Supporting Information for

Dynamic Coordination Transformation of Active Site in Single-Atom MoS₂ Catalyst for Boosted Oxygen Evolution Catalysis

Nian Ran^{1,2}, Youwei Wang^{1,2}, Erhong Song^{1,2}, Yao Zhou^{4, *} and Jianjun Liu^{1,2,3, *}

¹State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

²Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

³School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, 1 Sub-lane Xiangshan, Hangzhou 310024, China

⁴Advanced Research Institute of Multidisciplinary Science, and School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China

*Corresponding Email: jliu@mail.sic.ac.cn; zhouyao@bit.edu.cn

Supporting Figures

Figure S1. Schematic of transition metal (TM) atom or transition metal atom co-doped with different numbers of oxygen (O) atoms in 2H phase MoS₂. **a**, MoS₂. **b**, TM doped in MoS₂. **c-h**, TM co-doped with 1~6 of O in MoS₂. The white, blue, dark blue, and red colors represent S, Mo, TM, and O atoms, respectively.

Figure S2. Potential active sites on cobalt co-doped six oxygen atoms in 2H phase MoS₂. The Co site is the active site because it's lower thermodynamic energy and lower potential barrier.

Figure S3. Configurations of adsorbates (O, OH, OOH) on transition metal atom (TM) co-doped with six oxygen atoms in 2H phase MoS₂ with diverse coordination. **a-d**, 3d-TMO₆@MoS₂ (TM=Sc, Ti, V, Cr, Mn, Fe and Co). **e-h**, 3d-TMO₆@MoS₂ (TM=Ni, Cu and Zn). The white, blue, dark blue, dark, green and red colors represent S, Mo, (Sc, Ti, V, Cr, Mn, Fe and Co), (Ni, Cu and Zn), H and O atoms, respectively.

Figure S4. Free-energy diagram for OER on transition metal atom (TM) co-doped with

six oxygen atoms in 2H phase MoS₂, at zero electrode potential.

Figure S5. TM-O¹ bond length change after adsorbed OH^* , O^* and OOH^* is an efficient method to determine the movement of active sites. **a**, schematic diagram of the 3d-TMO₆@MoS₂ structure after adsorption of the intermediates (OH*). **b**, the TM-O¹ bond length change of after adsorbed OH^{*}, O^{*} and OOH^{*}, where O¹ represents the oxygen atom on the opposite side of the adsorbed intermediate.

Figure S6. The density of projected states (PDOS) of 3d-TMO₆@MoS₂ and after

adsorption OH* on 3d-TMO₆@MoS₂.

Figure S7. The density of projected states (PDOS) of transition metal atom (TM) codoped with six oxygen atoms in 2H phase MoS₂, Where Mo¹ represents the nearest neighbor Mo atoms around the doped atoms.

Figure S8. The density of projected states (PDOS) of OH^{*} on transition metal atom (TM) co-doped with six oxygen atoms in 2H phase MoS₂, Where Mo¹ represents the nearest neighbor Mo atoms around the doped atoms.

Figure S9. The charge density difference of before adsorption and after desorption on transition metal atom (TM) co-doped with six oxygen atoms in 2H phase MoS₂. **a**, FeO₆@MoS₂. **b**, CuO₆@MoS₂. Yellow and blue represent positive and negative 0.11 e/Å³ isosurfaces, respectively.

Figure S10. Charge changes of 3d-TMO₆@MoS₂ structure before and after adsorption of OH* intermediate. **a**, schematic diagram of the 3d-TMO₆@MoS₂ structure after adsorption of the OH* intermediate. **b**, Bader charge changes. **c**, TM valence states changes. **d**, Mo¹ valence states changes.

Figure S11. The bader charge of before adsorption and adsorption OH^* on transition metal atom (TM) co-doped with six oxygen atoms in 2H phase MoS_2 . **a**, the bader charge of TMO₆@MoS₂ before adsorption. **b-d**, the bader charge of TMO₆@MoS₂ after adsorbed OH^{*}.

Figure S12. The OER theoretical overpotential on TMO₆@MoS₂. **a**, the theoretical OER overpotential of TMO₆@MoS₂ (including 4d-TM=Y, Zr, Nb, Ru, Rh, Pd, Ag, Cd, Ru and 5d-TM=Ir and Pt). **b**, TMO₆@MoS₂ (TM=Ru, Mn, Fe and Co) with a theoretical OER overpotential below IrO₂(110).

Figure S13. a, the OER theoretical overpotential on TMO₆@MoS₂ and TM@MoS₂. **b,** the bond length of TMO₆@MoS₂ and TM@MoS₂. **c,** the charge changes of Mo on TMO₆@MoS₂ and TM@MoS₂. **d,** the charge changes of TM and {nearest atom(O)-nearest atom(S)} on TMO₆@MoS₂ and TM@MoS₂.

Figure S14. The adsorption energy of CO, OH and OH+H on 3d-TMO₆@MoS₂.

