.01 m ² kL ⁻¹ yr ⁻¹

Supplementary table 10 – Electricity emission factors

Region	Electricity GHG emission	References
	intensity (g CO ₂ -e kWh ⁻¹)	
China, national average	840	Li et al. ⁵²
World average	520	Ang & Su ⁵³
World average, projected in 2030 for IEA	237	IEA ⁵⁴
Sustainable Development Scenario		
Pilbara grid, North West Interconnected System	620	Australian Government 56
(NWIS) average		

System component	Solar panel plus frame and hardware	Electrolyser (AE)
Energy conversion device	Solar module, support frame and hardware	Electrolyser stack
Mass of device [M]	20 kg solar module plus 20 kg support frame and hardware	32,600 kg
Maximum power flow per device (i.e. rated capacity) [P _r]	0.34 kW	3,900 kW
Average power flow over full year [P _a = P _r x capacity factor]	0.08 kW	1,170 kW
Average specific power [P _a x 1000 / M]	2.0 watts kg ⁻¹	35.9 watts kg ⁻¹
Average annual power flow across device per unit area	0.03 to 0.06 kW m ⁻² module in a plane normal to solar cell	6 to 20 kW m ⁻² in a plane normal to electrolyser cell
Site area for entire system	20.2 million m ² for 1,010 MW solar farm	33,000 m ² for electrolyser and rectifier building (550 MW)