Supporting Information

Interfacial Electronic Coupling of Ultrathin Transition-Metal Hydroxides Nanosheets with Layered MXene as a New Prototype for Platinum-Like Hydrogen Evolution

Linlin Li, Deshuang Yu, Peng Li, Hongjiao Huang, Dengyu Xie, Chia-Ching Lin, Feng Hu, Han-Yi Chen, and Shengjie Peng*

Experimental section

Synthesis of Ti₃C₂T_x ultrathin nanosheets

All chemicals and materials were used as received without further purification. Ti₃C₂T_x MXene was synthesized by selective etching of Al from Ti₃AlC₂ using in situ HF-forming etchant. The etching solution was prepared by adding 2.0 g of lithium fluoride into 30 mL of 9 M hydrochloric acid followed by stirring for 5 min. Then, 2.0 g of Ti₃AlC₂ powder was slowly added into the above solution at 40 °C and stirred for 36 h. After that, the acidic suspension was washed with deionized (DI) water several times and centrifuged at 3500 rpm for 5 min until pH > 6. Finally, the obtained powders were dispersed in 250 mL of DI water and sonicated for 2 h under Ar flow, followed by centrifuging for 1 h at 3500 rpm. The resultant supernatant was decanted and collected. (Ti₃C₂T_x MXene content \approx 3 mg/mL).

Synthesis of TMHs@MXene

Typically, 1.164 g of Co(NO₃)₂ 6H₂O was dissolved in 25 mL of methanol to form solution A; then 0.6568 g of 2-methylimidazole was dissolved in a 25 mL of mixed solution (10 mL of MXene solution and 15mL of DI water) to form solution B. Subsequently, the solution B was poured into solution A under the ultrasonic condition. After aged for 1 h at room temperature, the resultant mixture was centrifuged and washed several time with DI water. Finally, the product was collected and freeze-dried, which was denoted as Co(OH)₂@MXene. For comparison, we performed controlled experiments with different MXene solutions (0 ml, 1 mL, 5 mL, and 25 mL) under other conditions unchanged, and the obtained products were marked as Co(OH)₂, Co(OH)₂@1MXene, Co(OH)₂@5MXene, and Co(OH)₂@25MXene, respectively. Notably, this protocol could be extended to prepare other transition metal hydroxides, such as Ni(OH)₂@MXene and FeOOH@MXene, by simply modulation of chemical components in the precursors.

Synthesis of NiFe-LDH@NF

A piece of FeNi foam (NF) $(1 \times 2.5 \text{ cm}^2)$ was washed with 2 M HCl, deionized water, and ethanol several times to ensure the removal of the surface oxides and organic species. The synthesis of NiFe-LDH@NF used a hydrothermal method. Firstly, the solution was prepared simply by dissolving 0.5 mM Ni(NO₃)₂ 6H₂O, 0.5 mM Fe(NO₃)₃ 9H₂O, and 5 mM CO(NH₂)₂ in 35 mL of deionized (DI) water with stirring for 15 min. Then, the as-prepared solution with a piece of NF was transferred into a 50 mL Teflon-lined autoclave, and kept at 120 °C for 12 h. After the autoclave cooling down to room temperature, the obtained NiFe-LDH@NF samples were washed with DI water and then dried in vacuum oven at 80 °C overnight.

Materials characterization

The crystal structure and morphology of the as-obtained samples were characterized by fieldemission scanning electron microscope (FESEM; Regulus 8100) and X-ray diffraction (Bruker D8 Advance, Cu-K α radiation, $\lambda = 1.5418$ Å). Transmission electron microscope (TEM) and energy-dispersive X-ray spectroscopy (EDX) mapping were obtained on FEI Tecnai G2 F20 electron microscope. The Brunauer-Emmetand-Teller (BET) surface area was performed using the instrument V-Sorb 2008P. X-ray photoelectron spectroscopy (XPS) was carried out on an Escalab 250Xi electron spectrometer (Thermo Fisher Scientific) equipped with mono-chromated Al K α . The electron paramagnetic resonance (EPR) spectra were recorded using a Bruker EPR A300 spectrometer. The extended X-ray absorption fine structure (EXAFS) was measured at Taiwan Photon Source (TPS) beam line, 44A Quick-scanning X-ray absorption spectroscopy (XAS), in National Synchrotron Radiation Research Center (NSRRC), Hsinchu, Taiwan.

