1 SUPPORTING INFORMATION

2 Quasi-Double-Star Nickel and Iron Active Sites for High-Efficient Carbon

3 Dioxide Electroreduction

- 4 Ting Zhang,^{a,b} Xu Han,^a Hong Liu,^c Martí Biset-Peiró,^b Xuan Zhang,^{d,e} Pingping
- 5 Tan,^e Pengyi Tang,^{*f,g} Bo Yang,^c Lirong Zheng,^{*h} Joan Ramon Morante,^{b,i} Jordi

7 ^aCatalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB,

Arbiol*^{a,j}

- 8 Bellaterra, Barcelona, 08193, Catalonia, Spain
- 9 ^bCatalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Sant Adrià del
- 10 Besòs, Barcelona, 08930, Catalonia, Spain
- 11 ^cSchool of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road,
- 12 Shanghai, 201210, P. R. China
- ^dDepartment of Materials Engineering, KU Leuven, Kasteelpark Arenberg, 44, B-3001 Leuven,
 Belgium
- ^eInstitute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest
 University, Chongqing 400715, China.
- 17 ^fErnst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute,
- 18 Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
- 19 gInstitute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai,
- 20 200050, P. R. China
- 21 ^hBeijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of
- 22 Sciences, Beijing, 100049, P. R. China
- ²³ ⁱDepartment of Physics, Universitat de Barcelona, Barcelona, 08028, Catalonia, Spain
- 24 ^jICREA, Pg. Lluís Companys 23, Barcelona, 08010, Catalonia, Spain
- 25 *Correspondence: py.tang@mail.sim.ac.cn (P.T)
- 26 *Correspondence: zhenglr@ihep.ac.cn (L.Z)
- 27 *Correspondence: arbiol@icrea.cat (J.A)
- 28

- 29
- 30
- 31
- 32
- 33

1 CONTENTS

2	Materials and Characterization5
3	Materials
4	Characterization
5	XAFS Measurements7
6	XAFS Analysis and Results7
7	Ink Preparation
8	Electrochemical Measurement
9	Calculation Method
10	DFT Calculations
11	Figure S1. XRD patterns of Ni-IRMOF-3, Fe-IRMOF-3 and Ni ₇ /Fe ₃ -IRMOF-314
12	Figure S2. FTIR spectrum of IRMOF-3, Ni-IRMOF-3, Fe-IRMOF-3 and
13	Ni ₇ /Fe ₃ -IRMOF-3
14	Figure S3. SEM images of IRMOF-3, Ni-IRMOF-3, Fe-IRMOF-3, Ni ₇ /Fe ₃ -IRMOF-3
15	
16	Figure S4. HAADF STEM image of Ni-IRMOF-3 and representative EELS chemical
17	composition maps
18	Figure S5. HAADF STEM image of Fe-IRMOF-3 and representative EELS chemical
19	composition maps
20	Figure S6. BF TEM, HAADF STEM image of Ni ₇ /Fe ₃ -IRMOF-3 and representative
21	EELS chemical composition maps obtained from the red squared area of the STEM
22	micrograph
23	Figure S7. N ₂ adsorption and desorption isotherm and BET surface areas for
24	IRMOF-3, Ni-IRMOF-3, Fe-IRMOF-3 and Ni ₇ /Fe ₃ -IRMOF-319
25	Figure S8. TGA patterns of Ni ₇ /Fe ₃ -IRMOF-320
26	Table S1. Ni and Fe loading ratios of different samples 20
27	Figure S9. XRD patterns of Ni-N-C and Fe-N-C
28	Figure S10. Raman spectra of Ni-N-C and Fe-N-C
29	Figure S11. Low magnification and high magnification aberration-corrected HAADF
30	STEM images of Ni ₇ /Fe ₃ -N-C sample
31	Figure S12. HAADF STEM image of Ni ₇ /Fe ₃ -N-C and representative EDX chemical
32	composition maps24
33	Figure S13. HAADF STEM, BF TEM images of Ni-N-C, HAADF STEM image and
34	representative EELS chemical composition maps obtained from the red squared area
35	of the STEM micrograph25
36	Figure S14. HAADF STEM, BF TEM, HRTEM images of Fe-N-C as well as
37	HAADF STEM image and representative EELS chemical composition maps obtained
38	from the red squared area of the STEM micrograph
39	Figure S15. CV curves of Ni-N-C, Fe-N-C and Ni ₇ /Fe ₃ -N-C in 0.5 M NaHCO ₃
40	electrolyte
41	Figure S16. XPS survey spectra of Ni-N-Cand Fe-N-C