Figure S15. The structure and OER theoretical overpotential of TMO₆@MoS₂ and MoS₂ with different defect structures (S-vacancy, Mo-vacancy, S-edge, Mo-edge). **a**, the structure of TMO₆@MoS₂ with S-vacancy. **b**, the structure of TMO₆@MoS₂ with Mo-vacancy. **c**, the structure of TMO₆@MoS₂ with Mo-edge. **d**, the OER theoretical overpotential of TMO₆@MoS₂ and MoS₂ with different defect structures (S-vacancy, Mo-vacancy, S-edge, Mo-edge).

Figure S16. a, Schematic of transition metal atom co-doped with six numbers of oxygen (O) atoms in 2H phase MoS₂. **b**, Comparison between the experimental and calculated XRD patterns of 2H-MoS₂ (space group is P6₃/mmc). **c**, The density of projected states (PDOS) of two-dimensional MoS₂.

Figure S17. Potential barrier of tetra-coordinated structure (TMO₃-OH) and hexacoordinated structure (TMO₆-OH) of TM (TM=Co and Fe) co-doped six oxygen atoms in 2H phase MoS₂ during OER reaction. The tetra-coordinated structure (TMO₃-OH) is the active structure because it's lower thermodynamic energy and lower potential barrier.

Supplementary Note 1. In situ Raman spectra of FeO₆@MoS₂ and CuO₆@MoS₂

The peaks located at ~405 and ~380 cm⁻¹ correspond to the characteristic A_{1g} mode and E_{2g}^1 mode of MoS₂¹. In addition, the peaks in Figure S18a-b related to A_g- δ (OMo₃) (~337 cm⁻¹), B_{1g}-v(OMo₃) (~453 and 491 cm⁻¹) confirmed the successful introduction of oxygen into MoS₂ lattice². For sample FeO₆@MoS₂, Raman peak of [FeO₆] at ~636 cm⁻¹³ gradually decreases and the peak of [FeO_x] (x<5) at ~766 cm⁻¹⁴ appears as the applied potential increases to 1.45 V (Figure S18a). The peak at ~566 cm⁻¹ (highlighted by gray dashed line) supports the formation of FeOOH* species⁵. For sample CuO₆@MoS₂, Raman peak of [CuO₃] at ~660 cm⁻¹⁶ in Figure S18b shows no change during OER process, and the CuOOH* species⁷ (highlighted by gray dashed line) appears when applied potential is no less than 1.65 V. These results are consistent with the theoretical predictions (Figure 3c-d).

Figure S18. a-b, In-situ Raman spectra of the $CuO_6@MoS_2$ and $FeO_6@MoS_2$, respectively. c, LSV curves and d, η_{10} values of as-prepared samples $CuO_6@MoS_2$, $FeO_6@MoS_2$, and IrO_2 . e, Long-term OER stability of the $FeO_6@MoS_2$ sample at a constant current of 10 mA cm⁻².

Supporting Tables

Material systems	Bond	Bond length (Å)
MoS ₂	Mo-S	2.40
LiCoO ₂	Co-O	1.94
LiFeO ₂	Fe-O	2.05
LiMnO ₂	Mn-O	1.96/ 2.34
LiTiO ₂	Ti-O	2.04/ 2.12
LiNiO ₂	Ni-O	1.91
LiVO ₂	V-O	2.06
LiCrO ₂	Cr-O	2.03
LiZrO ₂	Zr-O	2.18
LiNbO ₂	Nb-O	2.16
LiRuO ₂	Ru-O	2.09
LiRhO ₂	Rh-O	2.09

Table S1. The bond length of Mo-S in MoS₂ and TM-O in LiTMO₂.

Table S2. Binding energy of MoO_X and MoS_X with different numbers of oxygen/ sulfur

Material systems	MoO _X binding energy (eV)	MoS _X binding energy (eV)
O_1 $@MoS_2$	-7.47	-6.31
O_2 $@MoS_2$	-7.43	-6.07
O_3 $@MoS_2$	-7.41	-6.19
O_4 $@MoS_2$	-7.48	-6.23
O ₅ @MoS ₂	-7.44	-6.27
$O_6@MoS_2$	-7.52	-6.16

atoms doped in 2H phase MoS₂.

Table S3. The formation energy (E_F) of transition metal atom (TM) doped in 2H phase MoS₂.

Material systems	$\Delta E_{\rm F} ({\rm eV})$
Sc@MoS ₂	-0.18
Ti@MoS ₂	-2.06
$V@MoS_2$	-4.02
Cr@MoS ₂	-5.29
$Mn@MoS_2$	-4.65
Fe@MoS ₂	-3.11
Co@MoS ₂	-1.08
Ni@MoS ₂	0.99
Cu@MoS ₂	5.71
$Zn@MoS_2$	9.64
MoS_2	-0.69

Table S4. The formation energy (E_F) of transition metal atom (TM) co-doped with six

oxygen atoms in 2H phase MoS₂.

