Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information (ESI)

2

1

³ High-performance Ni-rich Li[Ni_{0.9-x}Co_{0.1}Al_x]O₂ cathodes *via* multi-stage ⁴ microstructural tailoring from hydroxide precursor to the lithiated oxide

5 Geon-Tae Park,^a Nam-Yung Park,^a Tae-Chong Noh,^a Been Namkoong,^a Hoon-Hee Ryu,^a Ji-Yong Shin,^b Thorsten

6 Beierling,^c Chong S. Yoon,^{*d} and Yang-Kook Sun^{*a}

- 7
- 8 ^a Department of Energy Engineering, Hanyang University, Seoul 04763, South Korea
- 9 ^b BASF Japan Ltd., 7-1-13, Doi-cho, Amagasaki 660-0083, Japan
- 10 ° BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
- 11 ^d Department of Materials Science and Engineering, Hanyang University, Seoul 04763, South Korea

12

13 Corresponding author: <u>csyoon@hanyang.ac.kr</u>, <u>yksun@hanyang.ac.kr</u>,

- 2 Fig. S1. Bright-field STEM images and selected area electron diffraction (SAED) patterns of marked
- 3 primary particles of $[Ni_{0.9}Co_{0.1}](OH)_2$ precursors; (a) 1-CG and (b) 2-CG.

2 Fig. S2. Cross-sectional SEM images of $[Ni_{0.9}Co_{0.1}](OH)_2$ precursors, (a) 1-CG and (b) 2-CG, and

3 derived 2-Al-NCA and 4-Al-NCA cathode particles.

3 NCA cathodes derived from 1-CG and 2-CG precursors. Comparison of cycling performances (at 0.5
4 C) at (b) 30 °C and (d) 45 °C of 4-Al-NCA cathodes derived from 1-CG and 2-CG precursors.

Fig. S4. Quantitative comparison of the microstructures (in terms of primary particle length, width, and
aspect ratio) of 2-Al-NCA and 4-Al-NCA cathode particles derived from (a) 1-CG and (b) 2-CG
precursors. The lines indicate aspect ratio of primary particle (expressed as particle length/width).

2 Fig. S5. Rietveld refinements of the XRD results for (a) P-NC, (b) 2-Al-NCA, (c) 4-Al-NCA, and (d)

3 6-Al-NCA cathodes derived from 1-CG precursors.

1

2 Fig. S6. (a) SEM images of P-NC, 2-Al-NCA, 4-Al-NCA, and 6-Al-NCA cathodes derived from 1-CG

- 3 precursors. (b) SEM-EDS result of marked impurity particle.
- 4

2 Fig. S7. (a) Cross-sectional SEM images of P-NC, 2-Al-NCA, 4-Al-NCA, and 6-Al-NCA cathodes
3 derived from 1-CG precursors. Quantitative comparisons of the microstructures of P-NC, 2-Al-NCA,

4 4-Al-NCA, and 6-Al-NCA cathodes in terms of the (b) size (length and width) and (c) aspect ratio of

5 their primary particles.

2 Fig. S8. Concentration gradient profiles (Ni, Co, and Al) of (a) 2-Al-NCA and (b) 4-Al-NCA cathode

3 particles, as determined by electron probe microanalysis. (c) Comparison of Ni concentration difference

4 between particle center and the surface of 2-Al-NCA and 4-Al-NCA cathodes as a function of lithiation

5 temperature. The cathodes are derived from 1-CG precursors.

2 **Fig. S9.** Cross-sectional SEM images of (a) 2-Al-NCA, and (b) 4-Al-NCA cathode without 3 concentration gradients. Comparison of (c) initial charge–discharge curves (at 0.1 C) and (d) cycling 4 performance (at 0.5 C) of 2-Al-NCA and 4-Al-NCA cathodes derived from conventional precursor 5 without concentration gradients.

2 Fig. S10. (a) Differential capacity profiles of cells featuring P-NC, 2-Al-NCA, 4-Al-NCA, and 6-Al-

3 NCA cathodes. (b) Magnified profiles during charge in the voltage range of 4.08–4.32 V. The cathodes

4 are derived from 1-CG precursors.