1	Figure S17. High-resolution XPS N 1s of Ni-N-C and Fe-N-C
2	Figure S18. High-resolution XPS O 1s of Ni-N-C and Fe-N-C
3	Figure S19. The enlarged pre-edge region of Ni K-edge XANES spectra and Fe
4	K-edge XANES spectra
5	Figure S20. The corresponding Fe K-edge EXAFS fitting parameters for Fe-N-C and
6	Ni ₇ /Fe ₃ -N-C samples
7	Table S2. EXAFS fitting parameters at the Ni K-edge for various samples
8	Table S3. EXAFS fitting parameters at the Fe K-edge for various samples
9	Figure S21. The representative ¹ H-NMR spectra of the electrolyte after electrolysis of
10	-0.50 V for Ni ₇ /Fe ₃ -N-C in CO ₂ -saturated 0.5 M NaHCO ₃ electrolyte for 30 h31
11	Figure S22. LSV curves vs. RHE of Ni-IRMOF-3, Fe-IRMOF-3 and
12	Ni ₇ /Fe ₃ -IRMOF-3 obtained in Ar- or CO ₂ -saturated 0.5 M NaHCO ₃ solution. FE of
13	CO at various potentials and FE of H2 at various potentials on Ni-IRMOF-3,
14	Fe-IRMOF-3, Ni ₇ /Fe ₃ -IRMOF-3 32
15	Figure S23. CV curves vs. RHE of Ni-N-C, Fe-N-C, Ni ₇ /Fe ₃ -N-C and LSV curves vs.
16	RHE of Ni ₇ /Fe ₃ -N-C obtained in Ar- or CO ₂ -saturated 0.5 M NaHCO ₃ solution33
17	Figure S24. TOF value of different samples
18	Figure S25. Cyclic voltammograms curves for Ni-IRMOF-3, Fe-IRMOF-3,
19	Ni ₇ /Fe ₃ -IRMOF-3, Ni-N-C, Fe-N-C and Ni ₇ /Fe ₃ -N-C. Plots of the current density vs.
20	scan rate for Ni-IRMOF-3, Fe-IRMOF-3, Ni ₇ /Fe ₃ -IRMOF-3, Ni-Ni-N-C, Fe-N-C and
21	Ni ₇ /Fe ₃ -N-C electrodes
22	Figure S26. Linear sweep voltammetry curves of Ni-N-C, Fe-N-C and Ni ₇ /Fe ₃ -N-C
23	with and without 0.05 M NaSCN
24	Figure S27. Electrochemical impedance spectroscopy (EIS) of Ni-IRMOF-3,
25	Fe-IRMOF-3, Ni ₇ /Fe ₃ -IRMOF-3, Ni-N-C, Fe-N-C and Ni ₇ /Fe-N-C37
26	Figure S28. Current density and FE of Ni ₇ /Fe-N-C at different NaHCO ₃
27	concentration at a constant potential (-0.50 V vs. RHE). Partial CO current density of
28	Ni ₇ /Fe ₃ -N-C vs. NaHCO ₃ concentration at -0.50 V vs. RHE 38
29	Figure S29. FE of CO and FE of H_2 at various potentials on Ni_x/Fe_7-N-C
30	Figure S30. FE of CO and FE of H_2 at various potentials on Ni ₇ /Fe ₃ -N-C and
31	Ni ₇ /Co ₃ -N-C
32	Figure S31. FE of CO at various potentials and Current density for CO production on
33	N ₁₇ /Fe ₃ -N-C and N ₁₇ /Fe ₃ -N-C-P
34	Figure S32. XRD patterns and FTIR image of 2-N ₁₇ /Fe ₃ -IRMOF-341
35	Figure S33. SEM images of 2-N17/Fe ₃ -IRMOF-3
36	Figure S34. BF TEM, HAADF STEM image of 2-N17/Fe3-IRMOF-3 and
37	representative EELS chemical composition maps obtained from the red squared area
38	of the STEM micrograph
39	Figure \$35. TGA of 2-N17/Fe3-IRMOF-3
40	Figure 530. AKD patterns and Kaman spectra of 2-N17/Fe3-N-C
41	rigure 55/. HAADF SIEWI, BF IEWI images of 2-N17/Fe3-N-C, HAADF SIEM
42	image and representative EELS chemical composition maps obtained from the red
43	Square area of the 5 r EW interograph 43 Figure S38 VDS spectre for the surger scene C is N is and O is of 2 Ni /E. N C
44	Figure 556. Ar 5 spectra for the survey scan, C 18, N 18 and O 18 01 2-M17/Fe3-N-C.

1	
2	Figure S39. Ni K-edge XANES spectra of Ni foil and 2-Ni ₇ /Fe ₃ -N-C. Fe K-edge
3	XANES spectra of Fe foil and 2-Ni ₇ /Fe ₃ -N-C. Fourier transformation of the EXAFS
4	spectra at R space47
5	Figure S40. LSV and CV curves vs. RHE of 2-Ni ₇ /Fe ₃ -N-C obtained in Ar- or
6	CO ₂ -saturated 0.5 M NaHCO ₃ solution. FE of CO and FE of H ₂ at various potentials
7	on N ₁₇ /Fe ₃ -N-C and 2 -N ₁₇ /Fe ₃ -N-C
8	Figure S41. Linear sweep voltammetry curves of 2-N17/Fe ₃ -N-C with and without
9	0.05 M NaSCN
10	simulated models 50
12	Table S4 Faradaic Efficiency (CO) of the reported single/double atom-based
13	electrocatalysts for CO ₂ electroreduction
14	References
15	
16	
17	
18	
19	
20	
21	
22	
23	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	

