Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information:

CO₂ utilization framework for liquid fuels and chemicals: Techno-economic and environmental analysis

Thai Ngan Do^{*}, Chanhee You^{*}, and Jiyong Kim¹

School of Chemical Engineering, Sungkyungkwan University, 16419, Republic of Korea

¹ Corresponding Author: E-mail address: jiyongkim@skku.edu (J. Kim).

^{*} Authors contributed equally to the manuscript

S1. Potential of CO₂ utilization for energy-based product (CCU4E)

	Supply	Mtpa	Demand*	Mtpa
Current	Natural geological CO ₂ reservoirs	55	EOR	80
	Industrial by-products	55	Food industry	7
			Beverage carbonation	7
			Fabrication of metal	5
			Other applications	10
Future	Current supply (2019)	110	Growth of existing demand	200
	Growth of existing supply to (2030)	90	EGS	5 - 30
	Bulk CO ₂ (low cost)	500	ECBM	30 - 300
	Bulk CO ₂ (medium cost)	2,000	EOR & EGR	30 - 300
	Bulk CO ₂ (high cost)	18,000	Polymer processing	5 - 30
			Bauxite treatment	5 - 30
			Carbonate aggregates	30 - 300
			CO_2 cement curing	60 - 600
			Surplus to energy-based product	>910

Table S1.1. The current and potential of supply and demand of CO₂

* The estimation do not consider the use of CO₂ in the urea manufacturing ¹.

The potential supply and future demand for CO_2 production are not readily available, which is provided of the order of magnitude, as reviewed by Global CCS Institute [1] and where else ^{2,3}. The global consumption of CO_2 is currently estimated to be 110 Mtpa (2020) in which the large volume of CO_2 onsite-generated and directly consumed in urea manufacturing is excluded ². About 80 Mtpa CO_2 is consumed for enhanced oil recovery (EOR) whereas the remain is supplied for the food and beverage industry, fabrication of metal, and others.

Since a small portion of CO_2 has been industrially utilized, the huge potential emission sources at the different concentrated levels corresponded to the CO_2 captured cost was reported by IPCC ⁴. The potential supply of CO_2 from large point sources is estimated at 500 Mtpa of low-cost of high-concentrated CO_2 , 2,000 Mtpa of medium cost, and 18,000 Mtpa of high-cost of CO_2 ¹. With the consideration of using only the low- and medium-cost of captured CO_2 , there is still very large unbalance between CO_2 demand and supply. The current use of CO_2 is estimated to 2030 at roughly 200 Mtpa ². Several existed and emerging technology have been considered for the large potential use of CO_2 as sequestrated underground or utilized for materials, chemicals, and fuels. Eventually, the high scenarios of the use of CO_2 for chemical and fuel that have vast demand. That has driven effort to develop technology of CO_2 utilization into chemical and fuel production that have vast demand. The potential fuel production of CO_2 utilization was reviewed and estimated based on the current market size considered the annual growth rate to 2030 ⁵.

While a number of fuels and chemicals can be produced through different technological combinations, we selected eight different products and representative 72 pathways based on several considerations such as commercialization, fully accessible information, technology maturity, especially potential market size of these products in future. The potential market size of CO₂-based fuels was estimated followed the methodology of Reference ⁵, and presented in Table S1.2.

Table S1.2. The potential market size of lie	quid fuels from CO2 utilization
--	---------------------------------

Product	Potential production of CO ₂ utilization in 2030 (Mt/y)
Methanol	204ª
Ethanol	163 ^b
Olefin	7°
Gasoline	2154 ^d (to Infinite)
Fischer-Tropsch fuel	163°
Bio-diesel	176 ^f
Dimethyl ether	41°
Formic acid	10 ^g
^a Estimated in high scenario	for methanol as a chemical feedstock and fuel based on Ref ⁵

stimated in high scenario for methanol as a chemical feedstock and fuel, based on Ref

 $^{\rm b}$ The annual growth of ethanol is assumed at 6%, and 85% of market share in 2030 5,6

^c Estimated in high scenario for olefin (mainly ethylene and propylene), based on Ref ⁵

^d Estimated based on global oil demand (105.4 million barrel per day in 2030)⁷

^e Estimated in high scenario based on Ref [7]

^f Estimated from 115 Mt in 2018 with the growth of 3.6% per year ⁸

g Taken from Ref 9

S2. Process simulation and modeling

S2.1. Simulation of each technology

Based on the generated superstructure, summarized in Fig. S2.1, the unit technologies were firstly simulated using Aspen Plus software, subsequent full CO_2 -to-fuel pathways. Here, each technology consists of various equipment for its operation purpose (e.g., reaction kinetic expressions, temperature, pressure, etc.) that was detailed described in Table S2.1.

Fig. S2.1. The CCU4E superstructure. Abbreviation: RWGS: Reverse water-gas shift, DH-M: Direct hydrogenation to methanol, DH-FT: Direct hydrogenation to Fischer-Tropsch, DH-O: Direct hydrogenation to olefin, CR5: Counter-Rotating-Ring/Receiver/Reactor/Recuperator, Elecz.S: Electrochemical reduction to syngas, Elecz.FA: Electrochemical reduction to formic acid, Elecz.EtOH: Electrochemical reduction to ethanol, MS: Methanol synthesis, FTS: Fischer-Tropsch synthesis, DMES: Dimethyl ether synthesis, C&H: cultivation and harvesting, Extract.: Oil extraction, Hydrotr.: Hydrotreating, Dehydro.: Dehydration, MTO: methanol-to-olefin, MTG: Methanol-to-gasoline, DTG: dimethyl ether-to-gasoline, CO-PSA: CO Pressure Swing Adsorption, CO₂-MEA: CO₂ Absorption by monoethanolamine, SEP-M, SEP-D, SEP-FT, SEP-O, SEP FA, SEP-E: Separation and purification for methanol, dimethyl ether, FT fuel, olefin, formic acid, ethanol.

Process		Operating conditions					
	Simplified PFD	T (°C)	P (bar)	Description			
Reverse water gas shift (RWGS)	CO ₂ Mixer Heater Reactor H ₂ H ₂ Reactor H ₂ H ₂	400-1,200	1-20	$r_{1} = \frac{k_{2}P_{CO_{2}}\left(1 - P_{H_{2}O}P_{CO} / k_{e,2}P_{H_{2}}P_{CO_{2}}\right)}{\left(1 + K_{1}P_{H_{2}}^{0.5} + K_{2}P_{H_{2}O} + K_{3}P_{H_{2}O} / P_{H_{2}}\right)} $ ^{10,11}			
Methanol synthesis (MS)	Syngas Mixer Heater Reactor MeOH	150-300	50-75	$r_{2} = \frac{k_{2}P_{co_{2}}\left(1 - P_{H_{2}O}P_{co} / k_{e,2}P_{H_{2}}P_{co_{2}}\right)}{\left(1 + K_{1}P_{H_{2}}^{0.5} + K_{2}P_{H_{2}O} + K_{3}P_{H_{2}O} / P_{H_{2}}\right)}, r_{3} = \frac{k_{1}P_{co_{2}}P_{H_{2}}\left(1 - P_{H_{2}O}P_{MeOH} / k_{e,1}P_{H_{2}}^{3}P_{co_{2}}\right)}{\left(1 + K_{1}P_{H_{2}}^{0.5} + K_{2}P_{H_{2}O} + K_{3}P_{H_{2}O} / P_{H_{2}}\right)^{3}} 10$			
Fischer-Tropsch synthesis (FTS)	Syngas Mixer Reactor FT fuels	200-250	25-60	$r_{1} = \frac{ae^{-b/RT}K_{7}^{0.5}P_{H_{2}}^{d}}{(1 + K_{7}^{0.5}(2 + 1/K_{4})P_{H_{2}}^{0.5} + \frac{K_{7}^{0.5}}{K_{3}P_{4}P_{H_{2}}^{-0.5}} + \frac{K_{7}^{0.5}P_{H_{2}O}}{K_{2}K_{3}K_{4}P_{H_{2}}^{1.5}})^{12}$			
Dimethyl ether synthesis (DMES)	Syngas Mixer Heater Reactor DME	200-400	20-60	$r_{1} = \frac{k_{1}f_{CO}f_{H_{2}}^{2}\left[1 - f_{MeOH} / (K_{1}f_{CO}f_{H_{2}}^{2})\right]}{(1 + K_{CO}f_{CO} + K_{CO_{2}}f_{CO_{2}} + K_{H_{2}}f_{H_{2}})^{3}}, r_{2} = \frac{k_{2}f_{CO_{2}}f_{H_{2}}^{3}\left[1 - f_{MeOH}f_{H_{2}O} / (K_{2}f_{CO_{2}}f_{H_{2}}^{3})\right]}{(1 + K_{CO}f_{CO} + K_{CO_{2}}f_{CO_{2}} + K_{H_{2}}f_{H_{2}})^{4}}$ $r_{3} = \frac{k_{3}f_{H_{2}O}\left[1 - f_{CO_{2}}f_{H_{2}} / (K_{3}f_{CO}f_{H_{2}O})\right]}{1 + K_{CO}f_{CO} + K_{CO_{2}}f_{CO_{2}} + \sqrt{K_{H_{2}}f_{H_{2}}}}, r_{4} = \frac{k_{4}f_{MeOH}\left[1 - f_{DME}f_{H_{2}O} / (K_{4}f_{MeOH}^{2})\right]}{\left(1 + \sqrt{K_{MeOH}f_{MeOH}}\right)^{2}}, 13,14$			

 Table S2.1. Unit process specification and parameters for simulation

Methanol-to- gasoline (MTG)	MeOH Heater Reactor MeOH recycle Gasoline	300-400	10-20	The black box model was adopted for the reactor. Mass balance and energy balance was followed by reference ^{20,21} $\frac{n}{2}[2CH_3OH \Leftrightarrow CH_3OCH_3 + H_2O] \rightarrow C_nH_{2n} + nH_2O \rightarrow n[C_nH_{2n}] + nH_2O$
Dimethyl ether-to gasoline (DTG)	DME Mixer Mixer Reactor Water Gasoline	200-400	20-60	$r_{1} = \frac{k_{1}f_{co}f_{H_{2}}^{2}\left[1 - f_{MeOH} / (K_{1}f_{co}f_{H_{2}}^{2})\right]}{(1 + K_{co}f_{co} + K_{co_{2}}f_{co_{2}} + K_{H_{2}}f_{H_{2}})^{3}}, r_{2} = \frac{k_{2}f_{co_{2}}f_{H_{2}}^{3}\left[1 - f_{MeOH}f_{H_{2}O} / (K_{2}f_{co_{2}}f_{H_{2}}^{3})\right]}{(1 + K_{co}f_{co} + K_{co_{2}}f_{co_{2}} + K_{H_{2}}f_{H_{2}})^{4}}, r_{3} = \frac{k_{3}f_{H_{2}O}\left[1 - f_{co_{2}}f_{H_{2}} / (K_{3}f_{co}f_{H_{0}O})\right]}{1 + K_{co}f_{co} + K_{co_{2}}f_{co_{2}} + \sqrt{K_{H_{2}}f_{H_{2}}}}, r_{4} = \frac{k_{4}f_{MeOH}\left[1 - f_{DME}f_{H_{2}O} / (K_{4}f_{MeOH}^{2})\right]}{\left(1 + \sqrt{K_{MeOH}f_{MeOH}}\right)^{2}}, ^{22-24}$
Counter-Rotating- Ring Receiver/Reactor/ Recuperator (CR5)		~1500	-	Collecting solar energy and converting CO ₂ into CO. ^{25,26} Containing reactive materials such as YSZ-supported iron oxide or ceria Energy transfer efficiency from solar to chemical (stored in CO): 20% Efficiency of CO ₂ to CO: 25%
Electrolyzer for CO ₂ reduction (Elecz.)	$\begin{array}{c} co_2 \\ H_2O \end{array} \qquad $	-	1-30	Requiring significant energy input. Containing heterogeneous electrocatalysts for specific products (i.e., Ag for CO, Cu or Ag for ethanol, Sn for formic acid. ^{27–29}
Cultivation and Harvesting of Microalgae (C&H)	Microalgae, nutrient CO ₂	Ambient	Ambient	Algae growth in open pond system or closed photobioreactor (PBR) ^{30,31} . $[a]CO_2 + [b]nutrients + sunlight \rightarrow [c]O_2 + biomass$

Lipid extraction (Extract.)	Algae Extraction	-	-	Lipid extraction was assumed at 90% efficiency ³⁰ . Oil/solvent phase was separated from water and biomass. Then, solvent was separated in stripper and recycled. The lipid was at 99.5% purity.
Hydrotreating for oil upgrading (Hydrotr.)	Raw oil H_2 Reactor H_2 Reactor H_2 H_2 Reactor Reactor H_2 Reactor	350	35	Hydrogen consumption 1.5%wt of feed ³⁰
CO Pressure Swing Adsorption (CO- PSA)	CO2/CO	60	9	CO-PSA yield at 90%. Operating up to at 9 bar ³² Adsorbent: Cu-Cu ⁺ /θ-Al ₂ O ₃ Adsorbent rate: 16.4 ton/ton of feed. Adsorbent lifetime of 2 years.
H ₂ Pressure Swing Adsorption (H ₂ - PSA)	H ₂ /CO ₂ /CO Compressor	30-35	15	H ₂ PSA yield at 90%. Operating up to at 15 bar. ^{17,33} Adsorbent: zeolite 5A. Adsorbent requirement: 0.01 kmol/kg of feed.
CO ₂ Absorption by monoethanolamine (CO ₂ -MEA)	Sweet gas Cooler Makeup Pump Pump Pump Pump	25-120	1-15	CO ₂ -MEA for 90% of CO ₂ recovery ^{17,34,35} Monoethanolamine(MEA): 23%

Reverse water-gas shift (RWGS): converts CO₂ and H₂ into CO and H₂O, using Cu/ZnO/Al₂O₃ catalyst in this study ^{10,11}. CO₂ and H₂ were mixed, heated, and compressed before entering into plug flow reactor (RPlug model). Since RWGS is equilibrium reaction, mixture gas of three components CO, CO₂, and H₂ required further gas component separation (e.g., CO₂ absorption) or mixed with outsourcing H₂ for optimal stoichiometric number, $SN=(H_2+CO_2)/(CO_2+CO)$, for specific further synthesis (e.g., methanol synthesis, Fischer-Tropsch synthesis, or dimethyl ether synthesis). The simplified process flow diagram and kinetic expression are presented in Table S2.1 – S2.2.

Methanol synthesis: MeOH is produced from syngas (mixture of CO and H₂). In methanol synthesis unit, feed gas was first mixed with the recycle gas from downstream, before pressed up and heated to reaction condition. The RPlug model was used for plug flow reactor, that operated at 150 °C, 50 bar and filled by Cu/ZnO/Al₂O₃ catalyst ^{25,36}. In methanol synthesis unit, SN at 2 was preferred for optimal methanol yield. The kinetic expression and parameters are described in Table S2.1 – S2.2. Cooler and simple flash tank were operated right after reactor to separate liquid of methanol/water from unreacted gas that was further recycled back to reactor. The methanol/water liquid was brough into distillation column for purifying methanol from water.

