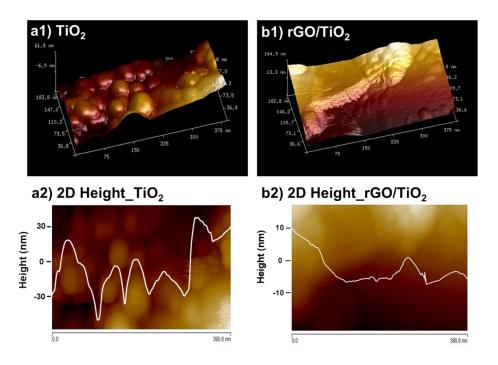
Electronic Supplementary Information

Solar denitrification coupled with in situ water splitting

Shinbi Lee,† Suhyeon Kim,‡ Cheolwoo Park, §. Wooyul Kim, § Sunmin Ryu,‡ and Wonyong Choi*,†

[†]Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea

[‡]Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea


§Department of Chemical and Biological Engineering, College of Engineering, Sookmyung Women's University, Seoul 04310, Korea

Department of Energy Science, Sungkyunkwan University, Suwon 16419, Korea

*Corresponding author. E-mail: wchoi@postech.edu; phone: +82-54-279-2283 (W.C.)

Number of Pages: 10

Number of Figures: 9

Fig. S1 Tapping-mode AFM 3D-images (left) and the height cross-sectional profiles (right) of (a1-2) bare TiO_2 and (b1-2) rGO/TiO_2 .

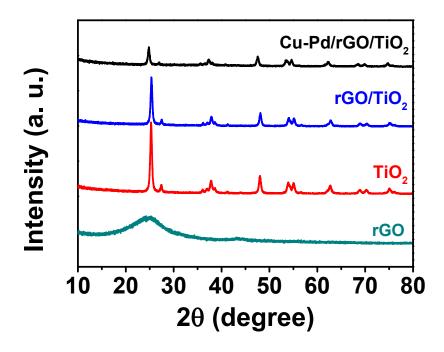
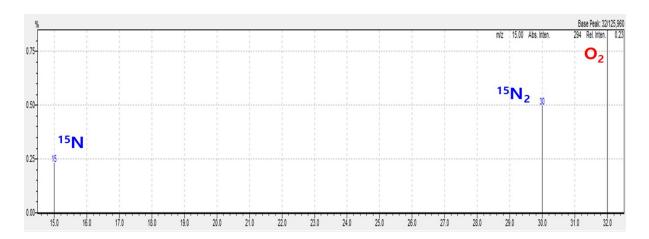
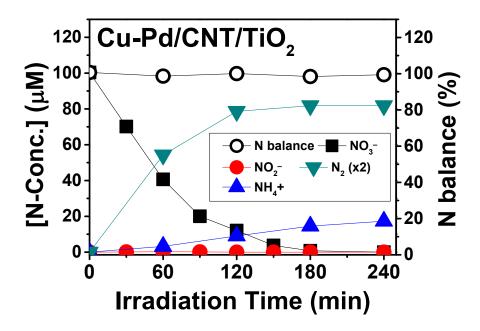




Fig. S2 X-ray diffraction patterns (XRD) of rGO, bare TiO_2 , rGO/TiO_2 and $Cu-Pd/rGO/TiO_2$.

Fig. S3 The gas chromatography-mass spectrometry (GC-MS) spectrum of the gas product generated from $^{15}NO_3^-$ photoreduction on Cu-Pd/rGO/TiO₂. Experimental conditions: [catalyst] = 1.5 g/L, [NO₃⁻]₀ = 100 μM, the content of rGO, Cu, and Pd: 1 wt% each, pH = 5.3 (not adjusted), initially Ar-purged (de-aerated suspension) and $\lambda > 320$ nm irradiation.

 $^{^{15}}N_2$ and O_2 were generated as final gas products of the photoreaction and ^{15}N was detected as a result of ionization of $^{15}N_2$.

Fig. S4 The time profiles of nitrate removal and N balance (%) along with the accompanying production of NO_2^- , NH_4^+ , and N_2 gas in the headspace in the suspension of Cu-Pd/CNT/TiO₂. The concentration of N_2 dissolved in the solution should be negligibly small (< 2% of the N_2 gas in the headspace, smaller than the experimental uncertainty of N_2 gas amount) according to the Henry's law constant of N_2 and was neglected in the N balance calculation. Experimental conditions: [catalyst] = 1.5 g/L, the content of CNT, Cu, and Pd: 1 wt% each, $[NO_3^-]_0$ = 100 μM, pH = 5.3-6.0 (not adjusted), initially Ar-purged (de-aerated suspension), and $\lambda > 320$ nm irradiation.