1 Materials and Methods

2 Materials:

3 If not specified, all chemical reagents were purchased from Sigma-Aldrich. Zinc nitrate hexahydrate (Zn(NO₃)₂·6H₂O), 2-Aminoterphthalic acid, iron chloride 4 hexahydrate (FeCl₃·6H₂O), cobaltous nitrate hexahydrate (Co(NO₃)₂·6H₂O), nickel 5 chloride hexahydrate (NiCl₂·6H₂O), N,N-dimethylformamide (DMF), sodium 6 thiocyanate (NaSCN), ethanol and sodium bicarbonate (NaHCO₃) were all of 7 analytical grade and used as received without further purification. Meanwhile, all 8 9 solutions were prepared with Milli-Q water (DI-H₂O, Ricca Chemical, ASTM Type I). The carbon paper was purchased from Alfa Aesar. The Nafion (N-117 membrane, 10 0.18 mm thick) was also purchased from Alfa Aesar and kept in 0.5 M NaOH 11 12 solution.

13 Characterization:

The X-ray diffraction patterns (XRD) were obtained through a Bruker D4 X-ray 14 powder diffractometer using Cu Ka radiation (1.54184 Å). Field emission scanning 15 electron microscopy (FESEM) images were collected on a FEI Magellan 400 L 16 scanning electron microscope. The transmission electron microscopy (TEM) and high 17 angle annular dark field scanning TEM (HAADF STEM) images were obtained in a 18 Tecnai F20 field emission gun microscope with a 0.19 nm point-to-point resolution at 19 200 kV equipped with an embedded Quantum Gatan Image Filter for EELS analyses. 20 Images have been analyzed by means of Gatan Digital Micrograph software. Parts of 21 HAADF-STEM images and elemental mapping (EDX) were obtained in a spherical 22

1	aberration-corrected (AC) transmission electron microscope FEI Themis Z and
2	operated at 200 kV. X-ray photoelectron spectroscopy (XPS) was performed on a
3	Phoibos 150 analyser (SPECS GmbH, Berlin, Germany) in ultra-high vacuum
4	conditions (base pressure $4{\times}10^{-10}$ mbar) with a monochromatic aluminum Ka X-ray
5	source (1486.74 eV). Binding energies (BE) were determined using the C 1s peak at
6	284.5 eV as a charge reference. Inductively coupled plasma-mass spectrometry
7	(ICP-MS) measurements were carried out to determine the concentration of Fe.
8	Brunauer-Emmett-Teller (BET) surface areas were measured using nitrogen
9	adsorption at 77 K. Raman spectra were obtained using Senterra. Fourier transformed
10	infrared (FTIR) spectroscopy data were recorded on an Alpha Bruker spectrometer.
11	Thermogravimetric Analysis was measured by Pyris 1 TGA, Perkin Elmer.
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	

1 XAFS Measurements:

The X-ray absorption find structure spectra (Fe K-edge) were collected at 1W1B 2 station in Beijing Synchrotron Radiation Facility (BSRF). The storage rings of BSRF 3 were operated at 2.5 GeV with an average current of 250 mA. Using Si(111) 4 5 double-crystal monochromator, the data collection were carried out in transmission/fluorescence mode using ionization chamber. All spectra were collected 6 in ambient conditions. 7

8 XAFS Analysis and Results:

The acquired EXAFS data were processed according to the standard procedures using 9 the ATHENA module implemented in the IFEFFIT software packages. The 10 k^3 -weighted EXAFS spectra were obtained by subtracting the post-edge background 11 12 from the overall absorption and then normalizing with respect to the edge-jump step. Subsequently, k³-weighted $\chi(k)$ data of Fe K-edge were Fourier transformed to real (R) 13 space using a hanning windows (dk=1.0 Å⁻¹) to separate the EXAFS contributions 14 from different coordination shells. To obtain the quantitative structural parameters 15 around central atoms, least-squares curve parameter fitting was performed using the 16 ARTEMIS module of IFEFFIT software packages.¹⁻³ 17

- 18
- 19
- 20
- 21

Ink Preparation:

2	2 mg synthesized different samples and 50 μ l 5 wt% Nafion solutions were dissolved
3	in ethanol (1 ml) and ultrasonicated for 1 h to form evenly suspension for the further
4	electrochemical experiments. To prepare the working electrode, 500 μ L above
5	as-prepared inks were dropped onto the two sides of the carbon paper electrode with
6	1×1 cm ² and then dried at room temperature for a few minutes, giving a catalyst
7	loading mass of $\sim 1 \text{ mg cm}^{-2}$.
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	