Parameters	Value
\mathbf{k}_1	1.07 exp(36,696 kJkmol ⁻¹ /RT)
\mathbf{k}_2	1.22 exp(-94,765 kJkmol ⁻¹ /RT)
K _{e,1}	10^(3,066/T -10.592)
K _{e,2}	10^(-2073/T +2.029)
	6.62·10 ⁻¹¹ exp(124,119 kJkmol ⁻¹ /RT)
	3,453.38

Table S2.2. Kinetics and adsorption parameters for MS and RWGS reactions ¹⁰

Fischer-Tropsch synthesis (FTS): is the most common technology to produces liquid hydrocarbon (e.g., gasoline, diesel, and aviation fuels) from synthetic gas. Firstly, syngas was mixed with recycle stream (unreacted syngas), then pressed up and heated up to 38 bar and 210 °C before fed into reactor. The reaction mechanism was assumed by a series of reaction steps as shown in Eqs. $(1) - (7)^{-12}$. The kinetic expression and parameters are described in Table S2.1 and S2.3. The reactor outlet were brought to the separator unit, in which main hydrocarbon

products (i.e., FT fuels) flow out from the bottom while the light hydrocarbon gas, and unreacted gases are merged with steam and reformed before recycle ¹².

$$CO + H - \sigma \to H - \sigma - CO, CO + CH_3 - \sigma \to CH_3 - \sigma - CO, CO + C_n H_{2n+1} - \sigma \to CnH_{2n+1} - \sigma - CO$$
(1)

$$H - \sigma - CO + H_2 \leftrightarrow H - \sigma - C + H_2O, CH_3 - \sigma - CO + H_2 \leftrightarrow CH_3 - \sigma - C + H_2O,$$

$$C_n H_{2n+1} - \sigma - CO + H_2 \leftrightarrow C_n H_{2n+1} - \sigma - C + H_2 O$$
⁽²⁾

$$H - \sigma - CO + H_2 \leftrightarrow H - \sigma - C + H_2O, CH_3 - \sigma - C + H_2 \leftrightarrow CH_3 - \sigma - CH_2,$$

$$C_n H_{2n+1} - \sigma - C + H_2 \leftrightarrow C_n H_{2n+1} - \sigma - CH_2$$
(3)

$$C_{n}H_{2n+1} - \sigma - CH_{2} \leftrightarrow C_{n}H_{2n+1}CH_{2} - \sigma$$
(4)

$$CH_{3} - \sigma - H_{2} \rightarrow CH_{4} + H - \sigma, C_{n}H_{2n+1} - \sigma + H_{2} \rightarrow C_{n}H_{2n} + H - \sigma$$
(5)

$$C_2H_5 - \sigma \to C_2H_4 + H - \sigma, C_nH_{2n+1} - \sigma \to C_nH_{2n} + H - \sigma$$
(6)

$$H_2 + 2\sigma \leftrightarrow 2H - \sigma \tag{7}$$

Table S2.3. Kinetics and adsorption parameters for FT reactions ¹²

Parameters	Value	Unit	Parameters	Value	Unit
A_1	1.83 x 10 ⁹	kmol/kg _{cat} ·h·bar	E ₁	1.00 x 10 ⁵	kJ/kmol
A_2	5.08	-	ΔH_2	8.68 x 10 ³	kJ/kmol
A_3	2.44	1/bar	ΔH_3	9.44 x 10 ³	kJ/kmol
A_4	2.90	-	ΔH_4	7.90 x 10 ³	kJ/kmol
A_5	4.49 x 10 ⁴	kmol/kg _{cat} ·h·bar	E ₅	7.24 x 10 ⁴	kJ/kmol
A_{5M}	8.43 x 10 ⁴	kmol/kg _{cat} ·h·bar	E _{5M}	$6.30 \ge 10^4$	kJ/kmol
A_6	7.47 x 10 ⁸	kmol/kg _{cat} ·h·bar		9.72 x 10 ⁴	kJ/kmol
A_{6E}	7.03 x 10 ⁸	kmol/kg _{cat} ·h		1.09 x 10 ⁵	kJ/kmol
A_7	1.00 x 10 ⁻⁴	1/bar	ΔH_7	-2.50 x 10 ⁵	kJ/kmol
			ΔE	$1.12 \ge 10^3$	kJ/kmol(CH ₂)

Dimethyl ether synthesis (DMES): produces DME from syngas which is preferred CO/H₂ ratio at 1. Mixture feed gas was pressed up, and heated to 260 °C, 50 bar before fed in reactor filled catalyst of Cu/ZnO/Al₂O₃ and γ -Al₂O₃ ¹³. The outlet stream was brought into separation unit to separate DME from others (e.g., CO₂, MeOH), and recycle unreacted H₂/CO. In separation, chemical absorption using methanol for CO₂ absorption that results in liquid of DME/MeOH/CO₂-rich solvent, and mixture of H₂, CO (for recycling). The liquid stream then entered to two distillation columns for separating DME from CO₂, and MeOH solvent, respectively. The simplified process flow diagram, kinetic expressions, and parameters for DMES are described in Table S2.1 and S2.4. Here, Rplug model was used for DMES reactor.

Parameters	Value
k ₁	7,380 exp(-54,307/RT)
\mathbf{k}_2	5,059 exp(-67,515/RT)
\mathbf{k}_3	1,062 exp(-43,473/RT)
\mathbf{k}_4	7.3976 exp(-20,436/RT)
K _{CO}	3.934 x10 ⁻⁶ exp(37,373/RT)
K _{CO2}	1.585 x 10 ⁻⁶ exp(53,795/RT)
K _{H2}	0.6716 exp(-6,476/RT)
K _{MeOH}	3.480 x 10 ⁻⁶ exp(54,689/RT)

Table S2.4. Kinetics and parameters for dimethyl ether synthesis (DMES)¹³

Direct CO₂ hydrogenation to MeOH (DH-M): directly synthesizes MeOH from CO₂ and H₂ in a single conversion pot, in which the two-step process of RWGS to CO and subsequent CO hydrogenation is proceeded. Firstly, CO₂ and H₂ was mixed with recycling, then pressed up and heated to 50 bar and 250 °C. Plug flow reactor was modeled using RPlug, in which kinetic expression for the catalyst of fibrous Cu/Zn/Al/Zr was embed as followed Table S2.1 and S2.5. ^{15,37}. Then, flash tank was operated for separating MeOH/water liquid, leaving gas of CO₂, CO, H₂ for recycling. Finally, MeOH was separated and purified in distillation column.

Value Parameters 4.0638 x 10⁻⁶ exp(-11,695/RT) \mathbf{k}_1 kmol/kg.s.Pa 2.3714 x 10⁻²³ exp(-112,860/RT) kmol/kg.s.Pa k2 K_B 281.1780 x exp(-43,939/RT) _ 6.6687 x 10⁻²¹ exp(54,499/RT) Pa⁻² K_C K_{CO} 8.3965 x 10⁻¹¹ exp(118,270/RT) Pa⁻¹ $1.7214 \ge 10^{-10} \exp(81,287/\text{RT})$ Pa⁻¹ K_{CO2} $K_{\rm H2O}\!/K_{\rm H}{}^{0.5}$ 4.3676 x 10⁻¹² exp(956,775/RT) _

Table S2.5. Kinetics and adsorption parameters for direct CO₂ hydrogenation to MeOH ^{15,37}

*Direct CO*₂ *hydrogenation to FT fuel (DH-FT)*: Similarly to DH-M, the two-step process of RWGS to CO and subsequent CO hydrogenation is proceeded in one reactor. CO₂ and H₂ was first mixed with recycling, then pressed up and heated to 25 bar and 300 °C. DH-FT reactor contains Fe-based catalyst (here, Rstoic reactor model was used) that promotes reactions as shown in Eqs. (8) – (16) ¹⁶. The following separation stage is similar to that of FTS. The main product of FT fuels was separated and purified from water, light gas and unreacted gas. The gas from the top of column was further treated in reforming unit that convert by-product C₁-C₄ into syngas for recycling.

$$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O \tag{8}$$

$$3CO_2 + 9H_2 \rightarrow C_3H_6 + 6H_2O \tag{9}$$

$$3CO_2 + 10H_2 \rightarrow C_3H_8 + 6H_2O \tag{10}$$

$$12CO_2 + 37H_2 \to C_{12}H_{26} + 24H_2O$$
(11)

$$CO + 3H_2 \rightarrow CH_4 + H_2O \tag{12}$$

$$3CO + 6H_2 \rightarrow C_3H_6 + 3H_2O \tag{13}$$

$$3CO + 7H_2 \rightarrow C_3H_8 + 3H_2O \tag{14}$$

$$12CO + 25H_2 \rightarrow C_{12}H_{26} + 12H_2O$$
(15)

$$CO_2 + H_2 \rightarrow CO + H_2O \tag{16}$$

Direct CO₂ hydrogenation to olefin (DH-O): produces olefin (C₂-C₄ hydrocarbon) from CO₂ and H₂ in one reactor filled by catalyst of Fe-K/ γ -Al₂O₃ and operated at 300 °C, 10 bar. RPlug reactor model was used, which embed kinetic metrics as shown in Table S2.6. Following separation target to separated olefin from liquid hydrocarbon (naphtha) as by-product, unreacted gas (CO₂, H₂) for recycling, and undesired gas (CO, CH₄) for onsite heat and electricity generation. More description on DH-O can be found in Reference ¹⁷.

No	Paration	0	h	K _{0i}	Ei
INU	Reaction	ai	Ui	(mol/(s.g.MPa))	(kJ/mol)
1	$\rm CO_2+H_2 \leftrightarrow \rm CO+H_2O$	53.4768	4.5679	0.619e8	136
2	$\rm CO+3H_2 \rightarrow CH_4+H_2O$	43.048	3.4174	0.3817e8	135
3	$2\mathrm{CO}{+}4\mathrm{H_2} \rightarrow \mathrm{C_2H_4}{+}2\mathrm{H_2O}$	41.1777	3.1104	4.0918e8	146
4	$2\mathrm{CO}+5\mathrm{H}_2 \rightarrow \mathrm{C}_2\mathrm{H}_6+2\mathrm{H}_2\mathrm{O}$	85.9319	2.3182	0.4931e8	141
5	$3\text{CO}+6\text{H}_2 \rightarrow \text{C}_3\text{H}_6+3\text{H}_2\text{O}$	15.9468	4.0486	2.5451e8	147.1
6	$3\text{CO}+7\text{H}_2 \rightarrow \text{C}_3\text{H}_8+3\text{H}_2\text{O}$	55.5611	3.1525	0.0142e8	127
7	$4\text{CO}+8\text{H}_2 \rightarrow \text{C}_4\text{H}_8+4\text{H}_2\text{O}$	30.9118	4.9477	0.0014e8	111
8	$4\text{CO}+9\text{H}_2 \rightarrow \text{C}_4\text{H}_{10}+4\text{H}_2\text{O}$	87.9118	3.7471	84.4447	87
9	$nCO_2 + 3nH_2 \rightarrow (CH_2)_n + 2nH_2O$	74.347	62.0165	36.5745	150

Table S2.6. Kinetics and parameters for direct CO_2 hydrogenation to olefin ^{17,18}

S2.2. Simulation of CO₂-to-fuel pathway

As proposed in CCU4E superstructure, there are 72 pathways for various fuel product from CO_2 . The process simulation of each pathway was performed in Aspen Plus software. In this part, we would present the simplified process flow diagram with stream information of some CO_2 -to-fuel pathways. Noted that the pathway number and integrated technologies for each was already presented in Table 1 in manuscript.

*S2.2.1. CO*₂*-to-MeOH*

Fig. S2.2. Pathway #10 for methanol: Catalytic direct CO₂ hydrogenation to methanol

Fig. S2.3. Pathway #9 for methanol: Electrochemical CO_2 reduction to $CO \rightarrow CO_2MEA \rightarrow$ MeOH synthesis

S2.2.2. CO_2 -to-FT fuels

								Syngas		
								9	₽ →	
$H_2 \rightarrow P$	•	3		$\bigcirc -$	5	6 Steam	Ø→FT fue		Ţ	
Compres	sor	Read	tor 1	F ta	ilash ank 1 – [H₂O Drain Re	former	Fla tar	ash 1k 2	
Steam No.	1	2	3	4	5	6	7	8	9	10
Temperature (°C)	30	30	483	500	303	947	624	1,123	589	303
Pressure (bar)	1	1	38	36	36	36	36	35	38	36
Mass Flows (kg/h)	388,254	54,565 3	3,786,517	3,786,517 3	3,290,039	207,053	3,497,092	3,497,092	2,136,064	119,212
Mole Flows (kmol/h)	8,822	27,283	520,410	496,113	474,340	11,503	485,843	512,872	507,153	814
H ₂	0	27,283	436,518	401,624	401,610	0	401,610	422,862	422,862	15
CO	0	0	48,595	45,268	45,250	0	45,250	49,070	48,595	18
CO ₂	8,822	0	35,288	26,466	26,453	0	26,453	26,468	26,466	13
H ₂ O	0	0	0	20,971	0	11,503	11,503	5,242	0	11
CH4	0	0	10	10	10	0	10		0	0
LIGHT GAS	0	0	0	838	821	0	821		0	17
GASOLINE	0	0	0	571	196	0	196		0	375
DIESEL	0	0	0	316	0	0	0		0	316
WAX	0	0	0	49	0	0	0		0	49

Fig. S2.4. Pathway #17 for FT fuels: Catalytic direct CO₂ hydrogenation to FT fuel

*S2.2.3. CO*₂*-to-DME*

Fig. S2.5. Pathway #27 for dimethyl ether: Catalytic direct CO_2 hydrogenation to MeOH \rightarrow Dehydration of MeOH to DME

	€ €		Flash trails	5			Q g ()10 Flag	sh	ent-out		
Steam No	1	Reactor 1	алк	4	5	6	Re 7	eactor 2	an 9	IK Column	12 Colur	nn 3 Co	13
Temperature (°C)	30	30	650	511	60	60	60	35	260	260	109	154	61
Pressure (bar)	1.0	1.0	5.0	5.0	9.0	9.0	9.0	1.0	50.0	50.0	21.0	15.0	15.0
Mass Flows (kg/h)	388,254	406,039	1,077,273	1,077,273	948,267	674,607	273,659	10,559	344,219	344,219	266,005	163,699	102,306
Mole Flows (kmol/h)	8,822	17,644	46,698	46,698	39,538	29,200	10,338	5,238	19,738	10,727	7,364	5,143	2,221
H ₂	0	8,822	22,837	15,650	15,650	14,085	1,565	5,238	9,056	2,264	0	0	0
CO	0	0	794	7,981	7,981	798	7,183	0	8,966	2,242	0	0	0
CO ₂	8,822	8,822	22,829	15,642	15,642	14,077	1,564	0	1,687	3,906	4	0	4
H ₂ O	0	0	238	7,425	266	240	27	0	27	27	77	77	0
MeOH	0	0	0	0	0	0	0	0	4	71	5,066	5,065	1
DME	0	0	0	0	0	0	0	0	0	2,219	2,217	0	2,217

Fig. S2.6. Pathway #28 for dimethyl ether: Catalytic RWGS \rightarrow COPSA \rightarrow DME synthesis \rightarrow Separation

S2.2.4. CO₂-to-olefin

Fig. S2.7. Pathway #43 for olefin: Catalytic direct CO_2 hydrogenation to MeOH \rightarrow Methanolto-olefin

S2.2.4. CO₂-to-gasoline

Fig. S2.8. Pathway #54 for gasoline: Catalytic direct CO₂ hydrogenation to MeOH \rightarrow

Methanol-to-gasoline

S3. Economic, unit cost and CO_{2eq} inventory assumptions

The economic parameters and cost of materials and utilities used in this study are presented in Table S3.1. Otherwise, The CO_{2-eq} inventory of raw material, conventional utility, and conventional fuels are presented in Table S3.2. Noted that using different raw material and utility sources (e.g., conventional or renewable based utility and H₂ feedstock) results in different Operating Cost (TOC) and indirect CO₂ emission (ICE).

	Value	Unit	Ref.
General parameters:			
Reference year	2018		
Economic plant life	20	years	
Interest rate	8	%	
Operability	8000	h/y	
Scaling exponent	0.67	-	
Capacity Charge Factor (CCF)	0.1019	-	
Total capital investment cost (TCI)	373	% of PE	38
Direct plan cost (DC)	247	% of PE	
Purchased equipment (PE)	100	% of PE	
Equipment setting	39	% of PE	
Instrumentation and control	26	% of PE	
Piping	31	% of PE	
Electrical installation	10	% of PE	
Land	12	% of PE	
Building and building services	29	% of PE	
Indirect plant cost (IDC)	126	% of PE	
Engineering	32	% of PE	
Construction expenses	34	% of PE	
Contractor's fee	23	% of PE	
Contingency	37	% of PE	
Fixed operating cost (FOC)	5.1	% of TCI	20
Materials and utilities:			
Raw material			
Captured CO ₂	0.035	\$/kg	26
Renewable/green H_2	4.415	\$/kg	39
Conventional/black H_2	2.700	\$/kg	40
Process water	0.001	\$/kg	26
Solvent, other materials input		48	
Adsorbent for CO	50	\$/kg	32
Adsorbent for H_2	6.11	\$/kg	17
Conventional based utility		48	
Electricity	0.060	\$/kWh	26
Low-pressure steam	0.014	\$/kWh	26
High-pressure steam	0.019	\$/kWh	26
Fired heat	0.029	\$/kWh	16
Cooling water	0.030	\$/ton	26
Refrigeration	0.063	\$/kWh	41
Renewable based utility	0.000	<i>ψ</i> , 1 11 1	
RES-Electricity	0.073	\$/kWh	26
RES-Heat	0.050	\$/kWh	26
RES-Refrigeration	0.066	\$/kWh	41
Market prices:			
Fuel products			
Methanol	0.400	\$/kg	5

Table S3.1. Economic assumptions and parameters

E(1 1	1 002	ф /I	42
Ethanol	1.003	\$/kg	42
Olefin	0.673	\$/kg	43
Gasoline	0.847ª	\$/kg	44
Fischer-Tropsch fuel	1.173	\$/kg	5
Bio-diesel	1.000	\$/kg	45
Dimethyl ether	0.66	\$/kg	5
Formic acid	0.74	\$/kg	42
By-products			
Syngas (CO/H ₂)	0.550 ^b	\$/kg	
Naphtha	0.250	\$/kg	46
Electricity	0.073 °	\$/kg	
^a Assumed at 2.5 \$/gal of gasoline			

^b Estimated based on CO and H₂ price ^c Assumed at the same price of renewable electricity

Table S3.2. The CO_{2-eq} inventory of raw material, conventional utility, and conventional fuels

	Value	Unit	Ref
Maw material			
Captured CO ₂	-1.00	kg/kg	
H_2^a	3.5	kg/kg	40
Conventional utility			
Electricity	0.6235	kg/kg	47
Low-pressure steam	0.1875	kg/kg	48
High-pressure steam	0.1875	kg/kg	48
Fuel gas	0.3406	kg/kg	48
Refrigeration	1.4746	kg/kg	48
Fuel products			
Methanol	0.300	kg/kg	49
Ethanol	1.923	kg/kg	50
Olefin	2.797	kg/kg	48
Gasoline	3.102	kg/kg	50
Fischer-Tropsch fuel	3.137	kg/kg	50
Biodiesel	0.039	kg/kg	48
Dimethyl ether	1.000	kg/kg	48
Formic acid	2.510	kg/kg	49

^a Assumed produced via steam methane reforming with carbon capture and storage facility (SMRwCCS).