Electrochemical measurements

The electrochemical measurements were conducted in a three-electrode system using an electrochemical workstation (Autolab PGSTAT302, Eco Chemie, Netherlands). The working electrode was prepared by mixing the as-obtained catalyst with conductive agent (carbon black) and binder (Polyvinylidene fluoride, PVDF) in a ratio of 7:2:1 to form a homogeneous slurry. Then, the slurry was coated on Nickle Foam (NF) and dried at 80 °C in vacuum for 10 h. The loading mass of catalyst is around 1.0 mg cm⁻². The graphite rod and Ag/AgCl (Saturated KCl) electrode was served as counter electrode and reference electrode, respectively. And the measured potentials were converted to reversible hydrogen electrode (RHE) using the equation: E (vs. RHE) = E(Ag/AgCl) + 0.059 pH + 0.1979 V and the polarization curves were recorded at a scan rate of 5 mV s⁻¹ with iR compensation in 1.0 M KOH. Electrochemically active surface areas were collected from Cyclic Voltammetry (CV) curves at non-Faraday area with different scan rates.

The HER stability of the catalysts was evaluated by chronopotentiometry method at a constant current density of 50 mA cm⁻² for 65 h. Overall water splitting tests was carried out in a standard two-electrode system by using Co(OH)₂@MXene on NF as cathode and NiFe-LDH@NF as anode. Linear sweep voltammetry was carried out in 1.0 M KOH at 5 mV s⁻¹ for the polarization curves. Chronopotentiometry was measured under a constant current density of 10 mA cm⁻² for 100 h.

Computational details

Spin-polarized calculations were performed using the plane-wave pseudopotential method with the Vienna ab-initio Simulation Package (VASP) [1] based on the density functional theory (DFT). The electron-ion interactions were described by The Projector-augmented wave (PAW) pseudopotential[2]. The exchange-correlation interactions were treated by the generalized-gradient approximation (PBE/GGA) scheme[3]. The cut-off energy was set to 400 eV in all the calculations. The convergence thresholds were set as 1×10^{-6} eV/atom and 1×10^{-8} eV/atom in optimization and single point calculations, respectively.

The calculation models were constructed according to the micro-structures of composite catalyst. Co(OH)₂ (001) ribbon adsorbed on O-terminated Ti₃C₂ MXene (001) interface model was constructed to simulate the Co(OH)₂/MXene nanohybrids, as shown in Fig. 5(a). A vacuum thickness of 15 Å was set to avoid the interaction between periodic images. Grimme's semiempirical DFT-D scheme was used for dispersion correction between layers[4]. The Monkhorst-Pack grid of $6 \times 2 \times 1$ and $8 \times 4 \times 1$ were used to carry out for the intersurface optimization calculations and density of states (DOS) calculations, respectively.

The free energies of adsorbed states were defined as: $\Delta G = \Delta E + \Delta Ezpe - T\Delta S$, where ΔE is the adsorption energy of adsorbed H from DFT calculation. $\Delta Ezpe$ and ΔS are the difference in zero point energies and entropy during the reaction, respectively. Free energies calculation details can refer the previous reports.

- [1] Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15.
- [2] Blöchl, P. E. Phys. Rev. B 1994, 50, 17953.
- [3] Perdew, J. P.; W. Yue, Phys. Rev. B 1986, 33, 8800.
- [4] Grimme, S. J. Comput. Chem. 2006, 27, 1787.

Fig.S1. SEM images of (a) an accordion-like $Ti_3C_2T_x$ MXene and (b) exfoliated ultrathin MXene nanosheets.

Fig.S1b shows the ultrathin MXene nanosheets with typical 2D layered strucutre, indicating the successful exfoliation of accordion-like $Ti_3C_2T_x$.

Fig.S2. (a and b) SEM images of bare $Co(OH)_2$ at different magnifications.

Fig.S3. The N₂ absorption and desorption isotherm of MXene, Co(OH)₂, and Co(OH)₂@MXene hybrids.

Fig.S4. SEM images of $Co(OH)_2@MX$ ene with different ratios (a) $Co(OH)_2@1MX$ ene, (b) $Co(OH)_2@5MX$ ene, and (c) $Co(OH)_2@25MX$ ene.

Fig.S5. SEM images of (a) Ni(OH)₂ and (b) Ni(OH)₂@MXene.

Fig.S6. SEM images of (a) FeOOH and (b) FeOOH@MXene.

Fig.S7. (a) XRD and (b) XPS spectra of Ni(OH)₂ and Ni(OH)₂@MXene, respectively.

Fig.S8. (a) XRD and (b) XPS spectra of FeOOH and FeOOH@MXene, respectively.

Fig.S9. XRD pattern of Ti₃AlC₂.