1 Electrochemical Measurement:

The electrocatalytic performance of different catalysts was measured at room 2 temperature by using a gas-tight H-cell with two-compartments separated by a cation 3 exchange membrane (Nafion N-117 membrane) with a continuously Ar or CO₂ gas 4 5 injection. Each compartment contained 70 ml electrolyte (0.5 M NaHCO₃ made from de-ionized water). In a typical experiment, a standard three electrode setup in 0.5 M 6 NaHCO₃ solution was assembled: an Ag/AgCl electrode as a reference electrode, a Pt 7 plate as a counter electrode and a carbon paper coated with the different samples as a 8 working electrode (surface area = 1 cm^2). The potentials were measured versus 9 Ag/AgCl and converted to the reversible hydrogen electrode (RHE) according to the 10 following equation: $E_{RHE} = E_{Ag/AgCl}^{0} + E_{Ag/AgCl} + 0.059 \times pH, pH=7.^{4}$ All 11 12 electrochemical results were showed without iR-compensation by using a computer-controlled BioLogic VMP3 electrochemical workstation. Meanwhile, the 13 linear sweep voltammetry (LSV) was performed at a scan rate of 20 mV s⁻¹ from 0 V 14 to -1.5 V vs. Ag/AgCl in Ar-saturated 0.5 M NaHCO₃ (pH=8.5) and CO₂-saturated 15 0.5 M NaHCO₃ (pH=7) as supporting electrolyte. The cyclic voltammetry (CV) was 16 performed at a scan rate of 20 mV s⁻¹. Moreover, electrochemical impedance 17 spectroscopy (EIS) of different samples was carried out in a frequency range from 100 18 kHz to 100 mHz. 19

Before the electrochemical CO_2 reduction experiments, an average rate of 20 ml min⁻¹ Ar was injected into cathodic electrolyte in order to form an Ar-saturated solution. During electrochemical CO_2 reduction experiments, the CO_2 gas was

1	delivered at an average rate of 20 ml min ⁻¹ at room temperature and ambient pressure,
2	measured downstream by a volumetric digital flowmeter. The gas phase composition
3	was analyzed by gas chromatography (GC) during potentiostatic measurements every
4	20 min. The calibration of peak area vs. gas concentration was used for the molar
5	quantification of each gaseous effluent. The Faradaic efficiency was calculated by
6	determining the number of coulombs needed for each product and then dividing by
7	the total charge passed during the time of the GC sampling according to the flow rate.
8	Liquid products were analyzed afterwards by quantitative ¹ H-NMR using water as the
9	deuterated solvent.
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	

1 Calculation Method:

4

- 2 Details concerning the Faradaic Efficiency (FE) calculations are shown below.⁴⁻⁷
- 3 The partial current density for a given gas product was calculated as below:

$$j_i = x_i \times V \times \frac{n_i F P_0}{RT} \times (electrode \ area)^{-1}$$

5 Where x_i is the volume fraction of a certain product determined by online GC 6 referenced to calibration curves from three standard gas samples, V is the flow rate, n_i 7 is the number of electrons involved, P_0 = 101.3 kPa, F is the Faraday constant, and R 8 is the gas constant. The corresponding FE at each potential is calculated by

9
$$FE = \frac{j_i}{j} \times 100\%$$

10 TOF for CO production was calculated as follow equation:

11
$$TOF = \frac{(I_{product}/nF)}{(m_{cat} \times \omega/M_{metal})} \times 3600$$

Where I_{product} is partial current for certain product, A, n=2, the number of electrons transferred for CO production, F is the Faraday constant, 96485 C mol⁻¹, m_{cat} is the mass of catalyst on the carbon paper, g. ω is the metal loading in the catalyst, and M_{metal} is atomic mass of Ni (58.69 g mol⁻¹) for Ni-N-C, atomic mass of Fe (55.85 g mol⁻¹) for Fe-N-C, and atomic mass of 56.99 g mol⁻¹ for Ni₇/Fe₃-N-C (based on the ratio of Ni and Fe).

- 20
- 21
- 22

- 24
- 25
- 26
- 27

DFT Calculations:

2

The spin-polarized DFT calculations with projector augmented wave (PAW) 3 method⁸⁻¹¹ were performed using the Vienna ab initio Simulation Package (VASP) 4 code.¹² The Bayesian error estimation functional with van der Waals correlation 5 (BEEF-vdW) was employed to set the plane wave basis.¹³ The convergence criteria 6 were 0.05 eV/ Å in force and 1×10^{-4} eV in energy and the plane wave cutoff was 500 7 eV. The Monkhorst–Pack mesh k-point grids were $2 \times 2 \times 1$ for all models. All the 8 vacuum thicknesses were higher than 15 Å. With the BEEF-vdW function, the energy 9 of the gas phase molecules gave a systematic correction by +0.41 and +0.09 eV for 10 gaseous CO₂ and H₂, respectively.¹⁴⁻¹⁶ For the electroreduction of CO₂ to CO, the 11 following elementary steps were considered: 12

13
$$CO_2(g) + * + H^+(aq) + e^- \leftrightarrow COOH^*$$
 (Equation S.1)

14
$$\operatorname{COOH}^* + \operatorname{H}^+(\operatorname{aq}) + e^- \leftrightarrow \operatorname{CO}^* + \operatorname{H}_2O(1)$$
 (Equation S.2)

15
$$CO^* \leftrightarrow CO(g) + *$$
 (Equation S.3)

16 where (g), (aq) represent the gaseous phase and aqueous phase, respectively. The *,

17 COOH* and CO* represent free site, adsorption state of COOH and CO, respectively.

18 The reaction free energies of each step was calculated by the following formula:

19
$$G = E_{\text{DFT}} + E_{\text{ZPE}} + \int C_p dT - TS + E_{\text{sol}}$$
 (Equation S.4)

the E_{DFT} is the DFT calculated energy, E_{ZPE} is the zero-point energy, C_p is the constant pressure heat capacity, *T* is temperture, *S* is the entropy. The E_{sol} is solvation correction, which is -0.1 eV for CO* and -0.25 eV COOH*.¹⁷ The temperature for the

1	reaction is considered as 298.15 K here.
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	

Fig. S3. SEM images of (a and b) IRMOF-3, (c and d) Ni-IRMOF-3, (e and f) Fe-IRMOF-3, (g
and h) Ni₇/Fe₃-IRMOF-3.