5

Fig. S11. Charge profiles of pouch-type half-cells (dashed lines), recorded during in situ XRD, and
2032 coin-type half-cells (solid lines) featuring (a) P-NC, (b) 2-Al-NCA, and (c) 4-Al-NCA cathodes.
The cathodes are derived from 1-CG precursors.

Fig. S12. Comparison of the unit cell volume changes of P-NC, 2-Al-NCA, and 4-Al-NCA cathodes
during charge. The cathodes are derived from 1-CG precursors.

2 Fig. S13. Comparison of the Nyquist plots of the measured electrochemical impedances. (a) 2-Al-

3 NCA and (b) 4-Al-NCA cathodes, charged to 4.3 V, were immersed in electrolyte (1.2 M LiPF₆ in

4 EC:EMC (3:7 by vol%) with 2 wt% VC) at 60 °C for 15 days, and their electrochemical impedances

5 were measured every 5 days. The cathodes are derived from 1-CG precursors.

2 Fig. S14. Comparison of DSC thermal stability results of P-NC, 2-Al-NCA, and 4-Al-NCA cathodes

3 charged to 4.3 V. The cathodes are derived from 1-CG precursors.

a Cycling performance at room temperature

Fig. S15. The figure illustrates that the proposed Ni-rich 4-Al-NCA cathode demonstrated outstanding
long-term cycling performance compared with other Ni-rich NCA and NCM cathodes reported in
previous publications. Comparison of the long-term cycling performances at (a) room temperature, and
(b) elevated temperature.

2 Fig. S16. (a) Differential capacity profiles of the 1st, 250th, and 500th cycles of cells featuring 2-Al-NCA

3 and 4-Al-NCA cathodes. (b) Contour plots of (003) reflections of 2-Al-NCA and 4-Al-NCA cathodes

4 measured during the 1st and 500th cycles at 45 °C. (c) In situ XRD patterns of 2-Al-NCA and 4-Al-NCA

5 cathodes in the 20 ranges of 18.0° -20.0° for the (003) reflections after 500 cycles at 45 °C. The cathodes

6 are derived from 1-CG precursors.

Fig. S17. Cross-sectional SEM images of as-prepared (a) 2-Al-NCA, and (b) 4-Al-NCA cathodes
derived from 1-CG precursors. Comparison of the cross-sectional SEM images of (c) 2-Al-NCA
cathode particles after 500 cycles and (d) 4-Al-NCA cathode particles after 1000 cycles at 45 °C. The

5 cathodes are derived from 1-CG precursors.

2 Fig. S18. (a) Reference Ni L-edge X-ray absorption spectra of LiMn_{1.5}Ni_{0.5}O₄ (Ni²⁺, red solid line) and

LiNi_{0.8}Co_{0.15}Al_{0.05}O₂ (Ni³⁺, green solid line). Single-energy STXM images obtained at 854.2 and 856.5
 eV, indicated by black dashed lines in (a), for the cross-sections of a fully discharged (b) 2-Al-NCA

5 cathode particle after 500 cycles at 45 °C and (c) 4-Al-NCA cathode particle after 1000 cycles at 45 °C.

6 The cathodes are derived from 1-CG precursors.

7

(1-CG) 4-Al-NCA after 1000 cycles at 45 °C

1

Fig. S19. Structural stability of the 4-Al-NCA cathode after 1000 cycles at 45 °C. (a) Dark-field
cross-sectional STEM image of cycled 4-Al-NCA cathode. Magnified TEM images of the primary
particles marked as (b) region I, (c) region II with high-resolution TEM images and corresponding fast

5 Fourier transforms (FFTs). The cathode is derived from a 1-CG precursors.

Precursor	Lithiation temperature	Cathode	Ni (at%)	Co (at%)	Al (at%)
		P-NC	89.51	10.49	-
1-CG		2-Al-NCA	87.82	10.16	2.02
	720 °C	4-Al-NCA	85.91	9.98	4.11
		6-Al-NCA	84.39	9.90	5.71
2-CG		2-Al-NCA	87.91	9.98	2.11
		4-Al-NCA	85.94	9.84	4.12