S4. Techno-economic and environmental performance results (green H₂)

S.4.1. Mass, energy, and economic data of each technology

Based on process simulation, the mass balance, energy balance, and economic data was obtained for each technology as shown in Table S4.1 – S4.2. Then, the metrics for full CO_2 -to-fuel pathways, which is integration of technologies, were also estimated and obtained (shown in Table 1 of manuscript)

Tech.	Group	Technology	Input	Output	Yield	CAP (kg/h)	TCI (M\$)	ER (kWh)	DCE (kg/h)
1	Catalytic conversion	RWGS_1	CO2, H2	CO2-rich_1	0.887	360,159	157.65	115,922	9
2		RWGS_2	CO2, H2	CO2-rich_4	0.682	277,032	257.76	298,149	39
3		RWGS_3	CO2, H2	CO2-rich_7	0.769	312,275	164.01	335,541	33
4		MS_1	CO2-rich_1	Raw MeOH_1	0.948	371,459	478.92	411,221	11,357
5		MS_2	CO2-rich_2	Raw MeOH_2	0.979	389,584	545.62	408,428	6,359
6		MS_3	CO2-rich_3	Raw MeOH_3	0.982	352,009	457.31	334,527	4,692
7		MS_4	Syngas_4	Raw MeOH_4	0.987	301,726	362.69	220,013	2,293
8		MS_5	Syngas_5	Raw MeOH_5	0.987	308,531	364.81	238,724	2,731
9		MS_6	Syngas_6	Raw MeOH_6	0.991	290,793	347.96	187,319	1,284
10		MS_7	Syngas_7	Raw MeOH_7	0.985	324,201	449.88	287,269	3,617
11	MS_8		Syngas_8	Raw MeOH_8	0.987	308,648	412.82	250,647	2,732
12		MS_9	Syngas_9	Raw MeOH_9	0.991	290,934	390.84	250,647	1,284
13		DHCO2-MeOH_1	CO2, H2	Raw MeOH_10	0.984	433,088	721.69	175,478	5,985
14		DMES_1	Syngas_4	Raw DME_11	0.999	283,924	293.09	75,996	27
15		DMES_2	Syngas_5	Raw DME_12	0.999	289,229	292.70	77,471	26
16		DMES_3	Syngas_6	Raw DME_13	1.00	273,684	298.83	83,888	30
17		DMES_4	Syngas_7	Raw DME_14	1.00	302,288	208.71	79,921	21
18		DMES_5	Syngas_8	Raw DME_15	1.00	289,342	292.75	77,515	26
19		DMES_6	Syngas_9	Raw DME_16	1.00	273,786	298.86	83,911	31
20		FTS_1	Syngas_4	FT fuel_1	0.27	82,312	798.27	900,087	3,211
21		FTS_2	Syngas_5	FT fuel_2	0.26	81,670	795.61	907,666	3,485
22		FTS_3	Syngas_6	FT fuel_3	0.28	83,605	782.62	859,714	2,912
23		FTS_4	Syngas_7	FT fuel_4	0.24	79,920	819.31	969,527	3,798
24		FTS 5	Syngas 8	FT fuel 5	0.26	81,706	795.72	908,017	3,486
25		FTS 6	Syngas 9	FT fuel 6	0.28	83,648	782.79	860,222	2,915
26		DHCO2-FT 1	CO2, H2	FT fuel 7	0.27	119,212	880.48	437,800	145,858
27		DHCO2-O_1	CO2, H2	Raw olefin_1	0.40	176,191	1,186.43	354,912	14,396
28	Thermochemical energizing	CR5_1	CO2	CO2-rich_2	0.91	352,968	10,356.30	26,370	

Table S4.1. Technical, economic and environment data of each technology obtained from simulation

29		CR5 2	CO2	CO2-rich 5	0.72	280,796	31,403.34	114,700	
30		CR5 3	CO2	CO2-rich 8	0.72	280,796	31,403.34	111,481	
31	Electrochemical reduction	Elecz-S 1	CO2	CO2-rich 3	0.81	318,034	2,754.12	434,017	
32		Elecz-S 2	CO2	CO2-rich 6	0.67	260,815	4,986.99	785,906	
33		Elecz-S 3	CO2	CO2-rich 9	0.66	259,233	4,986.99	805,328	
34		Elecz-FA 1	CO2	Raw FA 1	0.67	361,486	15,640.50	1,676,735	1,885
35		Elecz-FA	CO2	Raw EtOH 1	0.32	199,296	25,037.57	3,148,615	1,820
36	Separation	CO-PSA 1	CO2-rich 4	Syngas 4	0.98	273,659	2,991.53	18,601	3,098
37		CO-PSA 2	CO2-rich 5	Syngas 5	0.98	276,701	3,444.78	9,801	3,990
38		CO-PSA 3	CO2-rich 6	Syngas 6	0.99	259,093	1,930.97	45,231	1,582
39		CO2-MEA 1	CO2-rich 7	Syngas 7	0.95	298,114	32.41	841,185	6,001
40		CO2-MEA_2	CO2-rich_8	Syngas_8	0.99	276,806	30.19	756,388	3,990
41		CO2-MEA_3	CO2-rich_9	Syngas_9	1.00	259,233	28.61	698,303	1,582
42		SEP-MeOH_1	Raw MeOH_1	MeOH_1	0.67	249,861	27.75	231,946	25,372
43		SEP-MeOH_2	Raw MeOH_2	MeOH_2	0.65	253,538	32.28	243,792	26,479
44		SEP-MeOH_3	Raw MeOH_3	MeOH_3	0.73	255,491	31.25	221,899	25,680
45		SEP-MeOH_4	Raw MeOH_4	MeOH_4	0.86	259,415	26.76	170,773	21,073
46		SEP-MeOH_5	Raw MeOH_5	MeOH_5	0.83	256,482	27.59	203,507	22,470
47		SEP-MeOH_6	Raw MeOH_6	MeOH_6	0.91	264,255	24.82	150,303	15,911
48		SEP-MeOH_7	Raw MeOH_7	MeOH_7	0.78	253,149	45.47	235,083	24,186
49		SEP-MeOH_8	Raw MeOH_8	MeOH_8	0.83	256,594	27.59	203,566	22,477
50		SEP-MeOH_9	Raw MeOH_9	MeOH_9	0.91	263,906	23.82	118,289	16,073
51		SEP-MeOH_10	Raw MeOH_10	MeOH_10	0.62	270,399	11.90	207,718	8,643
52		SEP-DME_1	Raw DME_1	DME_1	0.72	179,506	38.93	150,381	
53		SEP-DME_2	Raw DME_2	DME_2	0.72	182,147	39.32	152,594	
54		SEP-DME_3	Raw DME_3	DME_3	0.72	183,550	39.52	153,769	
55		SEP-DME_4	Raw DME_4	DME_4	0.72	186,369	39.92	156,131	
56		SEP-DME_5	Raw DME_5	DME_5	0.72	184,262	39.62	154,366	
57		SEP-DME_6	Raw DME_6	DME_6	0.72	189,847	40.42	159,044	
58		SEP-DME_7	Raw DME_7	DME_7	0.72	181,868	39.27	152,360	
59		SEP-DME_8	Raw DME_8	DME_8	0.72	184,343	39.63	154,434	
60		SEP-DME_9	Raw DME_9	DME_9	0.72	189,596	40.39	158,834	
61		SEP-DME_10	Raw DME_10	DME_10	0.72	194,261	41.05	162,742	
62		SEP-DME_11	Raw DME_11	DME_11	0.36	102,306	30.45	118,378	178,987
63		SEP-DME_12	Raw DME_12	DME_12	0.33	95,613	29.58	113,076	179,711
64		SEP-DME_13	Raw DME_13	DME_13	0.42	113,816	33.45	125,712	157,457
65		SEP-DME_14	Raw DME_14	DME_14	0.27	80,462	28.58	98,047	209,859
66		SEP-DME_15	Raw DME_15	DME_15	0.33	95,667	44.23	103,671	191,668
67		SEP-DME_16	Raw DME_16	DME_16	0.42	113,886	33.45	125,699	157,493
68		SEP-O_1	Raw olefin_1	Olefin_11	0.39	68,270	1,213.90	133,589	24,791
69		SEP-FA_1	Raw FA_1	FA_1	0.99	359,366	63.29	11	42
70		SEP-EtOH_1	Raw EtOH_1	EtOH_1	0.24	47,900	203.04	22,254	

71	Upgrading	Dehydration 1	MeOH 1	Raw DME 1	1.00	249,858	547.00	82,171	
72		Dehydration 2	MeOH 2	Raw DME 2	1.00	253,535	552.38	83,380	
73		Dehydration 3	MeOH 3	Raw DME 3	1.00	255,488	555.23	84,022	
74		Dehydration 4	MeOH 4	Raw DME 4	1.00	259,412	560.93	85,313	
75		Dehydration 5	MeOH 5	Raw DME 5	1.00	256,479	556.67	84,348	
76		Dehydration 6	MeOH 6	Raw DME 6	1.00	264,252	567.92	86,904	·
77		Dehydration 7	MeOH 7	Raw DME 7	1.00	253,146	551.82	83,252	
78		Dehydration 8	MeOH 8	Raw DME 8	1.00	256,591	556.84	84,385	
79		Dehydration 9	MeOH 9	Raw DME 9	1.00	263,903	567.42	86,789	
80		Dehydration 10	MeOH 10	Raw DME 10	1.00	270,396	576.73	88,925	
81		MTO 1	Raw MeOH 1	Olefin 1	0.38	140,552	4.03	0	
82		MTO 2	Raw MeOH 2	Olefin 2	0.38	147,410	4.23	0	
83		MTO 3	Raw MeOH 3	Olefin 3	0.38	133,193	3.82	0	
84		MTO 4	Raw MeOH 4	Olefin 4	0.38	114,167	3.28	0	
85		MTO 5	Raw MeOH 5	Olefin 5	0.38	116,741	3.35	0	
86		MTO 6	Raw MeOH 6	Olefin 6	0.38	110,030	3.16	0	
87		MTO 7	Raw MeOH 7	Olefin 7	0.38	122,671	3.52	0	
88		MTO 8	Raw MeOH 8	Olefin 8	0.38	116,786	3.35	0	
89		MTO 9	Raw MeOH 9	Olefin 9	0.38	110,083	3.16	0	
90		MTO 10	Raw MeOH 10	Olefin 10	0.38	163,871	4.70	0	
91		MTG 1	Raw MeOH 1	Gasoline 1	0.32	119,981	883.49	79	
92		MTG 2	Raw MeOH 2	Gasoline 2	0.32	125,836	912.15	83	
93		MTG 3	Raw MeOH 3	Gasoline 3	0.32	113,699	852.22	75	
94		MTG 4	Raw MeOH 4	Gasoline 4	0.32	97,458	768.61	65	
95		MTG 5	Raw MeOH 5	Gasoline 5	0.32	99,655	780.18	66	
96		MTG_6	Raw MeOH_6	Gasoline_6	0.32	93,926	749.83	62	
97		MTG 7	Raw MeOH 7	Gasoline 7	0.32	104,717	806.51	69	
98		MTG_8	Raw MeOH_8	Gasoline_8	0.32	99,693	780.37	66	
99		MTG_9	Raw MeOH_9	Gasoline_9	0.32	93,972	750.07	62	
100		MTG_10	Raw MeOH_10	Gasoline_10	0.32	139,888	979.19	93	
101		DTG_1	Raw DME_1	Gasoline_11	0.47	84,685	25.74	13,692	
102		DTG_2	Raw DME_2	Gasoline_12	0.47	85,931	25.99	13,894	
103		DTG_3	Raw DME_3	Gasoline_13	0.47	86,593	26.13	14,001	
104		DTG_4	Raw DME_4	Gasoline_14	0.47	87,923	26.39	14,216	
105		DTG_5	Raw DME_5	Gasoline_15	0.47	86,929	26.19	14,055	
106		DTG_6	Raw DME_6	Gasoline_16	0.47	89,563	26.72	14,481	
107		DTG_7	Raw DME_7	Gasoline_17	0.47	85,799	25.97	13,872	
108		DTG_8	Raw DME_8	Gasoline_18	0.47	86,967	26.20	14,061	
109		DTG_9	Raw DME_9	Gasoline_19	0.47	89,445	26.70	14,462	
110		DTG_10	Raw DME_10	Gasoline_20	0.47	91,646	27.14	14,818	
111		DTG_11	DME_11	Gasoline_21	0.47	48,265	17.66	7,804	
112		DTG_12	DME_12	Gasoline_22	0.47	45,107	16.88	7,293	

113	DTG_	13 DME_	13 Gasoline	_23 0.47	53,694	18.97	8,682	
114	DTG_	14 DME_	14 Gasoline	_24 0.47	37,959	15.04	6,137	
115	DTG_	15 DME_	15 Gasoline	25 0.47	45,133	16.88	7,297	
116	DTG_	16 DME_	16 Gasoline	_26 0.47	53,728	18.98	8,687	

 Table S4.2. Obtained input mass and energy, and by-product of each technology from process simulation

	Input materials												Input	energy				By	product		
Tech.	CO ₂ (kg/h)	H ₂ (kg/h)	H ₂ O (kg/h)	CO ₂ - rich (kg/h)	Raw MeOH (kg/h)	MeOH (kg/h)	Raw DME (kg/h)	Raw olefin (kg/h)	Raw FA (kg/h)	Ads_CO (kg/h)	Ads_H ₂ (kg/h)	LP (kWh)	HP (kWh)	FH (kWh)	Elec (kWh)	CW (ton/h)	REF (kWh)	Syngas (kg/h)	Light gas (kg/h)	Naphtha (kg/h)	Electricity (kg/h)
1	388,254	17,784												100,339	15,583	114,433					
2	388,254	17,784												272,916	25,233	53,262					
3	388,254	17,784												319,933	15,608	56,565	-				
4		31,834		360,159									290,025		121,196	88,583					
5		45,005		352,968									321,357		87,071	100,765					
6		40,313		318,034									252,302		82,225	83,200					
7		32,095		273,659									158,794		61,219	57,347					
8		35,894		276,701									175,763		62,961	61,804					
9		34,205		259,093									125,932		61,387	50,929					
10		31,151		298,114									208,395		78,874	70,998					
11		35,908		276,806									175,807		74,840	63,626					
12		34,207		259,233									175,807		74,840	63,626					
13	388,254	51,861												28,472	147,006	58,875					
14		10,559		273,659										21,619	41,928	11,061	12,449				
15		12,815		276,701										21,033	43,732	11,171	12,706				
16		14,928		259,093										22,703	48,804	12,323	12,381				
17		4,389		298,114										19,394	47,457	8,202	13,069				
18		12,823		276,806										21,044	43,756	11,178	12,715				
19		14,919		259,233										22,716	48,807	12,326	12,389				
20		36,451		273,659										780,859	119,228	118,337					
21		40,102		276,701										785,529	122,137	119,163					
22		37,618		259,093										742,448	117,266	112,331					
23		36,187		298,114										846,158	123,369	128,550					
24		40,118		276,806										785,831	122,186	119,208					
25		37,623		259,233										742,904	117,318	112,401					
26	388.254	54,565												273,443	164.358	67.850					
27	388,254	47,106									28		211,818	, -	143,094	81,191				60,111	
28	388,254														26,370	5,864				Ĺ	
29	388,254														114,700	575,864					
30	388,254														111,481	19,428					