Fig. S4. HAADF STEM image of Ni-IRMOF-3 and representative EELS chemical composition maps obtained from the red squared area of the STEM micrograph. Individual Ni L_{2,3}-edges at 855 eV (red), Zn L_{2,3}-edges at 1020 eV (blue), N K-edges at 401 eV (orange), O K-edges at 532 eV (pink) and C K-edges at 285 eV (grey) as well as composites of Zn-N, Zn-O, Ni-Zn and Ni-Zn-N.

13					
14		Fe	0	Zn-O	
15		500 pm	500 pm	500 pm	
16		<u>500 mm</u>	<u>500 IIII</u>	300 1111	
17		Zn	С	Fe-Zn	
18		500	500	500	
19		<u>500 nm</u>	<u>500 nm</u>	500 nm	
20		N	Zn-N	Fe-Zn-N	
21	Um				
22		<u>500 nm</u>	<u>500 nm</u>	500 nm	

Fig. S5. HAADF STEM image of Fe-IRMOF-3 and representative EELS chemical composition
maps obtained from the red squared area of the STEM micrograph. Individual Fe L_{2,3}-edges at 708
eV (green), Zn L_{2,3}-edges at 1020 eV (blue), N K-edges at 401 eV (orange), O K-edges at 532 eV
(pink) and C K-edges at 285 eV (grey) as well as composites of Zn-N, Zn-O, Fe-Zn and Fe-Zn-N.

Fig. S6. (a) BF TEM, (b, c) HAADF STEM image of Ni₇/Fe₃-IRMOF-3 and representative EELS
chemical composition maps obtained from the red squared area of the STEM micrograph.
Individual Ni L_{2,3}-edges at 855 eV (red), Fe L_{2,3}-edges at 708 eV (green), Zn L_{2,3}-edges at 1020
eV (blue), N K-edges at 401 eV (orange), O K-edges at 532 eV (pink) and C K-edges at 285 eV
(grey) as well as composites of Ni-Fe, Ni-Fe-Zn and Ni-Fe-Zn-N.

- 2.

	Samples	Feeding mass	Final	Feeding mass (Fe)	Final
		(Ni)	product		product
			ratio		ratio (Fe)
			(Ni)		
	Ni-N-C	2.41×10 ⁻³ mmol	0.38 %	/	/
	Fe-N-C	/	/	2.59×10 ⁻³ mmol	0.7 %
	Ni ₇ /Fe ₃ -N-C	1.69×10 ⁻³ mmol	0.30 %	7.77×10 ⁻⁴ mmol	0.45 %
27					
28					
29					
30					
31					
32					
33					
34					
35					
36					

Fig. S11. (a) Low magnification and (b-i) high magnification aberration-corrected HAADF STEM
 images of Ni₇/Fe₃-N-C sample.

1				
2	HAADF STEM	Ni	N	C
3	and the second			
4	the second second			1 7 3 A
5				
6	and the second	<u>100 nm</u>	<u>100 </u> nm	<u>100 nm</u>
7		Fe	0	CNOFe Ni
8	1000			
9				
10	10 A 10 A			
11	100 nm	100 nm	100 nm	100 nm
12		NI		
13		INI		
14				
15				
16	A CONTRACT OF	50 pm	50 pm	50 pm
17	and the second second			
18	an ann an	Ге		
19				
20	allers and the second			
21	50 nm			
22		<u>50 nm</u>	<u>50 nm</u>	<u>50 nm</u>
23	Fig. S12. HAADF STEM image	of Ni ₇ /Fe ₃ -N-C a	nd representative E	EDX chemical composition
24	maps.			
25				
26				
27				
28				
29				
30				
31				
32				
33				
34 25				
35 26				
27				
38				
20				
<u>4</u> 0				
4 0 Д1				
42				
43				
.5 44				
-				

Fig. S13. (a) HAADF STEM, (b, c) BF TEM images of Ni-N-C, (d) HAADF STEM image and
representative EELS chemical composition maps obtained from the red squared area of the
STEM micrograph. Individual Ni L_{2,3}-edges at 855 eV (red), N K-edges at 401 eV (orange), O
K-edges at 532 eV (pink) and C K-edges at 285 eV (grey) as well as composites of Ni-N and
Ni-O.

Fig. S15. CV curves of (a) Ni-N-C, (b) Fe-N-C and (c) Ni₇/Fe₃-N-C in 0.5 M NaHCO₃ electrolyte.

Figure S20. The corresponding Fe K-edge EXAFS fitting parameters for (a) Fe-N-C and (b)
 Ni₇/Fe₃-N-C samples.