1 Table S1. Chemical compositions of cathode materials determined by ICP-OES.

1 Table S2. Structural parameters of P-NC, 2-Al-NCA, 4-Al-NCA, and 6-Al-NCA cathodes derived from

Li[Ni _{0.90} Co _{0.10}]O ₂ (P-NC)		Space group: $R^{\overline{3}}m$						
<i>a</i> -axis: 2.8688 (1) Å		<i>c</i> -axis: 14.1793 (2) Å		Volume: 101.061 (3) Å ³				
$R_p: 2.00\%$	R_{wp} : 2.58%	$R_{exp}: 2.04\%$	<i>Chi</i> ² : 1.61					
Atom	Wyckoff position	v	у	7	B.	*Modified		
Atom	wyekon position	А		Z	D ₁₅₀	occupancy		
Lil	3a	0	0	0	1.000	0.992		
Ni2	3a	0	0	0	1.000	0.008		
Ni1	3b	0	0	0.5	0.6490	0.892		
Co1	3b	0	0	0.5	0.6490	^{a)} 0.100		
Li2	3b	0	0	0.5	0.6490	0.008		
01	6c	0	0	0.2420 (7)	0.7260	2		

2 1-CG precursors, as determined by the Rietveld refinement of the associated XRD data.

3 *Modified occ. = occupation *12 for Fullprof (occ.*12)

4 ^{a)} Fixed value

5

$Li[Ni_{0.88}Co_{0.10}Al_{0.02}]O_2 \ (2\text{-}Al\text{-}NCA)$		Space group: $R^{3}m$					
<i>a</i> -axis: 2.8668 (1) Å		<i>c</i> -axis: 14.1850 (1) Å		Volume: 100.961 (2) Å ³			
$R_p: 1.95\%$	R_{wp} : 2.52%	$R_{exp}: 2.04\%$	<i>Chi</i> ² : 1.52				
Atom	Wyckoff position	x	У	Z	Bisa	*Modified	
110111					- 150	occupancy	
Lil	3a	0	0	0	1.000	0.992	
Ni2	3a	0	0	0	1.000	0.008	
Ni1	3b	0	0	0.5	0.6490	0.872	
Col	3b	0	0	0.5	0.6490	^{a)} 0.100	
Al1	3b	0	0	0.5	0.6490	^{a)} 0.020	
Li2	3b	0	0	0.5	0.6490	0.008	
01	6c	0	0	0.2420 (1)	0.7260	2	

6 *Modified occ. = occupation *12 for Fullprof (occ.*12)

7 ^{a)} Fixed value

<i>a</i> -axis: 2.8663 (3) Å		<i>c</i> -axis: 14.1871 (1) Å		Volume: 100.941 (3) Å ³				
$R_p: 1.09\%$	<i>R_{wp}</i> : 1.67%	$R_{exp}: 0.77\%$	<i>Chi</i> ² : 4.66					
Atom	Wyckoff position	Х	у	7	D	*Modified		
Atom	wyekon position			L	D _{1SO}	occupancy		
Lil	3a	0	0	0	1.000	0.993		
Ni2	3a	0	0	0	1.000	0.007		
Ni1	3b	0	0	0.5	0.6490	0.853		
Col	3b	0	0	0.5	0.6490	^{a)} 0.100		
Al1	3b	0	0	0.5	0.6490	^{a)} 0.040		
Li2	3b	0	0	0.5	0.6490	0.007		
01	6c	0	0	0.2415 (3)	0.7260	2		

1 *Modified occ. = occupation *12 for Fullprof (occ.*12)

2 ^{a)} Fixed value

3

Li[Ni _{0.84} Co _{0.10} Al _{0.06}]O ₂ (6-Al-NCA) <i>a</i> -axis: 2.8659 (2) Å		Space group: <i>R</i> ³ <i>m</i> <i>c</i> -axis: 14.1881 (1) Å		Volume: 100.920 (2) Å ³			
$R_p: 1.07\%$	R_{wp} : 1.59%	$R_{exp}: 0.78\%$	<i>Chi</i> ² : 4.12	2			
Atom	Wyckoff position	Х	у	Z	B _{iso}	*Modified occupancy	
Lil	3a	0	0	0	1.000	0.991	
Ni2	3a	0	0	0	1.000	0.009	
Ni1	3b	0	0	0.5	0.6490	0.831	
Co1	3b	0	0	0.5	0.6490	^{a)} 0.100	
All	3b	0	0	0.5	0.6490	^{a)} 0.060	
Li2	3b	0	0	0.5	0.6490	0.009	
O1	6с	0	0	0.2417 (1)	0.7260	2	