31 388,254	3,150										434,017					
32 388,254	3,153										785,906					
33 388,254	3,153										805,328					
34 388,254	154,729										1,676,735					
35 388,254	233,103										3,148,615					
36	277,032						971				18,601	1,397				
37	280,796						1,122				9,801	19,445				
38	260,815						618				45,231	10,670				
39	312,275							840,870			315	117,873				
40	280,796							756,105			283	105,991				
41	259,233							698,042			261	97,852				
42		371,459						231,946				39,307				
43		389,584						243,792				41,196				
44		352,009						221,899				37,870				
45		301,726						170,773				29,604				
46		308,531						203,507				35,111				
47		290,793						150,303				26,248				
48		324,201						235,083				40,339				
49		308,648						203,566				35,122				
50		290,934						118,289				20,549				
51		433,088						207,718				33,148				
52				249,858					150,381		0	24,667				
53				253,535					152,594		0	25,030				
54				255,488					153,769		0	25,222				
55				259,412					156,131		0	25,610				
56				256,479					154,366		0	25,320				
57				264,252					159,044		0	26,088				
58				253,146					152,360		0	24,991				
59				256,591					154,433		0	25,331				
60				263,903					158,834		0	26,053				
61				270,396					162,742		0	26,694				
62				283,924				61,238			921	4,126	56,219			
63				289,229				58,677			869	4,651	53,531			
64				273,684				64,648			1,010	5,152	60,054			
65				302,288				53,150			736	7,860	44,161			
66				289,342				64,645			870	3,859	38,156			
67				273,786				64,645			1,011	5,154	60,044			
68					176,191			7,775	44,829	0	61,078	57,341	19,907			
69						361,486					11	18,350				
70						199,296					4,305	3,657	17,948	149,576		
71			249,861						0	82,057	114	13,841				
72			253,538						0	83,264	115	14,044				

73	255,491				0	83,906	116	14,153			
74	259,415				0	85,194	118	14,370			
75	256,482				0	84,231	117	14,207			
76	264,255				0	86,784	120	14,638			
77	253,149				0	83,136	115	14,023			
78	256,594				0	84,268	117	14,214			
79	263,906					86,669	120	14,619			
80	270,399				0	88,802	123	14,978			
81	371,459				0	, ,	0	,			
82	389,584				0		0				
83	352.009				0		0				
84	301.726				0		0				
85	308.531				0		0				
86	290,793				0		0				
87	324.201				0		0				
88	308.648				0		0				
89	290,934				0		0				
90	433.088				0		0				
91	371,459						79				
92	389,584						83				
93	352.009						75				
94	301,726						65				
95	308,531						66				
96	290,793						62				
97	324,201						69				
98	308,648						66				
99	290,934						62				
100	433,088						93				
101		179,506		0	9	9,824	200	10,034	3,659	24,045	
102		182,147		0	9	9,969	203	10,181	3,713	24,399	
103		183,550		0	9	10,045	205	10,260	3,741	24,587	
104		186,369		0	9	10,200	208	10,417	3,799	24,965	
105		184,262		0	9	10,084	206	10,300	3,756	24,682	
106		189,847		0	9	10,390	212	10,612	3,870	25,430	
107		181,868		0	9	9,953	203	10,166	3,707	24,361	
108		184,343		0	9	10,089	206	10,304	3,758	24,693	
109		189,596		0	9	10,376	211	10,598	3,865	25,397	
110		194,261		0	10	10,632	217	10,859	3,960	26,022	
111		102,306		0	5	5,599	114	5,719	2,085	13,704	
112		95,613		0	5	5,233	107	5,344	1,949	12,808	
113		113,816		0	6	6,229	127	6,362	2,320	15,246	
114		80,462		0	4	4,404	90	4,498	1,640	10,778	

115	95,667	0	5	5,236	107	5,348	1,950	12,815	
116	113,886	0	6	6,233	127	6,366	2,321	15,255	

S4.2. Techno-economic and environmental performance of full CO₂-to-fuel pathways in CCU4E

Table S4.3 presents not only the integration of technologies involved each CO₂-to-fuel pathway (from CO₂ feedstock to final fuel products), but

also the estimated sizing and costing data for the techno-economic and environmental analysis.

Dathmar					CAD	CAD	ED	DCE	TCI	ACC	FOC	Credit -	lit Input materials				Input energy/utilities				
No	Technology	Technology	Product	Yield	(ton/h)	(CGE/b)		DCE (top/h)		(MIS)	FUC (MS)	(MS)	CO ₂	H_2	H_2O	LPS	HPS	FH	Elec	CW	Refri.
110.					(1011/11)	(001/11)	(101 00 11)	(1011/11)	(1013)	(1013)	(1413)	(1013)	(ton/h)	(ton/h)	(ton/h)	(MWh)	(MWh)	(MWh)	(MWh)	(Mton/h)	(MWh)
1	Catalytic.	RWGS-MS-SEP	MeOH	0.57	249.9	47,376.8	759.1	36.7	664.3	67.7	33.9	0.0	388.3	49.6	0.0	231.9	290.0	100.3	136.8	0.2	0.0
2	Thermo.	CR5-MS-SEP	MeOH	0.59	253.5	48,074.0	678.6	32.8	10,934.2	1,113.7	557.6	0.0	388.3	45.0	0.0	243.8	321.4	0.0	113.4	0.1	0.0
3	Electro.	ELECZCO-MS-SEP	MeOH	0.59	255.5	48,444.3	990.4	30.4	3,242.7	330.3	165.4	0.0	388.3	40.3	3.2	221.9	252.3	0.0	516.2	0.1	0.0
4	Catalytic.	RWGS-COPSA-MS-SEP	MeOH	0.59	259.4	49,188.3	707.5	26.5	3,638.7	370.6	185.6	0.0	388.3	49.9	0.0	170.8	158.8	272.9	105.1	0.1	0.0
5	Thermo.	CR5-COPSA-MS-SEP	MeOH	0.60	256.5	48,632.2	566.7	29.2	35,240.5	3,589.3	1,797.3	0.0	388.3	35.9	0.0	203.5	175.8	0.0	187.5	0.7	0.0
6	Electro.	ELECZCO-COPSA-MS-SEP	MeOH	0.62	264.3	50,106.1	1,168.8	18.8	7,290.7	742.6	371.8	0.0	388.3	34.2	3.2	150.3	125.9	0.0	892.5	0.1	0.0
7	Catalytic.	RWGS-CO ₂ MEA-MS-SEP	MeOH	0.58	253.1	48,000.2	1,699.1	33.8	691.8	70.5	35.3	0.0	388.3	48.9	0.0	1,076.0	208.4	319.9	94.8	0.3	0.0
8	Thermo.	CR5-CO ₂ MEA-MS-SEP	MeOH	0.60	256.6	48,653.4	1,322.1	29.2	31,873.9	3,246.4	1,625.6	0.0	388.3	35.9	0.0	959.7	175.8	0.0	186.6	0.2	0.0
9	Electro.	ELECZCO-CO ₂ MEA-MS-SEP	MeOH	0.62	263.9	50,039.9	1,872.6	18.9	5,430.3	553.1	276.9	0.0	388.3	34.2	3.2	816.3	175.8	0.0	880.4	0.2	0.0
10	Catalytic.	DHM-SEP	MeOH	0.61	270.4	51,271.0	383.2	14.6	733.6	74.7	37.4	0.0	388.3	51.9	0.0	207.7	0.0	28.5	147.0	0.1	0.0
11	Catalytic.	RWGS-COPSA-FTS-SEP	FT fuel	0.19	82.3	30,875.5	1,216.8	6.3	4,047.6	412.3	206.4	0.0	388.3	54.2	0.0	0.0	0.0	1,053.8	163.1	0.2	0.0
12	Thermo.	CR5-COPSA-FTS-SEP	FT fuel	0.19	81.7	30,634.7	1,032.2	7.5	35,643.7	3,630.4	1,817.8	0.0	388.3	40.1	0.0	0.0	0.0	785.5	246.6	0.7	0.0
13	Electro.	ELECZCO-COPSA-FTS-SEP	FT fuel	0.19	83.6	31,360.5	1,690.9	4.5	7,700.6	784.3	392.7	0.0	388.3	37.6	3.2	0.0	0.0	742.4	948.4	0.1	0.0
14	Catalytic.	RWGS-CO ₂ MEA-FTS-SEP	FT fuel	0.18	79.9	29,978.2	2,146.3	9.8	1,015.7	103.5	51.8	0.0	388.3	54.0	0.0	840.9	0.0	1,166.1	139.3	0.3	0.0
15	Thermo.	CR5-CO ₂ MEA-FTS-SEP	FT fuel	0.19	81.7	30,648.2	1,775.9	7.5	32,229.2	3,282.6	1,643.7	0.0	388.3	40.1	0.0	756.1	0.0	785.8	234.0	0.2	0.0
16	Electro.	ELECZCO-CO2MEA-FTS-SEP	FT fuel	0.19	83.6	31,376.6	2,363.9	4.5	5,798.4	590.6	295.7	0.0	388.3	37.6	3.2	698.0	0.0	742.9	922.9	0.2	0.0
17	Catalytic.	DHFT-SEP	FT fuel	0.27	119.2	44,716.8	437.8	145.9	880.5	89.7	44.9	0.0	388.3	54.6	0.0	0.0	0.0	273.4	164.4	0.1	0.0
18	Catalytic.	RWGS-MS-DEHYDR-SEP	DME	0.41	179.5	46,911.3	991.6	36.7	1,250.3	127.3	63.8	0.0	388.3	49.6	0.0	231.9	440.4	182.4	136.9	0.3	0.0
19	Thermo.	CR5-MS-DEHYDR-SEP	DME	0.42	182.1	47,601.5	914.6	32.8	11,525.9	1,173.9	587.8	0.0	388.3	45.0	0.0	243.8	474.0	83.3	113.6	0.2	0.0
20	Electro.	ELECZCO-MS-DEHYDR-SEP	DME	0.43	183.6	47,968.1	1,228.2	30.4	3,837.4	390.8	195.7	0.0	388.3	40.3	3.2	221.9	406.1	83.9	516.4	0.2	0.0
21	Catalytic.	RWGS-COPSA-MS-DEHYDR-SEP	DME	0.43	186.4	48,704.8	949.0	26.5	4,239.6	431.8	216.2	0.0	388.3	49.9	0.0	170.8	314.9	358.1	105.2	0.2	0.0
22	Thermo.	CR5-COPSA-MS-DEHYDR-SEP	DME	0.43	184.3	48,154.2	805.4	29.2	35,836.8	3,650.1	1,827.7	0.0	388.3	35.9	0.0	203.5	330.1	84.2	187.6	0.7	0.0
23	Electro.	ELECZCO-COPSA-MS-DEHYDR-SEP	DME	0.45	189.8	49,613.8	1,414.7	18.8	7,899.1	804.5	402.9	0.0	388.3	34.2	3.2	150.3	285.0	86.8	892.6	0.1	0.0
24	Catalytic.	RWGS-CO ₂ MEA-MS-DEHYDR-SEP	DME	0.42	181.9	47,528.6	1,934.7	33.8	1,282.9	130.7	65.4	0.0	388.3	48.9	0.0	1,076.0	360.8	403.1	94.9	0.3	0.0
25	Thermo.	CR5-CO ₂ MEA-MS-DEHYDR-SEP	DME	0.43	184.3	48,175.4	1,560.9	29.2	32,470.4	3,307.2	1,656.0	0.0	388.3	35.9	0.0	959.7	330.2	84.3	186.7	0.3	0.0
26	Electro.	ELECZCO-CO ₂ MEA-MS-DEHYDR-SEP	DME	0.45	189.6	49,548.2	2,118.2	18.9	6,038.1	615.0	307.9	0.0	388.3	34.2	3.2	816.3	334.6	86.7	880.5	0.2	0.0
27	Catalytic.	DHM-DEHYDR-SEP	DME	0.44	194.3	50,767.3	634.9	14.6	1,351.4	137.6	68.9	0.0	388.3	51.9	0.0	207.7	162.7	117.3	147.1	0.1	0.0
28	Catalytic.	RWGS-COPSA-DMES-SEP	DME	0.43	179.5	46,911.3	511.1	182.2	3,572.8	363.9	182.2	0.0	388.3	28.3	0.0	61.2	0.0	294.5	86.7	0.1	68.7
29	Thermo.	CR5-COPSA-DMES-SEP	DME	0.45	182.1	47,601.5	315.0	183.7	35,170.4	3,582.2	1,793.7	0.0	388.3	12.8	0.0	58.7	0.0	21.0	169.1	0.6	66.2
30	Electro.	ELECZCO-COPSA-DMES-SEP	DME	0.28	113.8	29,744.2	1,040.7	159.1	7,250.2	738.5	369.8	0.0	388.3	14.9	3.2	64.6	0.0	22.7	881.0	0.0	72.4
31	Catalytic.	RWGS-CO ₂ MEA-DMES-SEP	DME	0.20	80.5	21,027.6	1,354.7	215.9	433.7	44.2	22.1	0.0	388.3	22.2	0.0	894.0	0.0	339.3	64.1	0.2	57.2
32	Thermo.	CR5-CO ₂ MEA-DMES-SEP	DME	0.24	95.7	25,001.2	1,049.1	195.7	31,770.5	3,235.9	1,620.3	0.0	388.3	12.8	0.0	820.8	0.0	21.0	156.4	0.1	50.9
33	Electro.	ELECZCO-CO2MEA-DMES-SEP	DME	0.28	113.9	29,762.5	1,713.2	159.1	5,347.9	544.7	272.7	0.0	388.3	14.9	3.2	762.7	0.0	22.7	855.4	0.1	72.4
34	Catalytic.	RWGS-MS-MTO	Olefin	0.32	140.6	53,648.5	527.1	11.4	640.6	65.2	32.7	0.0	388.3	49.6	0.0	0.0	290.0	100.3	136.8	0.2	0.0
35	Thermo.	CR5-MS-MTO	Olefin	0.34	147.4	56,266.1	541.4	6.4	10,906.2	1,110.8	556.2	0.0	388.3	45.0	0.0	321.4	0.0	113.4	106.6	0.0	0.0