15

 Table S2. EXAFS fitting parameters at the Ni K-edge for various samples

Sample	Shell	N ^a	R (Å) ^b	$\sigma^2 (Å^2 \cdot 10^{-3})$ °	$\Delta E0 (eV)$	R factor (%)
Ni ₇ /Fe ₃ -N-C	Ni-N	4.5	1.84	9.2	-5.1	0.3
NENC	Ni -N	3.9	1.87	6.5	-5.9	0.7
INI-IN-C	Ni -C	3.2	2.12	6.3	-1.6	0.7

16 ^{*a*}N: coordination numbers; ^{*b*}R: bond distance; ^{*c*} σ^2 : Debye-Waller factors; ^{*d*} ΔE_0 : the inner potential 17 correction. *R* factor: goodness of fit. S02 were set as 0.85/0.80 for Ni-N/Ni-C, which was obtained 18 from the experimental EXAFS fit of reference FePc by fixing CN as the known crystallographic 19 value and was fixed to all the samples.

20

21

Table S3. EXAFS fitting parameters at the Fe K-edge for various samples

Sample	Shell	N ^a	R (Å) ^b	σ^2 (Å ² ·10 ⁻³) °	$\Delta E0 (eV)$	R factor (%)
Ni ₇ /Fe ₃ -N-C	Fe-N(O)	4.8	1.98	8.9	-2.4	1.1
Ea N.C.	Fe-N	6.1	1.99	10.1	-3.3	0.2
Fe-N-C	Fe-Fe	1.0	2.52	7.2	-1.5	0.5

²² ^{*a*}N: coordination numbers; ^{*b*}R: bond distance; ^{*c*} σ^2 : Debye-Waller factors; ^{*d*} ΔE_0 : the inner potential ²³ correction. *R* factor: goodness of fit. *S*02 were set as 0.85/0.90 for Fe-N/Fe-Fe, which was ²⁴ obtained from the experimental EXAFS fit of reference FePc/Fe foil by fixing CN as the known ²⁵ crystallographic value and was fixed to all the samples.

26

27

28

29

Fig. S25. Cyclic voltammograms curves for (a) Ni-IRMOF-3, (b) Fe-IRMOF-3, (c)
Ni₇/Fe₃-IRMOF-3, (e) Ni-N-C, (f) Fe-N-C and (g) Ni₇/Fe₃-N-C. (d) Plots of the current density vs.
scan rate for Ni-IRMOF-3, Fe-IRMOF-3 and Ni₇/Fe₃-IRMOF-3 electrodes. (h) Plots of the current
density vs. scan rate for Ni-Ni-N-C, Fe-N-C and Ni₇/Fe₃-N-C electrodes.

- ~

Fig. S28. (a) Current density and FE of Ni₇/Fe₃-N-C at different NaHCO₃ concentration at a
constant potential (-0.50 V vs. RHE). (b) Partial CO current density of Ni₇/Fe₃-N-C vs. NaHCO₃
concentration at -0.50 V vs. RHE.

Fig. S34. (a) BF TEM, (b and c) HAADF STEM image of 2-Ni₇/Fe₃-IRMOF-3 and representative
EELS chemical composition maps obtained from the red squared area of the STEM micrograph.
Individual Ni L_{2,3}-edges at 855 eV (red), Fe L_{2,3}-edges at 708 eV (green), Zn L_{2,3}-edges at 1020
eV (blue), N K-edges at 401 eV (orange), O K-edges at 532 eV (pink) and C K-edges at 285 eV
(grey) as well as composites of Ni-Fe, Ni-Fe-Zn and Ni-Fe-Zn-N.

40 Fig. S42. The top view and side view of optimized adsorption configuration on simulated models
41 (Ni, Fe, O, N and C atoms are represented in purple, cyan, red, blue and grey, respectively).

CO_2 electroreduction.						
Catalyst	Product	FE(CO)	Potential	Reference		
Fe-N-C	СО	93 %	-0.60 V vs. RHE	18		
Fe-N-C	СО	81 %	-0.57 V vs. RHE	19		
Fe-N-C	СО	93.5 %	-0.50 V vs. RHE	20		
Fe-N-C	СО	93 %	-0.60 V vs. RHE	21		
Fe-N-C	СО	80 %	-0.60 V vs. RHE	22		
Fe-N-C	СО	92 %	-0.58 V vs. RHE	23		
Fe-N-C	CO	64 %	-0.60 V vs. RHE	24		
Fe-N-C	CO	95.47 %	-0.60 V vs. RHE	25		
Fe-N ₅ -C	CO	97 %	-0.46 V vs. RHE	26		
Fe-N-C	CO	95 %	-0.45 V vs. RHE	27		
Ni-N-C	СО	99 %	-0.68 V vs. RHE	5		
Ni-N-C	CO	71.9 %	-0.90 V vs. RHE	6		
Ni-N-C	СО	95 %	-0.70 V vs. RHE	28		
Ni-N-C	СО	99 %	-0.81 V vs. RHE	29		
Ni-N-C	CO	96 %	-0.67 V vs. RHE	30		
Ni-N-C	CO	96 %	-0.86 V vs. RHE	31		
Ni-N-C	CO	95 %	-0.77 V vs. RHE	32		
Ni-N-C	CO	91.2 %	-0.90 V vs. RHE	33		
Ni-N-C	CO	97 %	-0.70 V vs. RHE	34		
Ni-N-C	CO	95 %	-0.77 V vs. RHE	35		
Ni-N-C	CO	99 %	-0.80 V vs. RHE	36		
Ni-N-C	CO	94 %	-0.80 V vs. RHE	37		
NiCo-N-C	CO	53 %	-0.60 V vs. RHE	38		
Ni/Fe-N-C	СО	98 %	-0.70 V vs. RHE	39		
Ni/Fe-N-C	CO	90 %	-0.65 V vs. RHE	40		
Ni/Mn-C ₃ N ₄ -CNT	CO	90 %	-0.70 V vs. RHE	41		
ZnCo-N-C	СО	93.2 %	-0.50 V vs. RHE	42		
Ni-N-Co	CO	96.4 %	-0.48 V vs. RHE	43		
Ni ₇ /Fe ₃ -N-C	CO	98 %	-0.50 V vs. RHE	This work		