4 *Modified occ. = occupation *12 for Fullprof (occ.*12)

5 ^{a)} Fixed value

1 Table S3. Structural parameters, I(003)/I(104) XRD peak intensity ratio, and calculated crystallite size 2 of P-NC, 2-Al-NCA, 4-Al-NCA, and 6-Al-NCA cathodes derived from 1-CG precursors.

Precursor	Cathode	<i>a</i> -axis (Å)	c-axis (Å)	V (Å ³)	I (003) / I (104)	*Crystallite size (nm)
	P-NC	2.8688	14.1793	101.061	2.26	113.2
1-CG	2-Al-NCA	2.8668	14.1850	100.961	2.29	104.6
	4-Al-NCA	2.8663	14.1871	100.941	2.23	79.7
	6-Al-NCA	2.8659	14.1881	100.920	2.22	78.5

 $K\lambda$

 $\tau = \frac{\alpha}{\beta \cos \theta}$ * Scherrer equation (K=0.9) based on (003) reflection

1 Table S4. Performance comparison of our 4-Al-NCA with those of other layered cathodes reported in

2 previous publications.

				Mass	Voltage	Cycling	C rata for	1st discharge	Number	Cycle	
Num.	Cathode material	Cathode composition	Electrolyte	loading	loading window		cycling	capacity (mAh g ⁻¹)	of cycles	retention	Ref.
				(ing/ciii)	(.)	25	0.8C/1C	182	2000	86.5	
This work	4-Al-NCA (CG)	$Li[Ni_{0.86}Co_{0.10}Al_{0.04}]O_2$	1.2 M LiPF ₆ in EC : EMC, 3 : 7 by vol% with 2 wt% VC	9~10	3.0-4.2						_
						45	0.8C / 1C	181.8	2000	78.0	
1	Li[Ni _{0.9} Co _{0.07} Al _{0.03}]O ₂	$Li[Ni_{0.9}Co_{0.07}Al_{0.03}]O_2$	1.15 M LiPF ₆ in EC : DMC : EMC, 1 : 2 : 2 by vol%	~7	2.0-4.25	25	1C	181.7	100	91.7	[1]
2	NCA95	$Li[Ni_{0.95}Co_{0.05}Al_{0.01}]O_2$	1.2 M LiPF ₆ in EC : EMC, 3 : 7 by vol% with 2 wt% VC	~6	3.0-4.2	25	0.8C / 1C	196.7	1000	17.5	[2]
3	CSG NCA	$Li[Ni_{0.865}Co_{0.120}Al_{0.015}]O_2$	1.2 M LiPF ₆ in EC : EMC, 3 : 7 by vol% with 2 wt% VC	_	3.0-4.2	25	0.8C / 1C	~185	500	92	[3]
4	NCA-89	$Li[Ni_{0.883}Co_{0.053}Al_{0.064}]O_2$	$1.0~M~LiPF_6$ in EC : EMC, $3:7$ by vol% with 2 wt% VC	10	2.5-4.2	25	0.5C / 1C	~185	1000	62	[4]
5	P-NCA85	$Li[Ni_{0.885}Co_{0.13}Al_{0.014}]O_2$	$1.0 \text{ M LiPF}_6 \text{ in EC} : \text{EMC}, 3:7$ by vol% with 2 wt% VC	9	3.0-4.2	25	0.8C / 1C	179.4	1000	57.3	[5]
6	NCA88	$Li[Ni_{0.88}Co_{0.10}Al_{0.02}]O_2$	1.2 M LiPF ₆ in EC : EMC, 3 : 7 by vol% with 2 wt% VC	~6	3.0-4.2	25	0.8C / 1C	190.1	1000	48.5	[2]
7	NCA (E9)	$Li[Ni_{0.80}Co_{0.15}Al_{0.05}]O_2$	1.0 M LiPF ₆ in EC : EMC, 3 : 7 by vol%	~8	2.5-4.3	30	0.33C / 1C	~160	500	~78	[6]
8	NCA80	$Li[Ni_{0.80}Co_{0.16}Al_{0.04}]O_2$	1.2 M LiPF ₆ in EC : EMC, 3 : 7 by vol% with 2 wt% VC	~6	3.0-4.2	25	0.8C / 1C	173.6	1000	80.6	[2]