 Table S4.3. Techno-economic parameters of 72 CO₂-to-fuel pathways

36	Electro.	ELECZCO-MS-MTO	Olefin	0.31	133.2 50,839.5	768.5	4.7 3,215.3	327.5	164.0	0.0	388.3	40.3	3.2	0.0	252.3	0.0	516.2	0.1	0.0
37	Catalytic.	RWGS-COPSA-MS-MTO	Olefin	0.26	114.2 43,577.3	536.8	5.4 3,615.3	368.2	184.4	0.0	388.3	49.9	0.0	0.0	158.8	272.9	105.1	0.1	0.0
38	Thermo.	CR5-COPSA-MS-MTO	Olefin	0.28	116.7 44,559.8	363.2	6.7 35,216.3	3,586.9	1,796.0	0.0	388.3	35.9	0.0	0.0	175.8	0.0	187.5	0.7	0.0
39	Electro.	ELECZCO-COPSA-MS-MTO	Olefin	0.26	110.0 41,998.3	1,018.5	2.9 7,269.1	740.4	370.7	0.0	388.3	34.2	3.2	0.0	125.9	0.0	892.5	0.1	0.0
40	Catalytic.	RWGS-CO2MEA-MS-MTO	Olefin	0.29	122.7 46,823.3	1,018.5	2.9 7,269.4	740.4	370.7	0.0	388.3	34.2	3.2	0.0	125.9	0.0	892.5	0.1	0.0
41	Thermo.	CR5-CO ₂ MEA-MS-MTO	Olefin	0.28	116.8 44,577.0	1,118.5	6.7 31,849.7	3,244.0	1,624.3	0.0	388.3	35.9	0.0	756.1	175.8	0.0	186.6	0.2	0.0
42	Electro.	ELECZCO-CO2MEA-MS-MTO	Olefin	0.26	110.1 42,018.5	1,754.3	2.9 5,409.6	551.0	275.9	0.0	388.3	34.2	3.2	698.0	175.8	0.0	880.4	0.2	0.0
43	Catalytic.	DHM-MTO	Olefin	0.37	163.9 62,549.3	175.5	6.0 726.4	74.0	37.0	0.0	388.3	51.9	0.0	0.0	0.0	28.5	147.0	0.1	0.0
44	Catalytic.	DHO-SEP	Olefin	0.16	68.3 26,058.5	488.5	39.2 2,400.3	244.5	122.4	120.2	388.3	47.1	0.0	7.8	256.6	0.0	204.2	0.1	19.9
45	Catalytic.	RWGS-MS-MTG	Gasoline	0.27	120.0 45,895.5	527.2	11.4 1,520.1	154.8	77.5	0.0	388.3	49.6	0.0	0.0	290.0	100.3	136.9	0.2	0.0
46	Thermo.	CR5-MS-MTG	Gasoline	0.29	125.8 48,135.1	434.9	6.4 11,814.1	1,203.3	602.5	0.0	388.3	45.0	0.0	0.0	321.4	0.0	113.5	0.1	0.0
47	Electro.	ELECZCO-MS-MTG	Gasoline	0.26	113.7 43,492.4	768.6	4.7 4,063.7	413.9	207.2	0.0	388.3	40.3	3.2	0.0	252.3	0.0	516.3	0.1	0.0
48	Catalytic.	RWGS-COPSA-MS-MTG	Gasoline	0.22	97.5 37,279.9	536.8	5.4 4,380.6	446.2	223.4	0.0	388.3	49.9	0.0	0.0	158.8	272.9	105.1	0.1	0.0
49	Thermo.	CR5-COPSA-MS-MTG	Gasoline	0.23	99.7 38,120.3	363.3	6.7 35,993.1	3,666.0	1,835.6	0.0	388.3	35.9	0.0	0.0	175.8	0.0	187.5	0.7	0.0
50	Electro.	ELECZCO-COPSA-MS-MTG	Gasoline	0.22	93.9 35,928.8	1,018.5	2.9 8,015.8	816.4	408.8	0.0	388.3	34.2	3.2	0.0	125.9	0.0	892.6	0.1	0.0
51	Catalytic.	RWGS-CO ₂ MEA-MS-MTG	Gasoline	0.24	104.7 40,056.6	1,464.1	9.7 1,452.8	148.0	74.1	0.0	388.3	48.9	0.0	840.9	208.4	319.9	94.9	0.2	0.0
52	Thermo.	CR5-CO ₂ MEA-MS-MTG	Gasoline	0.24	99.7 38,134.8	1,118.6	6.7 32,626.7	3,323.1	1,664.0	0.0	388.3	35.9	0.0	756.1	175.8	0.0	186.7	0.2	0.0
53	Electro.	ELECZCO-CO2MEA-MS-MTG	Gasoline	0.22	94.0 35,946.4	1,754.3	2.9 6,156.5	627.1	314.0	0.0	388.3	34.2	3.2	698.0	175.8	0.0	880.5	0.2	0.0
54	Catalytic.	DHM-MTG	Gasoline	0.32	139.9 53,510.3	175.6	6.0 1,700.9	173.2	86.7	0.0	388.3	51.9	0.0	0.0	0.0	28.5	147.1	0.1	0.0
55	Catalytic.	RWGS-MS-DEHYDR-SEP-DTG	Gasoline	0.19	84.7 32,393.9	1,005.3	36.7 1,276.0	130.0	65.1	48.1	388.3	49.6	0.0	231.9	440.4	192.2	137.1	0.3	3.7
56	Thermo.	CR5-MS-DEHYDR-SEP-DTG	Gasoline	0.20	85.9 32,870.6	928.5	32.8 11,551.9	1,176.6	589.1	48.8	388.3	45.0	0.0	243.8	474.0	93.2	113.8	0.2	3.7
57	Electro.	ELECZCO-MS-DEHYDR-SEP-DTG	Gasoline	0.20	86.6 33,123.7	1,242.2	30.4 3,863.5	393.5	197.0	49.2	388.3	40.3	3.2	221.9	406.1	94.0	516.6	0.2	3.7
58	Catalytic.	RWGS-COPSA-MS-DEHYDR-SEP-DTG	Gasoline	0.20	87.9 33,632.5	963.2	26.5 4,266.0	434.5	217.6	49.9	388.3	49.9	0.0	170.8	314.9	368.3	105.4	0.2	3.8
59	Thermo.	CR5-COPSA-MS-DEHYDR-SEP-DTG	Gasoline	0.20	86.9 33,252.2	819.5	29.2 35,863.0	3,652.7	1,829.0	49.4	388.3	35.9	0.0	203.5	330.1	94.3	187.8	0.7	3.8
60	Electro.	ELECZCO-COPSA-MS-DEHYDR-SEP-DTG	Gasoline	0.21	89.6 34,260.0	1,429.2	18.8 7,925.8	807.3	404.2	50.9	388.3	34.2	3.2	150.3	285.0	97.2	892.9	0.1	3.9
61	Catalytic.	RWGS-CO2MEA-MS-DEHYDR-SEP-DTG	Gasoline	0.20	85.8 32,820.1	1,948.6	33.8 1,308.8	133.3	66.8	48.7	388.3	48.9	0.0	1,076.0	360.8	413.0	95.1	0.3	3.7
62	Thermo.	CR5-CO2MEA-MS-DEHYDR-SEP-DTG	Gasoline	0.21	87.0 33,266.8	1,575.0	29.2 32,496.6	3,309.9	1,657.3	49.4	388.3	35.9	0.0	959.7	330.2	94.4	186.9	0.3	3.8
63	Electro.	ELECZCO-CO ₂ MEA-MS-DEHYDR-SEP-DTG	Gasoline	0.21	89.4 34,214.7	2,132.7	18.9 6,064.8	617.7	309.3	50.8	388.3	34.2	3.2	816.3	334.7	97.0	880.8	0.2	3.9
64	Catalytic.	DHCO2MEOH-DEHYDR-SEP-DTG	Gasoline	0.21	91.6 35,056.5	649.7	14.6 1,378.5	140.4	70.3	52.0	388.3	51.9	0.0	207.7	162.8	127.9	147.3	0.1	4.0
65	Catalytic.	RWGS-COPSA-DMES-SEP-DTG	Gasoline	0.12	48.3 18,462.3	518.9	182.2 3,590.5	365.7	183.1	27.4	388.3	28.3	0.0	61.2	0.0	300.1	86.8	0.1	70.8
66	Thermo.	CR5-COPSA-DMES-SEP-DTG	Gasoline	0.11	45.1 17,254.4	322.3	183.7 35,187.3	3,583.9	1,794.6	25.6	388.3	12.8	0.0	58.7	0.0	26.3	169.2	0.6	68.2
67	Electro.	ELECZCO-COPSA-DMES-SEP-DTG	Gasoline	0.13	53.7 20,539.3	1,049.4	159.1 7,269.2	740.4	370.7	30.5	388.3	14.9	3.2	64.6	0.0	28.9	881.1	0.0	74.8
68	Catalytic.	RWGS-CO2MEA-DMES-SEP-DTG	Gasoline	0.09	38.0 14,520.3	1,360.8	215.9 448.8	45.7	22.9	21.6	388.3	22.2	0.0	894.0	0.0	343.7	64.2	0.2	58.9
69	Thermo.	CR5-CO2MEA-DMES-SEP-DTG	Gasoline	0.11	45.1 17,264.3	1,056.4	195.7 31,787.4	3,237.6	1,621.2	25.6	388.3	12.8	0.0	820.8	0.0	26.3	156.5	0.1	52.8
70	Electro.	ELECZCO-CO2MEA-DMES-SEP-DTG	Gasoline	0.13	53.7 20,552.0	1,721.9	159.1 5,366.9	546.6	273.7	30.5	388.3	14.9	3.2	762.7	0.0	28.9	855.5	0.1	74.8
71	Electro.	ELECZFA-SEP	FA	0.66	359.4 15,701.9	1,676.7	1.9 15,703.8	1,599.5	800.9	0.0	388.3	0.0	154.7	0.0	0.0	0.0	1,676.7	0.0	0.0
72	Electro.	ELECZETOH-SEP	EtOH	0.08	47.9 11,728.2	3,170.9	1.8 25,240.6	2,570.8	1,287.3	658.1	388.3	0.0	233.1	0.0	0.0	0.0	3,152.9	0.0	17.9

Yield: calculated based on the main fuel product and material input.

CAP (ton/h or GGE/h): the capacity or production rate of each process.

ER (MWh): energy requirement that is energy required for process.

DCE (ton/h): direct CO_{2ea} emission that was the CO_{2ea} flow emit to the environment via vent-out gas, purge gas (obtained from process simulation).

TCI (M\$): total capital investment cost of plant.

ACC (M\$/y): annualized capital investment cost.

FOC (M\$/y): fixed operating cost (5.1 % of TCI).

Credit (M\$/y): achieved credits by byproducts (e.g., naphtha, extra-electricity,...)

Consumed utilities included low-pressure steam (LPS), high-pressure steam (HPS), fired heat (FH), electricity (Elec), cooling water (CW), refrigeration (Refri.).

Technology abbreviations:

Catalytic.: Catalytic CO₂ conversion, Thermo.: Thermochemical CO₂ energizing, Electro.: Electrochemical CO₂ reduction. RWGS: Reverse water-gas shift, DHM: Direct CO₂ hydrogenation to methanol, DHFT: Direct CO₂ hydrogenation to Fischer–Tropsch fuel, DHO: Direct CO₂ hydrogenation to light olefin, CR5: Thermochemical splitting via Counter-Rotating-Ring Receiver/Reactor/ Recuperator, ELECZCO: Electrochemical reduction to CO, ELECZETOH: Electrochemical reduction to ethanol, ELECZEFA: Electrochemical reduction to formic acid, MS: Methanol synthesis, FTS: Fischer–Tropsch synthesis, DMES: dimethylether synthesis, DEHYDR.: Dehydration of methanol to dimethylether, MTO: methanol-to-olefin, MTG: methanol-to-gasoline, DTG: DME-to-gasoline synthesis, COPSA: CO pressure swing adsorption, CO₂MEA: CO₂ absorption by monoethanolamine, SEP: separation and purification.

Pathway	Material	Utility	Product	Energy	Pathwa	Material	Utility	Product	Energy
No.	input (kWh)	(kWh)	(kWh)	efficiency	y No.	input (kWh)	(kWh)	(kWh)	efficiency
1	1,954,949	759,090	1,596,334	58.82%	37	1,965,233	536,763	1,468,314	58.69%
2	1,773,197	678,590	1,619,826	66.07%	38	1,414,224	363,225	1,501,419	84.47%
3	1,588,332	990,442	1,632,304	63.30%	39	1,347,677	1,018,456	1,415,108	59.81%
4	1,965,233	707,536	1,657,374	62.01%	40	1,347,677	1,018,456	1,577,685	66.68%
5	1,414,224	566,732	1,638,635	82.72%	41	1,414,775	1,118,516	1,501,998	59.29%
6	1,347,677	1,168,759	1,688,296	67.09%	42	1,347,756	1,754,278	1,415,790	45.64%
7	1,928,039	1,699,077	1,617,341	44.59%	43	2,043,323	175,478	2,107,563	94.99%
8	1,414,775	1,322,082	1,639,351	59.90%	44	1,855,976	488,501	878,028	37.45%
9	1,347,756	1,872,567	1,686,066	52.36%	45	1,954,949	527,223	1,546,422	62.30%
10	2,043,323	383,196	1,727,549	71.19%	46	1,773,197	434,881	1,621,886	73.45%
11	2,136,859	1,216,837	1,040,332	31.02%	47	1,588,332	768,619	1,465,454	62.18%
12	1,580,019	1,032,166	1,032,218	39.52%	48	1,965,233	536,828	1,256,125	50.20%
13	1,482,149	1,690,850	1,056,674	33.30%	49	1,414,224	363,291	1,284,442	72.26%
14	2,126,457	2,146,253	1,010,100	23.64%	50	1,347,677	1,018,518	1,210,602	51.16%
15	1,580,649	1,775,886	1,032,673	30.77%	51	1,928,039	1,464,064	1,349,686	39.79%
16	1,482,346	2,363,853	1,057,218	27.49%	52	1,414,775	1,118,582	1,284,932	50.72%
17	2,149,861	437,801	1,506,707	58.23%	53	1,347,756	1,754,340	1,211,195	39.04%
18	1,954,949	991,641	1,580,650	49.07%	54	2,043,323	175,571	1,803,001	81.26%
19	1,773,197	914,563	1,603,906	54.59%	55	1,954,949	1,005,333	1,091,494	36.87%
20	1,588,332	1,228,234	1,616,260	52.50%	56	1,773,197	928,457	1,107,556	41.00%
21	1,965,233	948,979	1,641,083	51.52%	57	1,588,332	1,242,235	1,116,086	39.43%
22	1,414,224	805,445	1,622,529	66.87%	58	1,965,233	963,195	1,133,229	38.70%
23	1,347,677	1,414,707	1,671,708	55.36%	59	1,414,224	819,500	1,120,416	50.16%
24	1,928,039	1,934,689	1,601,449	37.93%	60	1,347,677	1,429,188	1,154,373	41.57%
25	1,414,775	1,560,899	1,623,243	49.90%	61	1,928,039	1,948,561	1,105,854	28.53%
26	1,347,756	2,118,190	1,669,498	44.07%	62	1,414,775	1,574,960	1,120,906	37.49%
27	2,043,323	634,863	1,710,576	58.43%	63	1,347,756	2,132,652	1,152,846	33.12%
28	1,116,714	511,125	1,580,650	88.83%	64	2,043,323	649,681	1,181,211	43.86%
29	504,911	315,049	1,603,906	93.93%	65	1,116,714	518,929	622,078	38.03%
30	588,163	1,040,736	1,002,213	56.29%	66	504,911	322,342	581,379	70.28%
31	873,616	1,354,693	708,513	29.09%	67	588,163	1,049,418	692,062	42.26%
32	505,226	1,049,054	842,401	49.58%	68	873,616	1,360,830	489,255	21.90%
33	587,809	1,713,242	1,002,830	39.87%	69	505,226	1,056,351	581,711	37.25%
34	1,954,949	527,144	1,807,655	72.83%	70	587,809	1,721,929	692,488	29.98%
35	1,773,197	541,427	1,895,856	81.91%	71	0	1,676,745	529,067	31.55%
36	1,588,332	768,543	1,713,010	72.68%	72	0	3,170,868	395,175	12.46%

Table S4.4. Energy flows in CO₂-to-fuel pathways and energy efficiency of processes

Carbon and energy efficiency present how much carbon and energy are captured and stored in the products, which are expressed as follow:

$$Carbon \ efficiency = \frac{Carbon \ in \ products}{Carbon \ in \ raw \ material}, (\%)$$
(17)

$$Enery \ efficiency = \frac{Heat \ of \ reaction \ of \ products}{Heat \ of \ reaction \ in \ raw \ material \ + \ Consumed \ energy \ as \ utility}, (\%) (18)$$

Fig. S4.1. ranks CO_2 -to-fuel pathways in terms of carbon efficiency, energy efficiency, unit production cost (UPC), and net CO_{2eq} emission (NCE), in which the order is from good performance to bad performance.

