Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2021

Supporting information

Exceptionally high performance of protonic ceramic fuel cells with stoichiometric electrolytes

Mingi Choi, Jaedeok Paik, Donguk Kim, Deokyoon Woo, Jaeyeob Lee, Seo Ju Kim, Jongseo Lee, Wonyoung Lee*

School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, South Korea E-mail: leewy@skku.edu

Supplementary Figure 1. Schematics of (a) the sample preparation, and (b) controlled chemical potential of Ba near the BZCYYb electrolyte surface in the lateral direction. Evaporated Ba from the additional Ba source diffuses from site (1) to site (4) following Fick's law of diffusion.

	Stoichiometric	Location			
	BZCYYb	(1)	(2)	(3)	(4)
Ba at%	50.00	50.64	46.72	42.90	38.26
Zr at%	20.00	21.01	20.80	18.97	17.61
Ce at%	20.00	17.59	18.34	16.15	14.67
Y at%	5.00	5.96	8.08	13.31	16.37
Yb at%	5.00	4.80	7.77	8.66	13.08
Ba/(Zr+Ce+Y+Yb)	1.00	1.02	0.876	0.750	0.621

Supplementary Table 1. Representatively measured atomic concentration by EDAX, and calculated Ba/(Zr+Ce+Y+Yb) at the location of (1)-(4) in Supplementary Figure 1(b).

Supplementary Figure 2. Representative SEM images at the location of (1)-(4) in Supplementary Figure 1(b) and image processing procedure. Using the image processing software (Image J), the grain edges (or grain boundaries) were identified. Then, the secondary clusters were identified and marked as white based on the contrast difference between extruded clusters and the BZCYYb electrolyte surface. In this step, the grain size of the BZCYYb electrolyte was calculated excluding the secondary clusters. Then, the grain boundaries of the BZCYYb electrolyte were removed and the surface coverage of the secondary clusters was calculated by the equation as shown in below.

 $Surface \ coverage \ of \ secondary \ clusters \ (\%) = \frac{number \ of \ pixels \ for \ secondary \ clusters}{number \ of \ pixels \ for \ electrolyte \ surface} \times 100$

Supplementary Table 2. Calculated grain size and surface coverage of secondary clusters at the location of (1)-(4) in Supplementary Figure 1(b).

Location	(1)	(1) (2)		(4)
Grain size (µm)	9.57 ± 2.81	5.65 ± 1.75	4.42 ± 1.87	2.75 ± 0.87
Number of pixels				
for electrolyte	165,088	166,263	161,124	161,124
surface				
Number of pixels				
for secondary	for secondary 0		24,104	32,756
clusters				
Surface coverage	0	4 30	1/1.96	20.33
(%)	0	т.30	17.90	20.33

Supplementary Figure 3. (a) The optical image of the BZCYYb electrolyte after the sintering at 1500 °C for 5 h with the additional Ba source. (b) The Ba cation ratio, the average grain size, and the surface coverage of secondary clusters as a function of the distance which was measured between the center of the additional Ba source located on the BZCYYb electrolyte (a white cross mark in Supplementary Figure 4(a)) to the location where the measurement was performed.

Supplementary Figure 4. FE-EPMA mapping of all constituent cations of H-BZCYYb and L-BZCYYb.

Supplementary Table 3. Conversion of the color intensity of each cation elemental map to the cation atomic concentration.

L-BZCYYb	Total color intensity in EDS mapping of each cation	Atomic ratio calculated by intensity in EDS mapping	Atomic ratio measured by EDS	Conversion factor
	Counts	%	%	
Ba	306,324	20.24	30.31	1.4973
Zr	285,614	18.88	22.66	1.2006
Ce	586,617	38.77	35.98	0.9280
Y	202,755	13.40	5.52	0.4121
Yb	131,734	8.71	5.52	0.6342
Sum of each column	1,513,044	100	100	

Н-ВZСҮҮЬ	Total color intensity in EDS mapping of each cation	Atomic ratio calculated by color intensity in EDS mapping	Atomic ratio measured by EDS area scanning	Conversion factor
	Counts	%	%	
Ba	720,367	33.28	52.76	1.5853
Zr	508,402	23.49	20.23	0.8615
Ce	446,885	20.64	20.31	0.9836
Y	191,709	8.85	2.49	0.2814
Yb	297,169	13.73	4.20	0.3061
Sum of each column	2,164,532	100	100	

Supplementary Table 3 shows an example of the conversion process of the color intensity of each cation in EDS elemental map to the cation concentration profile. First, the color intensity of each cation can be obtained from STEM-EDS elemental map in pixel units. The atomic ratio of each cation can be calculated by the ratio of the color intensity of each cation to the color intensity of all cations (Equation S1). Then, the atomic ratio of each cation calculated by the color intensity can be converted to the atomic concentration using the conversion factor, which is calculated by comparing the atomic ratio calculated by the color intensity and the atomic concentration by EDS measurement over the same area (Equation S2). Finally, the concentration profile of each cation in a thickness direction can be obtained from each row in STEM-EDS elemental map with a conversion factor, showing an average atomic concentration

and the standard deviation as shown in Figures 2(c-d).

Equation S1:

 $\begin{array}{l} \textit{Atomic ratio calculated by color intensity in EDS mapping (\%)} \\ = \frac{\textit{Total color intensity in EDS mapping of each cation}}{\textit{Sum of total color intesnity in EDS mapping of all cations}} \times 100 (\%) \end{array}$

Equation S2:

 $Conversion \ factor \ = \frac{Atomic \ ratio \ measured \ by \ EDS}{Atomic \ ratio \ calculated \ by \ color \ intensity \ in \ EDS \ mapping}$

Supplementary Figure 5. XRD patterns as a function of the sintering temperature of (a) L-BZCYYb and (b) H-BZCYYb. (c) BZCYYb(400) peak in XRD patterns, and (d) the lattice parameters.