9	NCA	$Li[Ni_{0.76}Co_{0.14}Al_{0.10}]O_2$	1.0M LiPF ₆ in EC,EMC,DMC	_	2.5-4.2	25	1C	_	2000	~50	[7]
10	Li[Ni _{0.85} Co _{0.094} Al _{0.056}]O ₂	$Li[Ni_{0.85}Co_{0.094}Al_{0.056}]O_2$	1.0 M LiPF ₆ in EC : EMC, 3 : 7 by vol% with 2 wt% VC	8	2.5-4.3	55	0.5C	~180	100	88	[8]
11	1-Nb NCA85	Li[Ni _{0.851} Co _{0.125} Al _{0.014} Nb _{0.01}]O ₂	1.0 M LiPF ₆ in EC : EMC, 3 : 7 by vol% with 2 wt% VC	9	3.0-4.2	45	0.8C / 1C	180.1	500	92.7	[5]
12	F1-GC80	$Li[Ni_{0.80}Co_{0.05}Mn_{0.15}]O_2$	$1.2 \text{ M LiPF}_6 \text{ in EC} : \text{EMC}, 3:7$ by vol% with 2 wt% VC	~4	3.0-4.2	45	1C	190	1000	91.1	[9]
13	$Li[Ni_{0.80}Co_{0.15}Al_{0.05}]O_2$	$Li[Ni_{0.80}Co_{0.15}Al_{0.05}]O_2$	1.0M LiPF ₆ in EC,EMC,DMC	_	2.5-4.2	45	0.3C / 1C	_	500	~80	[10]
14	TiP2O7-coated NCA	$Li[Ni_{0.80}Co_{0.15}Al_{0.05}Ti_{0.01}]O_2$	1.0 M LiPF ₆ in EC : EMC : DEC,3 : 3 : 4 by vol%	17.8	2.8-4.2	45	1C	_	1050	80	[11]
15	NCM	Li[Ni _{0.33} Co _{0.33} Mn _{0.33}]O ₂	EC based electrolyte	_	3.0-4.2	45	3C	_	1400	~80%	[12]
16	Li[Ni _{0.85} Co _{0.1} Mn _{0.05}]O ₂	$Li[Ni_{0.85}Co_{0.1}Mn_{0.05}]O_2$	1.0 M LiPF ₆ in EC : DEC:EMC, 3 : 2 : 5 by vol% with 0.5% VC, 1% DTD, 1% LiFSI	~33	2.8-4.2	45	0.5C / 1C	_	300	76%	[13]
17	NCA (E9)	$Li[Ni_{0.80}Co_{0.15}Al_{0.05}]O_2$	1.0 M LiPF ₆ in EC : EMC, 3 : 7 by vol%	~8	2.5-4.3	45	0.33C / 1C	~175	200	~72	[6]
18	NCM851005	$Li[Ni_{0.85}Co_{0.1}Mn_{0.05}]O_2$	1.0 M LiPF ₆ in EC : DEC, 3 : 7 by vol% with 2 wt% VC	~10	2.8-4.2	45	1C	195	750	72%	[14]
19	GC80	Li[Ni _{0.80} Co _{0.05} Mn _{0.15}]O ₂	1.2 M LiPF ₆ in EC : EMC, 3 : 7 by vol% with 2 wt% VC	~4	3.0-4.2	45	1C	192	1000	64.6	[9]
20	P-NCA85	$Li[Ni_{0.885}Co_{0.13}Al_{0.014}]O_2$	$1.0 \text{ M LiPF}_6 \text{ in EC} : \text{EMC}, 3:7$ by vol% with 2 wt% VC	9	3.0-4.2	45	0.8C / 1C	180.4	500	60.1	[5]
21	NCA (E9)	$Li[Ni_{0.80}Co_{0.15}Al_{0.05}]O_2$	1.0 M LiPF ₆ in EC : EMC, 3 : 7 by vol%	~8	2.5-4.3	60	0.33C / 1C	~180	200	~57	[6]
22	NCA	$Li[Ni_{0.76}Co_{0.14}Al_{0.10}]O_2$	LiPF ₆ in EC,EMC,DMC	_	2.5-4.2	60	1C	_	~400	~55	[7]
23	Li[Ni _{0.80} Co _{0.15} Al _{0.05}]O ₂	$Li[Ni_{0.80}Co_{0.15}Al_{0.05}]O_2$	1.0 M LiPF ₆ in EC : EMC : DEC, 1 : 1 by vol%	_	3.0-4.2	55	1C	_	500	55.9	[15]
24	AlF3-coated Li[Ni _{0.80} Co _{0.15} Al _{0.05}]O ₂	$Li[Ni_{0.80}Co_{0.15}Al_{0.05}]O_2$	1.0 M LiPF ₆ in EC : EMC : DEC, 1 : 1 by vol%	_	3.0-4.2	55	1C	_	500	11.7	[15]