Fig. S4.1. Ranking CO₂-to-fuel pathways by technical, economic and environmental performance

Table S4.5. CO ₂ -based fuel's unit	production cost and its	breakdown ()	using green H	H2).
2		(00	<i>2</i> ,

Unit: \$/GGE

Pathway No.	Technology	Product	UPC	ACC	CO ₂	H_2	Utility	FOC
1	RWGS-MS-SEP	MeOH	5.83	0.18	0.29	4.65	0.63	0.09
2	CR5-MS-SEP	MeOH	9.26	2.90	0.28	4.16	0.47	1.45
3	ELECZCO-MS-SEP	MeOH	6.22	0.85	0.28	3.69	0.96	0.43
4	RWGS-COPSA-MS-SEP	MeOH	7.71	0.94	0.28	4.50	1.52	0.47
5	CR5-COPSA-MS-SEP	MeOH	19.42	9.23	0.28	3.28	2.01	4.62
6	ELECZCO-COPSA-MS-SEP	MeOH	8.02	1.85	0.27	3.03	1.94	0.93
7	RWGS-CO2MEA-MS-SEP	MeOH	6.06	0.18	0.28	4.53	0.97	0.09
8	CR5-CO ₂ MEA-MS-SEP	MeOH	16.85	8.34	0.28	3.28	0.78	4.18
9	ELECZCO-CO ₂ MEA-MS-SEP	MeOH	6.98	1.38	0.27	3.04	1.60	0.69
10	DHM-SEP	MeOH	5.36	0.18	0.27	4.49	0.33	0.09
11	RWGS-COPSA-FTS-SEP	FT fuel	13.93	1.67	0.44	7.80	3.19	0.84
12	CR5-COPSA-FTS-SEP	FT fuel	32.43	14.81	0.44	5.81	3.94	7.42
13	ELECZCO-COPSA-FTS-SEP	FT fuel	14.30	3.13	0.43	5.33	3.85	1.57
14	RWGS-CO ₂ MEA-FTS-SEP	FT fuel	11.40	0.43	0.45	7.99	2.30	0.22
15	CR5-CO ₂ MEA-FTS-SEP	FT fuel	28.30	13.39	0.44	5.81	1.96	6.70
16	ELECZCO-CO2MEA-FTS-SEP	FT fuel	12.53	2.35	0.43	5.32	3.25	1.18
17	DHFT-SEP	FT fuel	6.58	0.25	0.30	5.42	0.49	0.13
18	RWGS-MS-DEHYDR-SEP	DME	6.28	0.34	0.29	4.70	0.78	0.17
19	CR5-MS-DEHYDR-SEP	DME	9.74	3.08	0.29	4.20	0.63	1.54
20	ELECZCO-MS-DEHYDR-SEP	DME	6.66	1.02	0.28	3.73	1.12	0.51
21	RWGS-COPSA-MS-DEHYDR-SEP	DME	8.17	1.11	0.28	4.55	1.68	0.55
22	CR5-COPSA-MS-DEHYDR-SEP	DME	19.99	9.47	0.28	3.31	2.18	4.74
23	ELECZCO-COPSA-MS-DEHYDR-SEP	DME	8.49	2.03	0.27	3.06	2.11	1.01
24	RWGS-CO2MEA-MS-DEHYDR-SEP	DME	6.50	0.34	0.29	4.57	1.13	0.17
25	CR5-CO ₂ MEA-MS-DEHYDR-SEP	DME	17.41	8.58	0.28	3.31	0.94	4.30
26	ELECZCO-CO2MEA-MS-DEHYDR-SEP	DME	7.43	1.55	0.27	3.07	1.76	0.78
27	DHM-DEHYDR-SEP	DME	5.79	0.34	0.27	4.54	0.48	0.17
28	RWGS-COPSA-DMES-SEP	DME	5.95	0.97	0.29	2.68	1.53	0.49
29	CR5-COPSA-DMES-SEP	DME	17.56	9.41	0.29	1.20	1.96	4.71
30	ELECZCO-COPSA-DMES-SEP	DME	10.58	3.10	0.46	2.23	3.24	1.55
31	RWGS-CO ₂ MEA-DMES-SEP	DME	7.57	0.26	0.65	4.68	1.85	0.13
32	CR5-CO ₂ MEA-DMES-SEP	DME	28.37	16.18	0.54	2.28	1.27	8.10
33	ELECZCO-CO2MEA-DMES-SEP	DME	8.72	2.29	0.46	2.23	2.60	1.15
34	RWGS-MS-MTO	Olefin	5.05	0.15	0.25	4.11	0.46	0.08
35	CR5-MS-MTO	Olefin	7.77	2.47	0.24	3.55	0.28	1.24
36	ELECZCO-MS-MTO	Olefin	5.82	0.81	0.27	3.52	0.82	0.40
37	RWGS-COPSA-MS-MTO	Olefin	7.50	1.06	0.31	5.08	0.52	0.53
38	CR5-COPSA-MS-MTO	Olefin	19.82	10.06	0.30	3.58	0.84	5.04
39	ELECZCO-COPSA-MS-MTO	Olefin	8.75	2.20	0.32	3.62	1.51	1.10
40	RWGS-CO ₂ MEA-MS-MTO	Olefin	7.85	1.98	0.29	3.24	1.35	0.99
41	CR5-CO ₂ MEA-MS-MTO	Olefin	18.29	9.10	0.30	3.58	0.76	4.55
42	ELECZCO-CO2MEA-MS-MTO	Olefin	8.24	1.64	0.32	3.61	1.84	0.82
43	DHM-MTO	Olefin	4.32	0.15	0.22	3.68	0.20	0.07
44	DHO-SEP	Olefin	33.28	1.15	0.51	7.89	23.14	0.58
45	RWGS-MS-MTG	Gasoline	6.27	0.42	0.30	4.80	0.54	0.21
46	CR5-MS-MTG	Gasoline	9.49	3.12	0.28	4.15	0.37	1.56
47	ELECZCO-MS-MTG	Gasoline	7.18	1.19	0.31	4.12	0.96	0.60
48	RWGS-COPSA-MS-MTG	Gasoline	9.16	1.50	0.36	5.94	0.61	0.75
49	CR5-COPSA-MS-MTG	Gasoline	23.56	12.02	0.36	4.18	0.99	6.02
50	ELECZCO-COPSA-MS-MTG	Gasoline	10.63	2.84	0.38	4.23	1.76	1.42
51	RWGS-CO ₂ MEA-MS-MTG	Gasoline	7.50	0.46	0.34	5.42	1.04	0.23
52	CR5-CO ₂ MEA-MS-MTG	Gasoline	21.77	10.89	0.36	4.18	0.88	5.45
53	ELECZCO-CO ₂ MEA-MS-MTG	Gasoline	10.03	2.18	0.38	4.23	2.16	1.09
54	DHM-MTG	Gasoline	5.40	0.40	0.25	4.30	0.23	0.20
55	RWGS-MS-DEHYDR-SEP-DTG	Gasoline	8.95	0.49	0.41	6.66	1.14	0.25
56	CR5-MS-DEHYDR-SEP-DTG	Gasoline	13.96	4.42	0.41	6.00	0.92	2.21
57	ELECZCO-MS-DEHYDR-SEP-DTG	Gasoline	9.51	1.46	0.40	5.30	1.62	0.73
58	RWGS-COPSA-MS-DEHYDR-SEP-DTG	Gasoline	11.69	1.59	0.40	6.48	2.43	0.80
59	CR5-COPSA-MS-DEHYDR-SEP-DTG	Gasoline	28.81	13.64	0.41	4.76	3.17	6.83
60	ELECZCO-COPSA-MS-DEHYDR-SEP-DTG	Gasoline	12.15	2.90	0.39	4.37	3.04	1.45
61	RWGS-CO ₂ MEA-MS-DEHYDR-SEP-DTG	Gasoline	9.27	0.50	0.41	6.49	1.63	0.25
62	CR5-CO ₂ MEA-MS-DEHYDR-SEP-DTG	Gasoline	25.07	12.35	0.41	4.76	1.38	6.18

63	ELECZCO-CO2MEA-MS-DEHYDR-SEP-DTG	Gasoline	10.62	2.22	0.39	4.36	2.54	1.11
64	DHCO2MEOH-DEHYDR-SEP-DTG	Gasoline	8.24	0.49	0.38	6.42	0.71	0.25
65	RWGS-COPSA-DMES-SEP-DTG	Gasoline	14.99	2.45	0.73	6.73	3.86	1.22
66	CR5-COPSA-DMES-SEP-DTG	Gasoline	48.31	25.86	0.78	3.28	5.42	12.95
67	ELECZCO-COPSA-DMES-SEP-DTG	Gasoline	15.19	4.45	0.65	3.19	4.66	2.23
68	RWGS-CO2MEA-DMES-SEP-DTG	Gasoline	10.83	0.39	0.92	6.67	2.66	0.19
69	CR5-CO ₂ MEA-DMES-SEP-DTG	Gasoline	40.94	23.34	0.78	3.28	1.85	11.68
70	ELECZCO-CO2MEA-DMES-SEP-DTG	Gasoline	12.48	3.28	0.65	3.18	3.74	1.64
71	ELECZFA-SEP	FA	27.04	12.73	0.87	0.00	7.05	6.38
72	ELECZETOH-SEP	EtOH	53.06	24.20	1.02	0.00	15.70	12.12
reviation	· UPC· unit production cost_ACC· annualized capital co	st CO ₂ H ₂	Utility.	variable	operati	ng cos	ts includ	ling

Abbreviation: UPC: unit production cost, ACC: annualized capital cost, CO_2 , H_2 , Utility: variable operating costs including CO_2 and H_2 , utility cost, FOC: fixed operating cost.

Table S4.6. Net CO_{2eq} emission (NCE) and its components (using green H_2).

Unit: kgCO_{2eq}/GGE

Dothurov No	Taskralasy	Duaduat	NCE	CO fard	Direct	Indirect
Pathway No.	. Technology	Product	NCE	CO_2 leed	emission	emission
1	RWGS-MS-SEP	MeOH	-2.83	-8.20	0.78	4.59
2	CR5-MS-SEP	MeOH	-3.72	-8.08	0.68	3.68
3	ELECZCO-MS-SEP	MeOH	1.09	-8.01	0.63	8.48
4	RWGS-COPSA-MS-SEP	MeOH	-2.88	-7.89	0.54	4.48
5	CR5-COPSA-MS-SEP	MeOH	-3.52	-7.98	0.60	3.87
6	ELECZCO-COPSA-MS-SEP	MeOH	4.77	-7.75	0.37	12.14
7	RWGS-CO ₂ MEA-MS-SEP	MeOH	1.13	-8.09	0.70	8.52
8	CR5-CO ₂ MEA-MS-SEP	MeOH	-0.61	-7.98	0.60	6.77
9	ELECZCO-CO ₂ MEA-MS-SEP	MeOH	7.31	-7.76	0.38	14.69
10	DHM-SEP	MeOH	-4.55	-7.57	0.29	2.74
11	RWGS-COPSA-FTS-SEP	FT fuel	2.55	-12.57	0.21	14.92
12	CR5-COPSA-FTS-SEP	FT fuel	1.32	-12.67	0.24	13.75
13	ELECZCO-COPSA-FTS-SEP	FT fuel	14.68	-12.38	0.14	26.92
14	RWGS-CO ₂ MEA-FTS-SEP	FT fuel	8.78	-12.95	0.33	21.40
15	CR5-CO ₂ MEA-FTS-SEP	FT fuel	5.69	-12.67	0.24	18.12
16	ELECZCO-CO2MEA-FTS-SEP	FT fuel	18.34	-12.37	0.14	30.57
17	DHFT-SEP	FT fuel	-1.05	-8.68	3.26	4.37
18	RWGS-MS-DEHYDR-SEP	DME	-1.66	-8.28	0.78	5.83
19	CR5-MS-DEHYDR-SEP	DME	-2.56	-8.16	0.69	4.91
20	ELECZCO-MS-DEHYDR-SEP	DME	2.30	-8.09	0.63	9.76
21	RWGS-COPSA-MS-DEHYDR-SEP	DME	-1.71	-7.97	0.54	5.72
22	CR5-COPSA-MS-DEHYDR-SEP	DME	-2.35	-8.06	0.61	5.10
23	ELECZCO-COPSA-MS-DEHYDR-SEP	DME	6.01	-7.83	0.38	13.46
24	RWGS-CO2MEA-MS-DEHYDR-SEP	DME	2.34	-8.17	0.71	9.80
25	CR5-CO2MEA-MS-DEHYDR-SEP	DME	0.58	-8.06	0.61	8.03
26	ELECZCO-CO2MEA-MS-DEHYDR-SEP	DME	8.58	-7.84	0.38	16.03
27	DHM-DEHYDR-SEP	DME	-3.40	-7.65	0.29	3.96
28	RWGS-COPSA-DMES-SEP	DME	1.30	-8.28	3.88	5.69
29	CR5-COPSA-DMES-SEP	DME	0.35	-8.16	3.86	4.65
30	ELECZCO-COPSA-DMES-SEP	DME	15.02	-13.05	5.35	22.73
31	RWGS-CO ₂ MEA-DMES-SEP	DME	11.19	-18.46	10.27	19.38
32	CR5-CO ₂ MEA-DMES-SEP	DME	5.64	-15.53	7.83	13.34
33	ELECZCO-CO2MEA-DMES-SEP	DME	18.87	-13.05	5.35	26.57
34	RWGS-MS-MTO	Olefin	-3.79	-7.24	0.21	3.24
35	CR5-MS-MTO	Olefin	-3.85	-6.90	0.11	2.94
36	ELECZCO-MS-MTO	Olefin	-0.28	-7.64	0.09	7.26
37	RWGS-COPSA-MS-MTO	Olefin	-4.47	-8.91	0.12	4.32
38	CR5-COPSA-MS-MTO	Olefin	-5.20	-8.71	0.15	3.36
39	ELECZCO-COPSA-MS-MTO	Olefin	4.64	-9.24	0.07	13.81
40	RWGS-CO2MEA-MS-MTO	Olefin	4.16	-8.29	0.06	12.39
41	CR5-CO ₂ MEA-MS-MTO	Olefin	-2.03	-8.71	0.15	6.53
42	ELECZCO-CO ₂ MEA-MS-MTO	Olefin	7.79	-9.24	0.07	16.96
43	DHM-MTO	Olefin	-4.49	-6.21	0.10	1.62
44	DHO-SEP	Olefin	-5.48	-14.90	1.50	7.91
45	RWGS-MS-MTG	Gasoline	-4.42	-8.46	0.25	3.79
46	CR5-MS-MTG	Gasoline	-5.21	-8.07	0.13	2.72
47	ELECZCO-MS-MTG	Gasoline	-0.33	-8.93	0.11	8.49

48	RWGS-COPSA-MS-MTG	Gasoline	-5.22	-10.41	0.15	5.05
49	CR5-COPSA-MS-MTG	Gasoline	-6.08	-10.18	0.18	3.93
50	ELECZCO-COPSA-MS-MTG	Gasoline	5.42	-10.81	0.08	16.15
51	RWGS-CO ₂ MEA-MS-MTG	Gasoline	-0.34	-9.69	0.24	9.11
52	CR5-CO ₂ MEA-MS-MTG	Gasoline	-2.37	-10.18	0.18	7.63
53	ELECZCO-CO2MEA-MS-MTG	Gasoline	9.11	-10.80	0.08	19.83
54	DHM-MTG	Gasoline	-5.25	-7.26	0.11	1.90
55	RWGS-MS-DEHYDR-SEP-DTG	Gasoline	-2.13	-11.99	1.13	8.72
56	CR5-MS-DEHYDR-SEP-DTG	Gasoline	-3.43	-11.81	1.00	7.38
57	ELECZCO-MS-DEHYDR-SEP-DTG	Gasoline	3.61	-11.72	0.92	14.41
58	RWGS-COPSA-MS-DEHYDR-SEP-DTG	Gasoline	-2.20	-11.54	0.79	8.56
59	CR5-COPSA-MS-DEHYDR-SEP-DTG	Gasoline	-3.14	-11.68	0.88	7.66
60	ELECZCO-COPSA-MS-DEHYDR-SEP-DTG	Gasoline	8.98	-11.33	0.55	19.76
61	RWGS-CO ₂ MEA-MS-DEHYDR-SEP-DTG	Gasoline	3.67	-11.83	1.03	14.47
62	CR5-CO2MEA-MS-DEHYDR-SEP-DTG	Gasoline	1.11	-11.67	0.88	11.90
63	ELECZCO-CO ₂ MEA-MS-DEHYDR-SEP-DTG	Gasoline	12.70	-11.35	0.55	23.49
64	DHCO ₂ MEOH-DEHYDR-SEP-DTG	Gasoline	-4.65	-11.08	0.42	6.01
65	RWGS-COPSA-DMES-SEP-DTG	Gasoline	3.58	-21.03	9.87	14.74
66	CR5-COPSA-DMES-SEP-DTG	Gasoline	1.24	-22.50	10.65	13.10
67	ELECZCO-COPSA-DMES-SEP-DTG	Gasoline	22.02	-18.90	7.74	33.18
68	RWGS-CO ₂ MEA-DMES-SEP-DTG	Gasoline	16.47	-26.74	14.87	28.34
69	CR5-CO ₂ MEA-DMES-SEP-DTG	Gasoline	8.44	-22.49	11.33	19.59
70	ELECZCO-CO2MEA-DMES-SEP-DTG	Gasoline	27.61	-18.89	7.74	38.75
71	ELECZFA-SEP	FA	41.98	-24.73	0.12	66.58
72	ELECZETOH-SEP	EtOH	136.92	-33.10	0.16	169.87

_

S5. Optimization model for optimal pathway identification

To identify the optimal CO₂-to-fuel pathway from an economic perspective, we developed a network optimization model using a mixed integer linear programming (MILP) technique based on the generated CCU4E superstructure along with associated parameters that was obtained through a process simulation.

Objective function: The object function identifies the optimal CO_2 -to-fuel pathway for each CO_2 -based fuel types, which produce fuel at minimum UPC among several pathways. This objective function is calculated by annual capital cost, operating cost, and annual production rate.

$$MinUPC_{s} = \sum_{j} X_{js} \left(\frac{\sum_{j} \alpha_{j} + \sum_{j} \psi_{j} + \sum_{i \in I^{U}} \overline{\omega}_{i} \gamma_{ij} + \sum_{i \in I^{F}} \xi_{i} F_{ij} - \sum_{i \in I^{B}} \pi_{ij} S_{ij}}{\sum_{i \in I^{P}} S_{ij}} \right)$$
(17)

where X_{js} is the binary variable for the selection of pathway j in each fuel s, α_j is the total capital investment cost of pathway j, ψ_j is the fixed operating cost factor of pathway j. γ_{ij} and F_{ij} is the amount of utilities and feestock, respectively. ϖ_i and ξ_i are the unit costs for utilities $i \in I^U$ and feedstock $i \in I^F$, respectively. \hat{s}_i is the annual production rate of final product $i \in I^P$ and π_i is assumed unit price by-product $i \in I^B$.