Fig.S10. XRD patterns of $Co(OH)_2@MX$ ene with different ratios (a) $Co(OH)_2@1MX$ ene, (b) $Co(OH)_2@5MX$ ene, and (c) $Co(OH)_2@25MX$ ene.

Fig.S11. EPR spectra of Co(OH)₂@MXene and Co(OH)₂.

EPR spectra were recorded to provide fingerprint evidence due to its sensitivity to unpaired electrons trapped by oxygen vacancies. A strong signal intensity at g = 2.05 was observed for Co(OH)₂@MXene, while Co(OH)₂ has a very weak signal, revealing a much higher concentration of oxygen vacancies in Co(OH)₂@MXene.

Fig.S12. HER Polarization curves of Co(OH)₂, MXene, Co(OH)₂@MXene, 20% Pt/C, and physical mixture (Co(OH)₂+MXene).

Fig.S13. HER Polarization curves of (a) $Co(OH)_2@1MXene$, (b) $Co(OH)_2@5MXene$, and (c) $Co(OH)_2@25MXene$.

Fig.S14. (a) Nyquist plots of Co(OH)₂, MXene, Co(OH)₂@MXene, respectively; (b) equivalent circuit model used to fit the experimental impedance spectra; (c) corresponding fitted impedance data obtained from Nyquist plots using the circuit in (b).

Fig.S15. (a-c) CV of Co(OH)₂@MXene, Co(OH)₂, and MXene at different scan rates in the voltage range of 0.12 to 0.22 V, respectively; (d) Double-layer capacitance (C_{dl}) of Co(OH)₂, MXene, Co(OH)₂@MXene (where ΔJ is the difference between anodic and cathodic current densities in CV curves at different scan rates in a non-Faradaic region).

Fig.S16. (a) the HER Polarization curves; (b) corresponding Tafel plots of FeOOH, MXene, FeOOH@MXene in 1 M KOH; (c) long-term stability of FeOOH@MXene at current density of -10 mA cm⁻².

Fig.S17. (a) the HER Polarization curves; (b) corresponding Tafel plots of Ni(OH)₂, MXene, Ni(OH)₂@MXene in 1 M KOH; (c) long-term stability of Ni(OH)₂@MXene at current density of $-10 \text{ mA} \text{ cm}^{-2}$.

Fig.S18. (a) XPS spectra of Co2p and (b) SEM image of Co(OH)₂@MXene after HER cycling.

Fig.S19. (a) XRD and (b) SEM images of as-prepared FeNi-LDH.

Fig.S20. (a) Top view and (b) side view structures of $Co(OH)_2@MXene$.

Fig.S21. (a) Top view and (b) side view structures of H_2O^* adsorption on $Co(OH)_2@MX$ ene initially, respectively.

Fig.S22. (a) Top view and (b) side view structures of H* adsorption on Co(OH)₂@MXene initially, respectively.

Fig.S23. (a) Top view and (b) side view of calculated charge density distribution differences of Co(OH)₂@MXene structures, respectively.

Table S1. CoK-edge EXAFS fitting of Co(OH)₂ and Co(OH)₂@MXene.

R is the bond distance; CN is coordination number; σ^2 is the Debye-Waller factor; E0 is adjustable "muffin-tin zero".

Sample	Path	CN	R(Å)	$\sigma^2(\text{\AA}^{-2})$	E0(eV)
Co(OH) ₂	Co-O	5.6	2.061	0.0179	-0.284
	Co-Co	6.0	3.097	0.0098	-0.284
Co(OH) ₂ @MXene	Co-O	5.9	2.069	0.0171	-0.422
	Co-Co	5.7	3.107	0.0105	-0.422

Table S2. Comparison of HER activity measured for Co(OH)₂@MXene with other representative reported HER oxides-based catalysts using 1.0 M KOH as electrolyte.