3 The value was calculated based on figure given in research article.

1	[1]	P. Zhou, H. Meng, Z. Zhang, C. Chen, Y. Lu, J. Cao, F. Cheng, and J. Chen, J. Mater. Chem. A, 2017, 5, 2724.
2	[2]	G. W. Nam, NY. Park, KJ. Park, J. Yang, J. Liu, C. S. Yoon, and YK. Sun, ACS Energy Lett., 2019, 4,
3		2995-3001.
4	[3]	KJ. Park, MJ. Choi, F. Maglia, SJ. Kim, KH. Kim, C. S. Yoon, and YK. Sun, Adv. Energy Mater., 2018, 8,
5		1703612.
6	[4]	W. Li, S. Lee, and A. Manthiram, Adv. Mater., 2020, 32, 2002718.
7	[5]	UH. Kim, JH. Park, A. Aishova, R. M. Ribas, R. S. Monteiro, K. J. Griffith, C. S. Yoon, and YK. Sun, Adv.
8		Energy Mater., 2021, 2100884.
9	[6]	Q. Li, S. Jiao, L. Luo, M. S. Ding, J. Zheng, S. S. Cartmell, CM. Wang, K. Xu, JG. Zhang, and, W. Xu, ACS Appl.
10		Mater. Interfaces, 2017, 9, 18826–18835.
11	[7]	S. Watanabe, M. Kinoshita, T. Hosokawa, K. Morigaki, and K. Nakura, J. Power Sources, 2014, 258, 210-217.
12	[8]	K. Zhou, Q. Xie, B. Li, and A. Manthiram, Energy Storage Mater., 2021, 34, 229-240.
13	[9]	UH Kim, GT Park, P. Conlin, N. Ashburn, K. Cho, YS. Yu, D. A. Shapiro, F. Maglia, SJ. Kim, P. Lamp, C.S.
14		Yoon, and YK. Sun, Energy Environ. Sci., 2021, 14, 1573–1583.
15	[10]	S. Watanabe, M. Kinoshita, and K. Nakura, J. Power Sources, 2014, 247, 412-422.
16	[11]	G. Wu, and Y. Zhou, J. Energy Chemistry, 2019, 28, 151–159.
17	[12]	F. German, A. Hintennach, A. LaCroix, D. Thiemig, S. Oswald, F. Scheiba, M. J. Hoffmann, and H. Ehrenberg, J.
18		<i>Power Sources</i> , 2014, 264 , 100–107.
19	[13]	Y. Gao, D. Li, M. Yang, X. Xia, J. Long, H. Liu, L. Chen, and A. Iqbal, <i>Electrochim. Acta</i> , 2020, 359 , 136963.
20	[14]	S. Schweidler, L. de Biasi, G. Garcia, A. Mazilkin, P. Hartmann, T. Brezesinski, and J. Janek, ACS Appl. Energy
21		Mater., 2019, 2, 7375–7384.
22	[15]	SH. Lee, C. S. Yoon, K. Amine, and YK. Sun, J. Power Sources, 2013, 234, 201-207.