Constraints:

Logistic constraints: Only one pathway (the optimal one with the minimum UPC) should be selected toward each fuel s.

$$\sum_{j_1}^{j_n} X_{js} = 1$$

Compound material balance: the amount of feedstock and the production of a compound should be equal to the amount of product, by-product, and the consumption of compounds in pathway (a series of technologies):

$$F_i + \sum_{j \in J_i^+} \eta_{ij} Y_j = S_i - \sum_{j \in J_i^-} \eta_{ij} Y_j \quad \forall i$$
(18)

where F_i is the amount of feedstock $i \in I^F$, η_{ij} is the yield of compound i in technology j ($\eta_{ij} < 0$ for inputs and $\eta_{ij} > 0$ for outputs), Y_j is the production level of technology j, and S_i is the amount of product $i \in I^P$, by-product $i \in I^B$.

Capacity limits: the total amount of the production each technology should be bounded by its capacity and the number of facilities:

$$Y_j \le N_j \beta_j \tag{19}$$

where N_j is the number of technology j, β_j is the capacity of technology j.

Feed availability: the amount of CO_2 $i \in I^{F'}$ for CO_2 utilization should be equal to its availability:

$$\sum_{i \in I^{F'}} F_i = \rho \tag{20}$$

where ρ is the availability of CO₂.

S6. Analysis of CCU4E in different local scenarios

	% in 2018	This study (Mt/y)
Global	100	1000
China	29	290
US	16	160
Europe	11	110
India	7	110
Japan	4	40
Korea	2	20
Rest of the world	31	270

Table S6.1. Top country's share of CO₂ emissions ⁵¹

Table S6.2. The unit price of black H_2 (estimated based on natural gas market) $^{47,52-54}$

	Natural gas (\$/MMBTU)	Natural gas (\$/GJ)	Black H_2^* (\$/kg)
Global	4.38	4.15	2.7
USA	3.15	2.99	2.3
Europe	7.68	7.28	4.1
China	8.1	7.68	4.3
India	8.1	7.68	4.3
Japan	8.1	7.68	4.3
Korea	8.1	7.68	4.3

* H_2 is assumed to produce via steam methane reforming integrated with CO₂ capture and storage ⁴⁰.

Table S6.3. UPC and NCE of CO₂-based fuels using black/green H₂ by country

				UPC (S	S/GGE)			NCE (kgCO ₂ /GGE)					
Product	Scenario	China	USA	Europe	India	Japan	Korea	China	USA	Europe	India	Japan	Korea
MeOH	Black H ₂	5.37	3.15	5.14	5.33	5.31	5.34	0.00	-1.23	-0.11	0.19	-0.29	-0.26
	Green H ₂	4.87	4.41	6.58	4.07	9.52	7.42	-0.67	-4.77	-0.78	-0.48	-0.29	-0.93
FT fuel	Black H ₂	6.78	3.88	6.47	6.72	6.70	6.73	1.69	2.94	1.43	2.19	0.96	1.05
	Green H ₂	6.17	5.40	8.21	5.20	11.78	9.25	0.09	-1.33	-0.17	0.59	0.96	-0.56
DME	Black H ₂	5.86	3.55	5.62	5.81	5.80	5.83	0.31	-0.04	0.17	0.58	-0.09	-0.04
	Green H ₂	5.36	4.82	6.86	4.54	8.64	7.39	-0.62	-3.62	-0.77	-0.35	-0.09	-0.98
Olefin	Black H ₂	4.33	2.52	4.14	4.30	4.28	4.31	-0.29	-1.77	-0.46	0.03	-0.77	-0.71
	Green H ₂	3.92	3.54	5.32	3.26	7.74	6.01	-1.40	-4.67	-1.57	-1.08	-0.77	-1.82
Gasoline	Black H ₂	5.41	3.29	5.19	5.37	5.36	5.38	-0.34	-2.07	-0.54	0.04	-0.90	-0.84
	Green H ₂	4.93	4.49	6.57	4.16	9.39	7.38	-1.64	-5.46	-1.84	-1.26	-0.90	-2.13

S7. Future estimation of black and green H₂

Basically, green H₂ price was estimated based on the price of green electricity type (e.g., solarbased, wind-based, bioenergy) and technology development of water electrolyzer (e.g., alkaline – ALK, proton exchange membrane – PEM, solid oxide electrolyzer cell – SOEC). The price of various renewable-based electricity was assumed and estimated from references $^{55-57}$, and presented in Table S7.1. Here, we also considered the potential development of electrolyzers with higher efficiency and lower capital cost, resulting in lower green H₂ price, in which the techno-economic characteristics was estimated and presented in Table S7. 2 – S7.4 $^{55,58-60}$. Finally, green H₂ price was estimated and provided in Table S7.5.

Table S7.1. Estimated global renewable electricity price for 2020 – 2030

Unit	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
\$/kWh	0.085	0.082	0.078	0.075	0.071	0.068	0.064	0.061	0.057	0.054	0.050
\$/kWh	0.056	0.054	0.053	0.051	0.050	0.048	0.046	0.045	0.043	0.042	0.040
\$/kWh	0.127	0.120	0.114	0.107	0.101	0.094	0.088	0.081	0.074	0.068	0.061
\$/kWh	0.185	0.177	0.168	0.160	0.151	0.143	0.134	0.126	0.117	0.109	0.100
\$/kWh	0.062	0.062	0.062	0.061	0.061	0.061	0.061	0.061	0.060	0.060	0.060
\$/kWh	0.047	0.046	0.046	0.045	0.044	0.044	0.043	0.042	0.041	0.041	0.040
\$/kWh	0.072	0.071	0.071	0.070	0.069	0.069	0.068	0.067	0.066	0.066	0.065
\$/kWh	0.071	0.068	0.065	0.063	0.060	0.058	0.055	0.053	0.050	0.048	0.045
	Unit \$/kWh \$/kWh \$/kWh \$/kWh \$/kWh \$/kWh \$/kWh	Unit 2020 \$/kWh 0.085 \$/kWh 0.056 \$/kWh 0.127 \$/kWh 0.185 \$/kWh 0.062 \$/kWh 0.047 \$/kWh 0.072	Unit 2020 2021 \$/kWh 0.085 0.082 \$/kWh 0.056 0.054 \$/kWh 0.127 0.120 \$/kWh 0.185 0.177 \$/kWh 0.062 0.062 \$/kWh 0.062 0.062 \$/kWh 0.047 0.046 \$/kWh 0.072 0.071 \$/kWh 0.071 0.068	Unit 2020 2021 2022 \$/kWh 0.085 0.082 0.078 \$/kWh 0.056 0.054 0.053 \$/kWh 0.127 0.120 0.114 \$/kWh 0.185 0.177 0.168 \$/kWh 0.062 0.062 0.062 \$/kWh 0.047 0.046 0.046 \$/kWh 0.071 0.071 0.071	Unit 2020 2021 2022 2023 \$/kWh 0.085 0.082 0.078 0.075 \$/kWh 0.056 0.054 0.053 0.051 \$/kWh 0.127 0.120 0.114 0.107 \$/kWh 0.185 0.177 0.168 0.160 \$/kWh 0.062 0.062 0.062 0.061 \$/kWh 0.047 0.046 0.045 \$.070 \$/kWh 0.071 0.071 0.070 \$.063	Unit 2020 2021 2022 2023 2024 \$/kWh 0.085 0.082 0.078 0.075 0.071 \$/kWh 0.056 0.054 0.053 0.051 0.050 \$/kWh 0.127 0.120 0.114 0.107 0.101 \$/kWh 0.185 0.177 0.168 0.160 0.151 \$/kWh 0.062 0.062 0.062 0.061 0.061 \$/kWh 0.047 0.046 0.046 0.045 0.044 \$/kWh 0.071 0.068 0.065 0.063 0.060	Unit 2020 2021 2022 2023 2024 2025 \$/kWh 0.085 0.082 0.078 0.075 0.071 0.068 \$/kWh 0.056 0.054 0.053 0.051 0.050 0.048 \$/kWh 0.127 0.120 0.114 0.107 0.101 0.094 \$/kWh 0.185 0.177 0.168 0.160 0.151 0.143 \$/kWh 0.062 0.062 0.062 0.061 0.061 0.061 \$/kWh 0.047 0.046 0.046 0.045 0.044 0.044 \$/kWh 0.072 0.071 0.071 0.070 0.069 0.069 \$/kWh 0.071 0.068 0.065 0.063 0.060 0.058	Unit 2020 2021 2022 2023 2024 2025 2026 \$/kWh 0.085 0.082 0.078 0.075 0.071 0.068 0.064 \$/kWh 0.056 0.054 0.053 0.051 0.050 0.048 0.046 \$/kWh 0.127 0.120 0.114 0.107 0.101 0.094 0.088 \$/kWh 0.185 0.177 0.168 0.160 0.151 0.143 0.134 \$/kWh 0.062 0.062 0.061 0.061 0.061 0.061 \$/kWh 0.047 0.046 0.045 0.044 0.043 0.043 \$/kWh 0.072 0.071 0.071 0.070 0.069 0.069 0.068 \$/kWh 0.071 0.068 0.065 0.063 0.060 0.058 0.055	Unit 2020 2021 2022 2023 2024 2025 2026 2027 \$/kWh 0.085 0.082 0.078 0.075 0.071 0.068 0.064 0.061 \$/kWh 0.056 0.054 0.053 0.051 0.050 0.048 0.046 0.045 \$/kWh 0.127 0.120 0.114 0.107 0.101 0.094 0.088 0.081 \$/kWh 0.185 0.177 0.168 0.160 0.151 0.143 0.134 0.126 \$/kWh 0.062 0.062 0.061 0.061 0.061 0.061 0.061 \$/kWh 0.047 0.046 0.045 0.044 0.043 0.042 \$/kWh 0.072 0.071 0.070 0.069 0.069 0.068 0.067 \$/kWh 0.071 0.068 0.065 0.063 0.060 0.058 0.053	Unit 2020 2021 2022 2023 2024 2025 2026 2027 2028 \$/kWh 0.085 0.082 0.078 0.075 0.071 0.068 0.064 0.061 0.057 \$/kWh 0.056 0.054 0.053 0.051 0.050 0.048 0.046 0.045 0.043 \$/kWh 0.127 0.120 0.114 0.107 0.101 0.094 0.088 0.081 0.074 \$/kWh 0.185 0.177 0.168 0.160 0.151 0.143 0.134 0.126 0.117 \$/kWh 0.062 0.062 0.062 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.060 \$/kWh 0.047 0.046 0.045 0.044 0.043 0.042 0.041 \$/kWh 0.072 0.071 0.070 0.069 0.068 0.067 0.066 \$/kWh 0.071 0.068 0.065	Unit 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 \$/kWh 0.085 0.082 0.078 0.075 0.071 0.068 0.064 0.061 0.057 0.054 \$/kWh 0.056 0.054 0.053 0.051 0.050 0.048 0.046 0.045 0.043 0.042 \$/kWh 0.127 0.120 0.114 0.107 0.101 0.094 0.088 0.081 0.074 0.068 \$/kWh 0.185 0.177 0.168 0.160 0.151 0.143 0.134 0.126 0.117 0.109 \$/kWh 0.062 0.062 0.061 </td

 Table S7.2. Assumption and estimated techno-economic characteristics for alkaline
 electrolyser (ALK) 58

	Unit	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Efficiency (LHV)	%	67%	67%	67%	67%	67%	67%	67%	68%	68%	68%	68%
Efficiency	kWh/kgH ₂	50	50	50	50	50	50	49	49	49	49	49
Stack lifetime	Operating hours	80000	81000	82000	83000	84000	85000	86000	87000	88000	89000	90000
CAPEX	\$/kW	750	723	696	669	642	615	588	561	534	507	480
OPEX												
Stack replacement cost	\$/kW	340	723	696	669	642	615	588	561	534	507	215
Stack replacement	% of stack	10%	10%	10%	10%	10%	9%	9%	9%	9%	9%	9%
OPEX-FC	% of CAPEX	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Capacity	kWh	20,000	20,000	20,000	20,000	20,000	20,000	20,000	20,000	20,000	20,000	20,000
Operability	h/y	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000

 Table S7.3. Assumption and estimated techno-economic characteristics for proton exchange

 membrane electrolyser (PEM) 58

	Unit	2020	0 2021	1 2022	2 2023	3 2024	4 2025	5 2020	5 202'	7 2028	8 2029	2030
Efficiency (LHV)	%	58%	59%	60%	60%	61%	62%	63%	63%	64%	65%	66%
Efficiency	kWh/kgH ₂	57	57	56	55	55	54	53	53	52	51	51
Stack lifetime	Operating hours	40000	43500	47000	50500	54000	57500	61000	64500	68000	71500	75000
CAPEX	\$/kW	1,200	1,150	1,100	1,050	1,000	950	900	850	800	750	700
OPEX												
Stack replacement cost	\$/kW	420	399	378	357	336	315	294	273	252	231	210
Stack replacement	% of stack	20%	18%	17%	16%	15%	14%	13%	12%	12%	11%	11%
OPEX-FC	% of CAPEX	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Capacity	kWh	20,000	20,000	20,000	20,000	20,000	20,000	20,000	20,000	20,000	20,000	20,000
Operability	h/y	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000

	Unit	2020	2021	2022	2 2023	3 2024	4 2025	5 2026	5 2027	7 2028	3 2029	2030
Efficiency (LHV)	%	78%	78%	78%	78%	79%	79%	79%	80%	80%	80%	81%
Efficiency	kWh/kgH ₂	43	43	43	42	42	42	42	42	42	42	41
Stack lifetime	Operating hours	20,000	22,000	24,000	26,000	28,000	30,000	32,000	34,000	36,000	38,000	40,000
CAPEX	\$/kW	4,200	3,960	3,720	3,480	3,240	3,000	2,760	2,520	2,280	2,040	1,800
OPEX												
Stack replacement cost	\$/kW	2,100	1,980	1,860	1,740	1,620	1,500	1,380	1,260	1,140	1,020	900
Stack replacement	% of stack	40%	36%	33%	31%	29%	27%	25%	24%	22%	21%	20%
OPEX-FC	% of CAPEX	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Capacity	kWh	20,000	20,000	20,000	20,000	20,000	20,000	20,000	20,000	20,000	20,000	20,000
Operability	h/y	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000

 Table S7.4. Assumption and estimated techno-economic characteristics for solid oxide

 electrolyzer cell (SOEC) 58

Table S7.5. Estimated of green hydrogen price in 2020 – 2030

Electrolyzer type	Energy source	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
ALK	SolarPV	5.041	5.068	4.840	4.613	4.388	4.164	3.942	3.722	3.502	3.284	2.924
	Onshore wind	3.589	3.714	3.584	3.454	3.326	3.199	3.073	2.948	2.823	2.700	2.434
	Offshore wind	7.144	7.013	6.627	6.243	5.862	5.483	5.106	4.731	4.358	3.987	3.474
	CSP	10.049	9.815	9.326	8.841	8.358	7.878	7.401	6.926	6.454	5.984	5.372
	Bioenergy	3.890	4.084	4.022	3.962	3.902	3.843	3.784	3.727	3.669	3.613	3.413
	Hydropower	3.138	3.309	3.225	3.141	3.058	2.976	2.895	2.815	2.735	2.656	2.434
	Geothermal	4.390	4.558	4.471	4.384	4.299	4.214	4.130	4.047	3.965	3.883	3.658
PEM	SolarPV	6.532	6.132	5.753	5.392	5.047	4.716	4.397	4.090	3.793	3.505	3.226
	Onshore wind	4.867	4.596	4.343	4.104	3.879	3.664	3.459	3.263	3.075	2.893	2.718
	Offshore wind	8.944	8.339	7.760	7.204	6.668	6.152	5.652	5.168	4.698	4.242	3.798
	CSP	12.274	11.517	10.790	0 10.090	9.414	8.760	8.127	7.512	6.914	6.334	5.768
	Bioenergy	5.212	5.016	4.835	4.668	4.512	4.365	4.227	4.095	3.970	3.850	3.735
	Hydropower	4.351	4.137	3.940	3.756	3.584	3.422	3.268	3.121	2.981	2.847	2.718
	Geothermal	5.786	5.554	5.339	5.138	4.949	4.770	4.600	4.437	4.282	4.133	3.989
SOEC	SolarPV	10.913	9.922	9.046	8.258	7.540	6.879	6.264	5.687	5.143	4.626	4.133
	Onshore wind	9.667	8.762	7.972	7.269	6.635	6.057	5.525	5.030	4.568	4.132	3.720
	Offshore wind	12.717	11.588	10.575	9.650	8.797	8.001	7.253	6.544	5.868	5.221	4.599
	CSP	15.209	13.988	12.883	11.869	10.925	5 10.040	9.203	8.406	7.643	6.910	6.202
	Bioenergy	9.924	9.079	8.347	7.702	7.126	6.605	6.129	5.691	5.284	4.904	4.547
	Hydropower	9.280	8.416	7.665	7.001	6.406	5.867	5.374	4.917	4.493	4.095	3.720
	Geothermal	10.354	9.486	8.731	8.063	7.464	6.921	6.423	5.963	5.534	5.133	4.754
ALK	SolarPV&wind-based	4.315	4.391	4.212	4.034	3.857	3.682	3.508	3.335	3.163	2.992	2.679

Also, black H_2 was assumed to be produced via steam methane reforming with carbon capture, in which H_2 price depends on natural gas price, as followed reference ⁶¹, extracted and shown in Fig. S7.1. Noted that future of natural gas price is unstable and not readily available, we estimated based on three big market of natural gas (USA, EU, and Asia) ^{52,53,62,63}, as shown in Table S7.6.