Sample	Loading amount (mg cm ⁻ ²)	Current density (mA cm ⁻²)	Overpotential (mV)	Tafel slope (mV dec ⁻¹)	References
Co(OH)2@MXene	1	10	21	31.7	This work
C dopede NiO/Nickel foam	N.A.	10	27	36	Nat. Commun. 2020, 11, 1853.
Ni(OH) ₂ /NiMoO _x	1	10	36	38	Adv. Energy Mater. 2019, 9, 1902703.
Ni ₁₁ (HPO ₃) ₈ (OH) ₆	3	10	42	102	Energy Environ. Sci. 2018, 11, 1287.
SrTi _{0.7} Ru _{0.3} O _{3-δ}	0.232	10	46	40	Nat. Commun. 2020, 11, 5657.
Ni-FeNP (Ni/γ-Fe ₂ O ₃)	2.5	10	46	58	Nat. Commun. 2019, 10, 5599.
IFNOFs-45(FeF ₂ /Fe ₂ O ₃)	0.2	10	47	31	Nat. Commun. 2018, 9, 1809.
Ni, Zn dual doped CoO NRs	0.486	10	53	47	Adv. Mater. 2019, 31, 1807771.
Fe-CoO NWs	0.248	10	53	65	J. Mater. Chem. A 2020, 8, 10831.
1T-MoS ₂ QS/Ni(OH) ₂	0.16	10	57	30	Adv. Funct. Mater. 2020, 30, 2000551.
DSO NiFe LDH	N.A.	10	59	62	Energy Environ. Sci. 2019, 12, 572.
MoO ₃ /Ni–NiO/Carbon cloth	N.A.	10	62	59	Adv. Mater. 2020, 32, 2003414.
ex-MoSe ₂ :NiCl ₂ /4- SWCNTs	0.8	10	64	114	Adv. Energy Mater. 2018, 8, 1801764.
NiFeO _x @NiCu	1	10	66	67.8	Adv. Mater. 2019, 31, 1806769.
V-CoP/a-CeO ₂	0.8	10	68	48	Adv. Funct. Mater. 2020, 30, 1909618.
Co-doped CeO ₂ NSs	4.2	10	70	N.A.	J. Am. Chem. Soc. 2020, 142, 6461.
CoMnO@CN superlattices	2	20	71	97	J. Am. Chem. Soc. 2015, 137, 14305.
Strained-CoO NRs	0.48	10	73	82	Nat. Commun. 2017, 8, 1509.
MoS ₂ /Ni(OH) ₂	4.8	10	80	60	Nano Energy 2017, 37, 74.
Co ₃ (OH) ₂ (HPO4) ₂	2	10	87	97	Adv. Funct. Mater. 2019, 29, 1808632.
Se-(NiCo)S _x /(OH) _x	N.A.	10	87	103	Adv. Mater. 2018, 30, 1705538.
CoFeO@ black phosphorus	0.36	10	88	51	Angew.Chem.Int. Ed. 2020, 9, 21106.

MoS ₂ @Co(OH) ₂	0.2	10	89	53	ACS Nano, 2018, 12, 4595.
VOOH-3Fe	0.2	10	90	38	Small 2019, 15, 1904688.
P-doped C ₀ MoO ₄	N.A.	10	94	93	Adv. Sci. 2020, 7, 1903674.
CuS/Ni(OH) ₂	0.286	10	95	104	Nano Energy 2018, 44, 7-14.
NiCo ₂ O ₄ hollow microbuboids	1	10	100	50	Angew. Chem. Int. Ed. 2016, 55, 6290.
MoO ₂ -FeP	1.9	10	103	48	Adv. Mater. 2020, 32, 2000455.
CoFeZr oxide/NF	N.A.	10	104	119.3	Adv. Mater. 2019, 31, 1901439.
SCFP film	0.034	10	110	94	Adv. Mater. 2018, 30, 1804333.
NiFe LDH-NS@DG10	2	20	115	52	Adv. Mater. 2017, 29, 1700017.
N-doped NiCo ₂ O ₄	~3.1	10	116	71	J. Mater. Chem. A, 2019, 7, 1468.
P-Co ₃ O ₄	0.4	10	120	52	Energy & Environ. Sci. 2017, 10, 2563.
Ni-Laser (Ni/NiO)	N.A.	10	121	88	Nano Energy 2017, 35, 207.
2D MoS ₂ @Co(OH) ₂	0.285	10	125	76	Adv. Mater. 2018, 30, 1801171.
R-NCO	2.5	10	135	52	J. Am. Chem. Soc. 2018, 140, 13644.
S-CoOx	2.1	10	136	80	Nano Energy 2020, 71, 104652.
Ni ₃ S ₂ /NiWO ₄	5	10	136	112	Appl. Catal. B 2020, 274, 119120
PA-NiO/NF	N.A.	10	138	34	ACS Energy Lett. 2018, 3, 892.
mMoO ₃	0.2	10	138	56	Adv. Energy Mater. 2016, 6, 1600528.
CuCoO-NWs	1.2	10	140	108	Adv. Funct. Mater. 2016, 26, 8555.
Co ₃ O ₄ -MTA	N.A.	10	158	98	Angew. Chem. Int. Ed. 2017, 56, 1324.
MoS ₂ /Co ₃ O ₄	2	10	205	98	Appl. Catal. B: Environ. 2019, 248, 202.
A-PBCCF-H	N.A.	10	224	42	Nano Energy 2017, 32, 247.
Co ^{II} Fe-ONC	1	10	240	76	Appl. Catal. B: Environ. 2019, 258, 117968.
LiCo(H ₂ O) ₂ [BP ₂ O ₈] H ₂ O	1	10	245	N.A.	Energy Environ. Sci. 2019, 12, 988.