Table S4. Faradaic Efficiency (CO) of the reported single/double atom-based electrocatalysts for
 CO₂ electroreduction.

1	Referen	nces
2	1.	B. Ravel and M. Newville, J. Synchrotron Rad., 2005, 12, 537-541.
3	2.	H. Baumgartel, Nachrichten aus Chemie, Technik und Laboratorium, 1988, 36, 650-650.
4	3.	J. J. Rehr and R. C. Albers, Rev. Modern Phys., 2000, 72, 621-654.
5	4.	T. Zhang, J. Du, P. Xi and C. Xu, ACS Appl. Mater. Interfaces, 2017, 9, 362-370.
6	5.	T. Zheng, K. Jiang, N. Ta, Y. Hu, J. Zeng, J. Liu and H. Wang, <i>Joule</i> , 2019, 3 , 265-278.
7	6.	C. Zhao, X. Dai, T. Yao, W. Chen, X. Wang, J. Wang, J. Yang, S. Wei, Y. Wu and Y. Li, J.
8		Am. Chem. Soc., 2017, 139, 8078-8081.
9	7.	J. Pei, T. Wang, R. Sui, X. Zhang, D. Zhou, F. Qin, X. Zhao, Q. Liu, W. Yan, J. Dong, L.
10		Zheng, A. Li, J. Mao, W. Zhu, W. Chen and Z. Zhuang, Energy Environ. Sci., 2021, 14,
11		3019-3028.
12	8.	P. E. Blöchl, Phys. Rev. B, 1994, 50, 17953-17979.
13	9.	G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54, 11169-11186.
14	10.	G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6, 15-50.
15	11.	G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59, 1758-1775.
16	12.	J. Hafner, J. Comput. Chem., 2008, 29, 2044.
17	13.	J. Wellendorff, K. T. Lundgaard, A. Møgelhøj, V. Petzold, D. D. Landis, J. K. Nørskov, T.
18		Bligaard and K. W. Jacobsen, Phys. Rev. B, 2012, 85, 235149.
19	14.	F. Studt, M. Behrens, E. L. Kunkes, N. Thomas, S. Zander, A. Tarasov, J. Schumann, E.
20		Frei, J. B. Varley, F. Abild-Pedersen, J. K. Nørskov and R. Schlögl, ChemCatChem, 2015,
21		7, 1105-1111.
22	15.	F. Studt, F. Abild-Pedersen, J. B. Varley and J. K. Nørskov, <i>Catal. Lett.</i> , 2013, 143, 71-73.
23	16.	R. Christensen, H. A. Hansen and T. Vegge, Catal. Sci. Technol., 2015, 5, 4946-4949.
24	17.	A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl and J. K. Nørskov, Energy
25		<i>Environ. Sci.</i> , 2010, 3 , 1311-1315.
26	18.	F. Pan, H. Zhang, K. Liu, D. Cullen, K. More, M. Wang, Z. Feng, G. Wang, G. Wu and Y.
27		Li, ACS Catal., 2018, 8 , 3116-3122.
28	19.	XM. Hu, H. H. Hval, E. T. Bjerglund, K. J. Dalgaard, M. R. Madsen, MM. Pohl, E.
29		Welter, P. Lamagni, K. B. Buhl, M. Bremholm, M. Beller, S. U. Pedersen, T. Skrydstrup
30	20	and K. Daasbjerg, ACS Catal., 2018, 8 , 6255-6264.
31	20.	X. Qin, S. Zhu, F. Xiao, L. Zhang and M. Shao, <i>ACS Energy Letters</i> , 2019, 4 , 1778-1785.
32	21.	A. LI, S. AI, L. Sun, S. Dou, Z. Huang, I. Su and A. Wang, <i>Adv. Sci.</i> , 2020, 7, 2001545.
33 24	22.	C. Zhang, S. Yang, J. Wu, M. Liu, S. Yazui, M. Ren, J. Sha, J. Zhong, K. Nie, A. S. Jamov, 7 Li H Li P I Vakabaan O Wu E Pinga H Yu P M Ajayan and I M Taur 4du
25 25		Z. LI, H. LI, B. I. Takobson, Q. wu, E. Kinge, H. Au, F. M. Ajayan and J. M. Tour, Auv . Energy Mater. 2018 9 1703/87
36	23	O Zhang H Jiang D Niu X Zhang S Sun and S Hu Chemistry Select 2019 A
30	23.	4398-4406
38	24	I Zhao I Deng I Han S Imhanria K Chen and W Wang <i>Chem Engineering I</i> 2020
30	21.	389 124323
40	25	I Tuo Y Lin Y Zhu H Jiang Y Li L Cheng R Pang I Shen L Song and C Li
41	20.	Appl Catal B: Environ 2020 272 118960
42	26.	H. Zhang, J. Li, S. Xi, Y. Du, X. Hai, J. Wang, H. Xu, G. Wu, J. Zhang, J. Lu and J. Wang
43		Angew. Chem. Int. Ed., 2019. 58, 14871-14876.
44	27.	J. Gu, CS. Hsu, L. Bai, H. M. Chen and X. Hu, <i>Science</i> , 2019, 364 , 1091-1094.