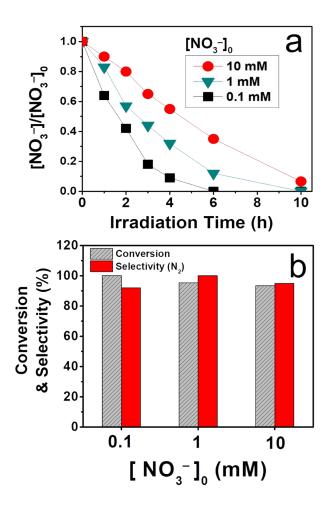
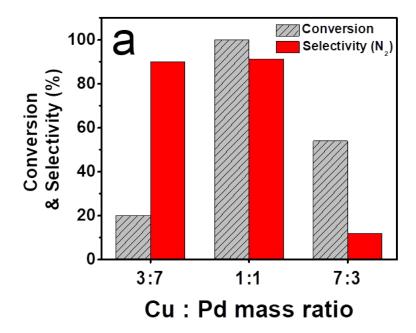
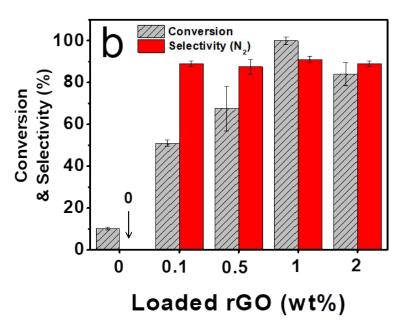
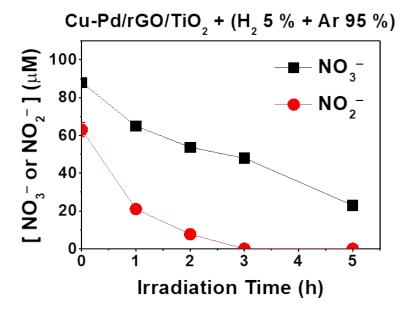
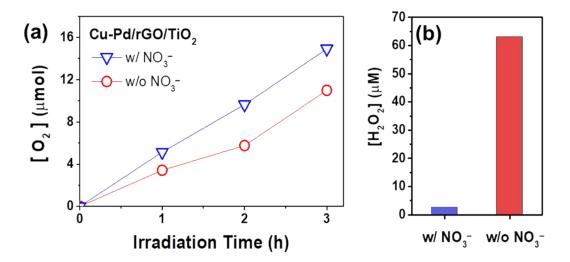





Fig. S5 (a) The time profiles of photocatalytic removal of nitrate in the suspension of Cu-Pd/rGO/TiO₂ with different initial concentrations of nitrate. (b) The nitrate conversion and the selectivity to N₂ after 10 h photoreaction in Cu-Pd/rGO/TiO₂ suspension with different initial concentrations of nitrate. Experimental conditions were [catalyst] = 1.5 g/L, rGO content: 1 wt%, Cu content: 1 wt%, Pd content: 1 wt%, initially Ar-purged and $\lambda > 320$ nm irradiation.



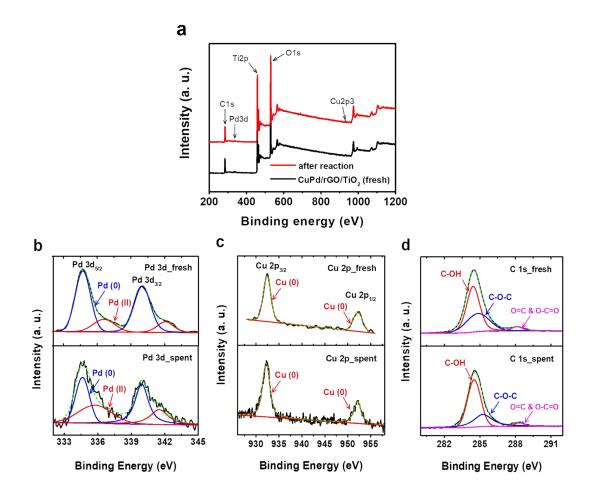

Fig. S6 Photocatalytic nitrate conversion efficiency and the selectivity to N_2 with varying (a) the bimetal ratio and (b) the content of rGO. Experimental conditions: [catalyst] = 1.5 g/L, rGO content: 1 wt% for (a), Cu and Pd content: 1 wt% each for (b), $[NO_3^-]_0 = 100 \mu M$, pH = 5.3-6.4 (not adjusted), initially Ar-purged (de-aerated suspension), and $\lambda > 320$ nm irradiation. The total weight percent of the loaded metals (Cu+Pd) was maintained at 2 wt% for (a).

Fig. S7 Time profiles of the removal of nitrate and nitrite on Cu-Pd/rGO/TiO₂ under dark condition. Experimental conditions: [catalyst] = 1.5 g/L, the content of rGO, Cu, and Pd: 1 wt% each, $[NO_3^-]_0 = [NO_2^-]_0 = 100 \,\mu\text{M}$, pH = 5.3-5.8 (not adjusted), continuously gas-purged.

Fig. S8 Photogeneration of (a) O_2 and (b) H_2O_2 on $Cu\text{-Pd/rGO/Ti}O_2$ in the presence or absence of nitrate. Experimental conditions: [catalyst] = 1.5 g/L, the content of rGO, Cu, and Pd: 1 wt% each, $[NO_3^-]_0 = 100 \ \mu\text{M}$, pH = 5.3-6.0 (not adjusted), initially Ar-purged, $\lambda > 320$ nm irradiation. The concentration of H_2O_2 was estimated using DPD method.

Fig. S9 (a) The survey X-ray photoelectron spectra (XPS) for Cu-Pd/rGO/TiO₂ before and after 20 repeated photoreactions. XPS of (b) Pd 3d bands, (c) Cu 2p bands and (d) C 1s bands for Cu-Pd/rGO/TiO₂ comparing before and after 20 repeated photoreactions. Experimental conditions: [catalyst] = 1.5 g/L, [NO₃-]₀ = 10 mM, the content of rGO, Cu, and Pd: 1 wt% each, pH = 5.3-6.0 (not adjusted), initially Ar-purged (de-aerated suspension), and $\lambda > 320$ nm irradiation.