Supplementary Figure 6. SEM images of L-BZCYYb and H-BZCYYb obtained at sintering temperatures of 1300, 1350, 1400, 1450, and 1500 °C.

Supplementary Figure 7. Histograms of the grain size measured at sintering temperatures of 1300, 1350, 1400, 1450, and 1500 °C for (a) L-BZCYYb and (b) H-BZCYYb.

Supplementary Table 4. Average grain sizes of L-BZCYYb and H-BZCYYb at sintering temperatures of 1300, 1350, 1400, 1450, and 1500 °C

Sintering	Grain size (µm)		
temperature (°C)	L-BZCYb	H-BZCYYb	
1300	0.46 ± 0.12	0.49 ± 0.16	
1350	0.96 ± 0.34	0.82 ± 0.29	
1400	1.33 ± 0.5	1.75 ± 0.71	
1450	1.59 ± 0.49	3.25 ± 1.53	
1500	2.73 ± 0.6	9.32 ± 2.63	

Supplementary Figure 8. Arrhenius plot of (a) L-BZCYYb and (b) H-BZCYYb at sintering temperatures of 1300–1500 °C. (c) Proton conductivity measured at 650 °C and (d) activation energy as a function of the sintering temperature.

Supplementary Figure 9. Cross-sectional SEM image of (a) the single cell after reduction, (b) the interface between the cathode and electrolyte, and (c) the interface between the electrolyte and Ni–BZCYYb anode functional layer.

Supplementary Figure 10. Electrochemical stability evaluation of the H-BZCYYb cell at 600 °C for 200 h under a constant current density of 0.5 A/cm².

Supplementary Table 5. Comparison with previously reported PCFCs. We selected the results presented in papers published in the last 5 years with a reasonable power output.

No	Components	Temperature (°C)	Area-specific ohmic resistance (ohm·cm ²)	Area-specific polarization resistance (ohm·cm ²)	Peak power density (mW/cm²)	Reference Information
		650	0.060	0.101	1903	
1 BZC	Ni-BZCYYb /	600	0.068	0.224	1474	In this study
	PBSCF	550	0.082	0.628	1011	(H-BZCYYb)
		500	0.104	1.917	690	
		650	0.113	0.137	970	
~	Ni-BZCYYb /	600	0.160	0.405	693	In this study
2	PBSCF	550	0.195	1.052	534	(L-BZCYYb)
		500	0.252	3.288	342	
		650	0.075	0.040	1600	
2	Ni-BCZY3 /	600	0.090	0.091	1306	Ref. 5.
3	BSCF	550	0.122	0.211	900	An et al., Nat. Energy, 2018
		500	0.173	0.689	535	
	Ni-BZCYYb1711 /	650	0.132	0.039	1600	Ref. 25. Saqib et al., Energy Environ. Sci., 2021
	BZCYYb1711 /	600	0.166	0.067	1160	
4	GCCCO-	550	0.201	0.125	770	
	BZCYYD1/11	500	0.241	0.258	480	
	Ni-BZCYYb4411 /	650	0.077	0.068	1400	Ref. 8. Choi et al., Nat. Energy, 2018
E	BZCYYb4411 / PBSCF (with PLD interlayer)	600	0.090	0.128	1100	
5		550	0.107	0.266	800	
		500	0.145	0.594	500	
Ni-BZCYYb4411 /	Ni-BZCYYb4411 /	600	0.200	0.31	611	Ref. 23.
6	BZCYYb4411 /	550	0.290	0.69	450	Ding et al., Nat. Commun., 2020
	PNC	500	0.410	1.15	310	
7	Ni-BZCYYb / BZCYYb4411 / PBSCF	650	0.098	0.080	1230	Ref. 24. Seong et al., Adv. Sci., 2021
		600	0.115	0.174	950	
		550	0.170	0.430	690	
		500	0.270	-	420	
8 B E	Ni-BZY20 /	600	-	-	660	Ref. 1. Duan et al.,
	BZY20 / BCFZY	550	-	-	525	
		500	-	-	422	Nature, 2018

 $\begin{array}{l} BSCF=Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3.5};\\ BCFZY=BaCo_{0.4}Fe_{0.4}Zr_{0.1}Y_{0.1}O_{3.5};\\ \end{array}$

Supplementary Figure 11. Nyquist plots of (a) H-BZCYYb and (b) L-BZCYYb cells in the temperature range of 650–500 °C. The first intercept with the x-axis and the arc size represents the ohmic resistance and polarization resistance, respectively.

Supplementary Figure 12. Comparison of area-specific polarization resistance with previously reported PCFCs.

Supplementary Figure 13. (a) Average grain size and (b) Ba cation ratio of H-BZY/H-BCY and L-BZY/L-BCY with the sintering temperature of 1300 and 1500 °C.

 $BaZr_{0.8}Y_{0.2}O_{3-\delta}$ (BZY) and $BaCe_{0.8}Y_{0.2}O_{3-\delta}$ (BCY)-based single cells were fabricated under the control of Ba chemical potential with the sintering temperature of 1300 °C and 1500 °C. With the sintering temperature of 1300 °C, there exists no noticeable difference in the grain size and chemical composition between H-BZY and L-BZY, and H-BCY and L-BCY. However, with the sintering temperature of 1500 °C, H-BZY/H-BCY show the significantly larger grain sizes with the desired chemical composition, while L-BZY/L-BCY show the significantly smaller grain sizes with Ba depletion.

Supplementary Figure 14. SEM images of H-BZY/H-BCY and L-BZY/L-BCY electrolytes after sintering at 1500 °C.