Fig. S7.1. Correlation of H₂ price and natural gas price via technology of steam methane reforming integrated with carbon capture process (SMRwCCS).

Natural ga	as price (\$/MMBTU):													
Market	Assumption	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
USA	Pessimistic (World Bank)	3.15	2.50	2.70	2.81	2.92	3.04	3.16	3.29	3.42	3.56	3.70	3.85	4.00
Europe	Medium (World Bank)	7.68	4.50	4.50	4.70	4.92	5.14	5.37	5.61	5.87	6.13	6.41	6.70	7.00
Asia	Optimistic (World Bank)	8.10	8.10	8.11	8.15	8.19	8.23	8.27	8.31	8.35	8.39	8.43	8.47	8.51
USA	Pessimistic (WEO)	3.15	2.66	2.57	2.59	2.61	2.63	2.65	2.67	2.69	2.71	2.73	2.75	2.77
Europe	Medium (WEO)	7.68	4.77	5.96	5.89	5.81	5.74	5.67	5.60	5.53	5.46	5.39	5.33	5.26
Asia	Optimistic (WEO)	8.10	5.73	6.64	6.64	6.65	6.65	6.66	6.67	6.67	6.68	6.68	6.69	6.69
USA	Pessimistic (EIA)	3.15	3.29	3.43	3.58	3.74	3.91	4.08	4.26	4.45	4.64	4.85	5.06	5.28
Europe	Medium (EIA)	7.68	8.02	8.37	8.74	9.12	9.53	9.95	10.38	10.84	11.32	11.82	12.34	12.88
Asia	Optimistic (EIA)	8.10	8.46	8.83	9.22	9.62	10.05	10.49	10.95	11.43	11.94	12.46	13.01	13.58
Black H ₂	price (\$/kg):													
Market	Assumption	2018	2019 2	2020 2	2021	2022 2	2023	2024	2025	2026	2027	2028	2029	2030
USA	Pessimistic (World Bank)	2.30	2.04	2.12	2.16	2.21	2.25	2.30	2.35	2.41	2.46	2.52	2.58	2.64
Europe	Medium (World Bank)	4.12	2.84	2.84	2.92	3.01	3.10	3.19	3.29	3.39	3.49	3.61	3.72	3.84
Asia	Optimistic (World Bank)	4.28	4.29	4.29	4.30	4.32	4.34	4.35	4.37	4.38	4.40	4.42	4.43	4.45
USA	Pessimistic (WEO)	2.30	2.10	2.07	2.07	2.08	2.09	2.10	2.11	2.11	2.12	2.13	2.14	2.15
Europe	Medium (WEO)	4.12	2.95	3.43	3.40	3.37	3.34	3.31	3.28	3.25	3.23	3.20	3.17	3.15
Asia	Optimistic (WEO)	4.28	3.33	3.70	3.70	3.70	3.70	3.71	3.71	3.71	3.71	3.71	3.72	3.72
USA	Pessimistic (EIA)	2.30	2.35	2.41	2.47	2.54	2.60	2.67	2.74	2.82	2.90	2.98	3.06	3.15
Europe	Medium (EIA)	4.12	4.25	4.39	4.54	4.70	4.86	5.02	5.20	5.38	5.58	5.78	5.98	6.20
Asia	Optimistic (EIA)	4.28	4.43	4.58	4.73	4.90	5.07	5.24	5.43	5.62	5.82	6.03	6.25	6.48

Table S7.6. Estimation for natural gas prices and black H_2 price

Table S7.7. Estimated CO₂-based fuel UPC in short-term future

	МеОН				FT			DME			Olefin			Gasoline	e
	2020	2025	2030	2020	2025	2030	2020	2025	2030	2020	2025	2030	2020	2025	2030
	5.96	5.08	3.82	7.32	6.25	4.73	6.41	5.51	4.24	4.82	4.09	3.06	5.98	5.13	3.93
	4.50	4.10	3.33	5.55	5.07	4.00	4.92	4.52	3.74	3.61	3.29	3.00	4.57	4.20	3.45
	8.09	6.41	4.38	9.88	7.86	5.41	8.55	6.86	4.81	6.56	5.18	3.52	8.02	6.41	4.46
	11.03	8.83	6.30	13.43	10.78	7.72	11.52	9.30	6.74	8.97	7.17	5.09	10.83	8.73	6.30
Data	4.80	4.75	4.32	5.91	5.85	5.33	5.23	5.18	4.74	3.86	3.82	3.47	4.86	4.82	4.40
Data	4.04	3.88	3.33	5.00	4.80	4.14	4.46	4.30	3.74	3.24	3.11	2.66	4.14	3.98	3.45
	5.31	5.13	4.57	6.52	6.31	5.63	5.74	5.56	4.99	4.28	4.13	3.67	5.35	5.18	4.64
	7.47	5.64	4.13	9.14	6.92	5.10	7.93	6.07	4.55	6.06	4.55	3.31	7.43	5.67	4.22
	5.79	4.57	3.61	7.11	5.64	4.48	6.23	5.00	4.03	4.67	3.68	2.89	5.81	4.65	3.73
	9.91	7.09	4.71	12.08	8.67	5.80	10.39	7.54	5.14	8.05	5.74	3.79	9.76	7.06	4.78

	13.28	9.73	6.70	16.14	11.86	8.20	13.79	10.21	7.15	10.82	7.90	5.42	12.99	9.59	6.69
	6.14	5.28	4.64	7.53	6.49	5.72	6.58	5.72	5.07	4.96	4.26	3.74	6.15	5.33	4.71
	5.27	4.33	3.61	6.47	5.34	4.48	5.70	4.75	4.03	4.25	3.48	2.89	5.31	4.41	3.73
	7.00	5.69	4.90	8.00	6.99	6.03	7.00	6.13	5.33	5.00	4.59	3.95	7.00	5.72	4.96
	11.90	7.82	5.05	14.48	9.56	6.21	12.40	8.28	5.48	9.69	6.34	4.07	11.67	7.76	5.10
	10.64	6.99	4.63	12.96	8.56	5.70	11.13	7.44	5.06	8.65	5.66	3.72	10.46	6.97	4.70
	13.73	8.96	5.52	16.68	10.93	6.78	14.25	9.43	5.95	11.18	7.27	4.45	13.42	8.85	5.55
	16.25	11.02	7.14	19.73	13.42	8.73	16.79	11.51	7.59	13.25	8.96	5.78	15.84	10.83	7.11
	10.90	7.55	5.46	13.28	9.23	6.71	11.39	8.00	5.90	8.87	6.12	4.41	10.71	7.50	5.50
	10.25	6.80	4.63	12.49	8.33	5.70	10.74	7.25	5.06	8.33	5.50	3.72	10.09	6.78	4.70
	11.34	7.87	5.67	13.80	9.61	6.97	11.83	8.33	6.11	9.22	6.38	4.58	11.13	7.80	5.70
Mean	8.74	6.55	4.78	10.64	8.02	5.88	9.19	6.99	5.21	7.06	5.30	3.87	8.64	6.54	4.85

Reference

- 1 Global CCS Institute & Parsons Brinckerhoff, *Technology*.
- 2 IEA (2019), *Putting CO2 to Use*, Paris.
- 3 IEA (2019), Transforming Industry through CCUS, .
- 4 L. M. Bert Metz, Ogunlade Davidson, Heleen de Coninck, Manuela Loos, *The IPCC* special report on carbon dioxide capture and storage, Cambridge University Press, 2005.
- 5 C. Hepburn, E. Adlen, J. Beddington, E. A. Carter, S. Fuss, N. Mac Dowell, J. C. Minx, P. Smith and C. K. Williams, *Nature*, 2019, **575**, 87–97.
- 6 R. Chauvy, N. Meunier, D. Thomas and G. De Weireld, *Appl. Energy*, 2019, **236**, 662–680.
- 7 World Oil, IEA predicts global oil demand will level off around 2030.
- 8 Freedonia, World Biofuels, https://www.freedoniagroup.com/industry-study/worldbiofuels-3179.htm, (accessed 3 February 2020).
- 9 M. Aresta, A. Dibenedetto and E. Quaranta, J. Catal., , DOI:10.1016/j.jcat.2016.04.003.
- 10 S. Kim and J. Kim, *Fuel*, 2020, **266**, 117093.
- 11 K. M. Vanden Bussche and G. F. Froment, J. Catal., 1996, 161, 1–10.
- 12 S. Han, S. Kim, Y. T. Kim, G. Kwak and J. Kim, *Energy Convers. Manag.*, 2019, **187**, 1–14.
- 13 C. Mevawala, Y. Jiang and D. Bhattacharyya, *Appl. Energy*, 2017, **204**, 163–180.
- 14 Z. Nie, H. Liu, D. Liu, W. Ying and D. Fang, J. Nat. Gas Chem.
- 15 T. N. Do and J. Kim, J. CO2 Util., 2019, 33, 461–472.
- 16 C. Zhang, R. Gao, K.-W. Jun, S. K. Kim, S.-M. Hwang, H.-G. Park and G. Guan, *J. CO2 Util.*, 2019, **34**, 293–302.
- 17 T. N. Do and J. Kim, *Energy Convers. Manag.*, 2020, **214**, 112866.
- 18 S. Najari, G. Gróf, S. Saeidi and F. Gallucci, *Int. J. Hydrogen Energy*, 2019, 44, 4630–4649.
- 19 D. Xiang, S. Yang and Y. Qian, *Energy Convers. Manag.*, 2016, **110**, 33–41.
- 20 J. Kim, S. M. Sen and C. T. Maravelias, *Energy Environ. Sci.*, 2013, 6, 1093–1104.
- 21 S. Jones and Y. Zhu, in *Industrial Chemistry*, Apple Academic Press, 2011, pp. 242–262.
- 22 F. Trippe, M. Fröhling, F. Schultmann, R. Stahl, E. Henrich and A. Dalai, *Fuel Process. Technol.*, 2013, **106**, 577–586.
- 23 G. Liu and E. D. Larson, in *Energy Procedia*, 2014, vol. 63.
- 24 C. J. Kulik, M. Gogate and C. J. Kulik, *Fuel Sci. Technol. Int.*, , DOI:10.1080/08843759508947721.

- 25 J. Kim, C. A. Henao, T. A. Johnson, D. E. Dedrick, J. E. Miller, E. B. Stechel and C. T. Maravelias, *Energy Environ. Sci.*, 2011, 4, 3122–3132.
- 26 J. Kim, T. A. Johnson, J. E. Miller, E. B. Stechel and C. T. Maravelias, *Energy Environ*. *Sci.*, 2012, **5**, 8417–8429.
- 27 J. M. Spurgeon and B. Kumar, *Energy Environ. Sci.*, 2018, **11**, 1536–1551.
- 28 B. James, W. Colella, J. Moton, G. Saur and T. Ramsden, *PEM Electrolysis H2A Prod. Case Study Doc.*, 2013, 1–27.
- 29 R. Küngas, J. Electrochem. Soc., 2020, 167, 044508.
- 30 R. Davis, A. Aden and P. T. Pienkos, *Appl. Energy*, 2011, **88**, 3524–3531.
- 31 F. R. Soares, G. Martins and E. S. M. Seo, *Environ. Technol. (United Kingdom)*, 2013, **34**, 1777–1781.
- 32 Y. Il Lim, J. Choi, H. M. Moon and G. H. Kim, *Korean Chem. Eng. Res.*, 2016, **54**, 320–331.
- 33 Z. Hoffman, LSU Master's Theses. 2269, 2005, 97.
- 34 S. Pourjazaieri, M. Zoveidavianpoor and S. R. Shadizadeh, *Pet. Sci. Technol.*, 2011, 29, 39–47.
- 35 S. Kim, D. Ko, J. Mun, T. hyun Kim and J. Kim, *Korean J. Chem. Eng.*, 2018, **35**, 941–955.
- 36 S. Kim, M. Kim, Y. T. Kim, G. Kwak and J. Kim, *Energy Convers. Manag.*, 2019, **182**, 240–250.
- 37 A. A. Kiss, J. J. Pragt, H. J. Vos, G. Bargeman and M. T. de Groot, *Chem. Eng. J.*, 2016, 284, 260–269.
- 38 R. K. Sinnott and G. Towler, *Chemical Engineering Design*, 2013.
- 39 G. Glenk and S. Reichelstein, *Nat. Energy*, 2019, 4, 216–222.
- Y. Khojasteh Salkuyeh, B. A. Saville and H. L. MacLean, *Int. J. Hydrogen Energy*, 2017, 42, 18894–18909.
- 41 W. L. Luyben, Comput. Chem. Eng., 2017, 103, 144–150.
- 42 M. Jouny, W. Luc and F. Jiao, *Ind. Eng. Chem. Res.*, 2018, **57**, 2165–2177.
- 43 M. Yang and F. You, *Ind. Eng. Chem. Res.*, 2017, **56**, 4038–4051.
- 44 Gas prices Explainated, No Title.
- 45 IRENA, Biodiesel, https://www.irena.org/costs/Transportation/Biodiesel, (accessed 1 February 2020).
- 46 Trading economic: Naphtha, https://tradingeconomics.com/commodity/naphtha, (accessed 2 February 2020).
- 47 A. M. Brander, A. Sood, C. Wylie, A. Haughton, J. Lovell, I. Reviewers and G. Davis, *Ecometrica*, 2011, 1–22.
- 48 Defra, *Defra*, 2015.

- 49 City of Winnipeg, *WSTP South End Plant Process Sel. Rep.*, , DOI:10.1016/B978-1-4160-4044-6.50105-9.
- 50 International Energy Agency, *Iea*, 2017, **40**, 590–615.
- 51 Union of Concerned Scientists, Each Country's Share of CO2 Emissions, https://www.ucsusa.org/resources/each-countrys-share-co2-emissions, (accessed 3 May 2020).
- 52 EIA, Henry Hub Natural Gas Spot Price, https://www.eia.gov/dnav/ng/hist/rngwhhdm.htm, (accessed 5 September 2020).
- 53 YCharts, European Union Natural Gas Import Price, https://cutt.ly/MbHp4AA, (accessed 5 September 2020).
- 54 International Gas Union, *Wholesale gas price survey 2019 edition: A global review of price formation mechanisms*, Barcelona, Spain, 2019.
- 55 IRENA, *Renewable Power Generation Costs in 2017*, Abu Dhabi, 2019.
- 56 IRENA, Future of wind: Deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation paper), International Renewable Energy Agency, Abu Dhabi, 2019.
- 57 IRENA, Future of Solar Photovoltaic: Deployment, investment, technology, grid integration and socio-economic aspects, International Renewable Energy Agency, Abu Dhabi, 2019.
- 58 S. Bourne, *The Future of Hydrogen: Seizing today's opportunities*, 2019.
- 59 IEA (2020), World Energy Model, IEA, Paris https://www.iea.org/reports/worldenergy-model, Paris.
- 60 Renewable Energy Institute, Statistics: RE, https://www.renewableei.org/en/statistics/re/, (accessed 9 April 2020).
- Y. Khojasteh Salkuyeh, B. A. Saville and H. L. MacLean, *Int. J. Hydrogen Energy*, 2017, 42, 18894–18909.
- 62 Knoema, Natural gas price forecast: 2020, 2021 and long term to 2030, https://knoema.com/ncszerf/natural-gas-price-forecast-2020-2021-and-long-term-to-2030.
- 63 IEA, Evolution of natural gas spot market prices, 2014-2019, Paris, https://www.iea.org/data-and-statistics/charts/evolution-of-natural-gas-spot-market-prices-2014-2019, (accessed 4 March 2020).