CoO _x @CN	0.12	10	260	115	J. Am. Chem. Soc. 2015, 137, 2688.
Co ₃ O ₄ /C-QA	0.295	10	280	57	Adv. Funct. Mater. 2020, 30, 2000024.
2D ZnCo ₂ O ₄	0.28	10	335	43	Small 2019, 15, 1904587.

Table S3. Comparison of overall water splitting performance in 1.0 M KOH for $Co(OH)_2@MX$ enewith other oxide-based electrocatalysts.

Sample	Current density (mA cm ⁻²)	Potential (V)	References
Co(OH)2@MXenelNiFe- LDH	10	1.46	This work
Ni-FeNP (Ni/γ-Fe ₂ O ₃)	10	1.47	Nat. Commun. 2019, 10, 5599.
DSO NiFe LDH	10	1.48	Energy Environ. Sci. 2019, 12, 572.
MoO ₂ -FeP	10	1.49	Adv. Mater. 2020, 32, 2000455.
MoO ₂ /NF	10	1.52	Adv. Mater. 2016, 28, 3785.
LiCo(H ₂ O) ₂ [BP ₂ O ₈] •H ₂ O	10	1.53	Energy Environ. Sci. 2019, 12, 988.
Fe-CoO NWs	10	1.53	J. Mater. Chem. A 2020, 8, 10831.
VOOH-0Fe	10	1.53	Small 2019, 15, 1904688.
RuO ₂ NiFeOx@NiCu	10	1.54	Adv. Mater. 2019, 31, 1806769.
Co ₃ (OH) ₂ (HPO4) ₂	10	1.54	Adv. Funct. Mater. 2019, 29, 1808632.
CoO _x @CN	20	1.55	J. Am. Chem. Soc. 2015, 137, 2688.
PA-NiO	10	1.56	ACS Energy Lett. 2018, 3, 892.
V-CoP/a-CeO ₂	10	1.56	Adv. Funct. Mater. 2020, 30, 1909618.
3D iron fluoride-oxide film	10	1.58	Nat. Commun. 2018, 9, 1809.
Ni/Ni(OH)2	10	1.59	Adv. Mater. 2020, 32, 1906915.
3D Se-(NiCo)S _x /(OH) _x	10	1.6	Adv. Mater. 2018, 30, 1705538.
CuCoO-NWs	10	1.61	Adv. Funct. Mater. 2016, 26, 8555.
R-NCO	10	1.61	J. Am. Chem. Soc. 2018, 140, 13644.
δ-FeOOH	10	1.61	Adv. Mater. 2018, 30, 1803144.
A-PBCCF-H	10	1.62	Nano Energy 2017, 32, 247.
Ni11(HPO3)8(OH)6	10	1.62	Energy Environ. Sci. 2018, 11, 1287.
CoFeZr oxide/NF	10	1.63	Adv. Mater. 2019, 31, 1901439.
Co ₃ O ₄ nanorods	10	1.63	Angew. Chem. Int. Ed. 2017, 56, 1324.
CoFeZr oxides/NF	10	1.63	Adv. Mater. 2019, 31, 1901439.

S-CoO _x	10	1.63	Nano Energy 2020, 71, 104652.
Ni-Fe-O	10	1.64	Adv. Energy Mater. 2018, 8, 1701347.
S-NiFe ₂ O ₄ /NF	10	1.65	Nano Energy, 2017, 40, 264.
Ni(OH) ₂ /NiMoO _x	10	1.65	Adv. Energy Mater. 2019, 9, 1902703.
Ni-Laser (Ni/NiO)	10	1.66	Nano Energy 2017, 35, 207.
SCFP film	10	1.66	Adv. Mater. 2018, 30, 1804333.
Co5Mo1.0O NSs@NF	10	1.68	Nano Energy, 2018, 45, 448.
Co ^{II} Fe-ONC	10	1.71	Appl. Catal. B: Environ. 2019, 258, 117968.
Co ₃ O ₄ /C-QA	10	1.71	Adv. Funct. Mater. 2020, 30, 2000024.