1	28.	W. Xiong, H. Li, H. Wang, J. Yi, H. You, S. Zhang, Y. Hou, M. Cao, T. Zhang and R. Cao,
2		Small, 2020, 16, 2003943.
3	29.	X. Li, W. Bi, M. Chen, Y. Sun, H. Ju, W. Yan, J. Zhu, X. Wu, W. Chu, C. Wu and Y. Xie, J.
4		Am. Chem. Soc., 2017, 139, 14889-14892.
5	30.	S. Yang, J. Zhang, L. Peng, M. Asgari, D. Stoian, I. Kochetygov, W. Luo, E. Oveisi, O.
6		Trukhina, A. H. Clark, D. T. Sun and W. L. Queen, Chem. Sci., 2020, 11, 10991-10997.
7	31.	Y. Lu, H. Wang, P. Yu, Y. Yuan, R. Shahbazian-Yassar, Y. Sheng, S. Wu, W. Tu, G. Liu, M.
8		Kraft and R. Xu, Nano Energy, 2020, 77, 105158.
9	32.	SG. Han, DD. Ma, SH. Zhou, K. Zhang, WB. Wei, Y. Du, XT. Wu, Q. Xu, R. Zou
10		and QL. Zhu, Appl. Catal. B: Environ., 2021, 283, 119591.
11	33.	CZ. Yuan, K. Liang, XM. Xia, Z. K. Yang, YF. Jiang, T. Zhao, C. Lin, TY. Cheang,
12		SL. Zhong and AW. Xu, Catal. Sci. Technol., 2019, 9, 3669-3674.
13	34.	X. Yang, J. Cheng, B. Fang, X. Xuan, N. Liu, X. Yang and J. Zhou, Nanoscale, 2020, 12,
14		18437-18445.
15	35.	K. Jiang, S. Siahrostami, T. Zheng, Y. Hu, S. Hwang, E. Stavitski, Y. Peng, J. Dynes, M.
16		Gangisetty, D. Su, K. Attenkofer and H. Wang, Energy Environ. Sci., 2018, 11, 893-903.
17	36.	C. F. Wen, F. Mao, Y. Liu, X. Y. Zhang, H. Q. Fu, L. R. Zheng, P. F. Liu and H. G. Yang,
18		ACS Catal., 2020, 10, 1086-1093.
19	37.	X. Rong, HJ. Wang, XL. Lu, R. Si and TB. Lu, Angew. Chem. Int. Ed., 2020, 59,
20		1961-1965.
21	38.	Q. He, D. Liu, J. H. Lee, Y. Liu, Z. Xie, S. Hwang, S. Kattel, L. Song and J. G. Chen,
22		Angew. Chem. Int. Ed., 2020, 59, 3033-3037.
23	39.	W. Ren, X. Tan, W. Yang, C. Jia, S. Xu, K. Wang, S. C. Smith and C. Zhao, Angew. Chem.
24		Int. Ed., 2019, 58, 6972-6976.
25	40.	M. Zhang, Z. Hu, L. Gu, Q. Zhang, L. Zhang, Q. Song, W. Zhou and S. Hu, Nano Res.,
26		2020, 13 , 3206-3211.
27	41.	C. Ding, C. Feng, Y. Mei, F. Liu, H. Wang, M. Dupuis and C. Li, Appl. Catal. B: Environ.
28		2020, 268 , 118391.
29	42.	W. Zhu, L. Zhang, S. Liu, A. Li, X. Yuan, C. Hu, G. Zhang, W. Deng, K. Zang, J. Luo, Y.
30		Zhu, M. Gu, ZJ. Zhao and J. Gong, Angew. Chem. Int. Ed., 2020, 59, 12664-12668.
31	43.	J. Pei, T. Wang, R. Sui, X. Zhang, D. Zhou, F. Qin, X. Zhao, Q. Liu, W. Yan, J. Dong, L.
32		Zheng, A. Li, J. Mao, W. Zhu, W. Chen and Z. Zhuang, Energy Environ. Sci., 2021, DOI:
33		10.1039/D0EE03947K.
34		