Material systems	$\Delta E_{\rm F} ({\rm eV})$
$ScO_6@MoS_2$	-3.91
${ m TiO_6}@{ m MoS_2}$	-2.50
$VO_6@MoS_2$	-3.03
$CrO_6@MoS_2$	-3.33
$MnO_6@MoS_2$	-2.14
FeO ₆ @MoS ₂	-3.00
$CoO_6@MoS_2$	-2.75
$NiO_6@MoS_2$	-2.73
$CuO_6@MoS_2$	-4.63
$ZnO_6@MoS_2$	-4.93
MoS ₂	-0.69

Table S5. The energy of TM atom moving from the triangular prism crystal field to the triangular pyramid crystal field in TMO₆@MoS₂.

Material systems	Energy (eV)
$ScO_6@MoS_2$	0.09
TiO_6 MoS ₂	0.01
$VO_6@MoS_2$	0.01
$CrO_6@MoS_2$	1.75
MnO ₆ @MoS ₂	0.02
$FeO_6@MoS_2$	0.54
CoO_6 MoS ₂	0.77
$NiO_6@MoS_2$	-0.22
$CuO_6@MoS_2$	-0.49
$ZnO_6@MoS_2$	-0.47
O_6 MoS_2	4.49
MoS ₂	7.99

Table S6. In TMO₆@MoS₂, when OH* is adsorbed and O2 is desorbed respectively, the energy difference of TM atom (the triangular prism crystal field is subtracted from the triangular pyramid crystal field).

Material systems	Energy (OH*) (eV)	Energy (O ₂) (eV)
$ScO_6@MoS_2$	-1.52	0.34
TiO ₆ @MoS ₂	-1.00	0.84
$VO_6@MoS_2$	-0.91	1.16
$CrO_6@MoS_2$	-0.59	1.11
$MnO_6@MoS_2$	-0.89	-0.23
FeO ₆ @MoS ₂	-0.17	0.61
CoO_6 MoS ₂	-0.90	-0.92
NiO ₆ @MoS ₂	-0.79	-0.31
$CuO_6@MoS_2$	-0.99	-0.49
$ZnO_6@MoS_2$	-1.55	-0.20
O_6 MoS ₂	0.35	1.95
MoS_2	1.72	5.37

Table S7. Adsorption free energies of OH^* , O^* , OOH^* , H^* (eV) on Pt (111), IrO₂ and RuO₂.

Active site	$\Delta G_{\mathrm{OH}}^{*}$	ΔG_0^*	ΔG_{OOH}^{*}	$\Delta {G_{ m H}}^{*}$
Pt (111)	/	/	/	-0.09
IrO ₂ (110)	0.19	1.34	3.09	/
RuO ₂ (110)	0.15	1.62	3.31	/

Table S8. Theoretical overpotential for OER (η^{OER} , V vs RHE), theoretical overpotential (η^{HER} , V vs RHE) for HER on Pt (111), IrO₂ and RuO₂.

Active site	$\eta^{\scriptscriptstyle OER}$	η^{HER}
Pt (111)	/	-0.09
IrO ₂ (110)	0.60	/
RuO ₂ (110)	0.47	/

Table S9. Adsorption free energies of OH^{*}, O^{*}, OOH^{*} (eV) on transition metal atom

doped in 2H phase MoS₂.

Material systems	ΔG_{OH}^{*}	$\Delta { m G_O}^*$	$\Delta G_{ m OOH}^{*}$
Sc@MoS ₂	1.21	1.68	4.63
$Ti@MoS_2$	1.25	1.71	4.63
$V@MoS_2$	1.19	1.70	4.56
$Cr@MoS_2$	2.36	1.63	4.79
Mn@MoS ₂	1.84	1.57	3.59
Fe@MoS ₂	1.62	1.50	3.56
$Co@MoS_2$	0.80	1.48	4.30
Ni@MoS ₂	0.35	1.47	3.84
$Cu@MoS_2$	0.64	1.15	4.12
$Zn@MoS_2$	0.89	1.39	4.35
MoS_2	2.65	1.77	4.92

Material systems	$\Delta { m G_{OH}}^{*}$	$\Delta { m G_O}^*$	ΔG_{OOH}^*
ScO ₆ @MoS ₂	1.19	3.94	4.38
TiO ₆ @MoS ₂	1.67	2.88	5.07
VO ₆ @MoS ₂	2.76	2.23	5.04
CrO6@MoS2	2.24	2.51	4.41
MnO ₆ @MoS ₂	1.34	2.43	4.20
FeO ₆ @MoS ₂	1.16	2.66	4.36
CoO6@MoS2	1.53	2.85	4.43
NiO ₆ @MoS ₂	1.83	3.37	4.70
CuO6@MoS2	2.14	4.75	5.19
$ZnO_6@MoS_2$	1.33	4.41	4.40
MoS_2	2.65	1.77	4.92

Table S10. Adsorption free energies of OH^{*}, O^{*}, OOH^{*} (eV) on transition metal atom (TM) co-doped with six oxygen atoms in 2H phase MoS₂.

Table S11. Theoretical overpotential for OER (η^{OER} , V vs RHE) on transition metal atom in 2H phase MoS₂. The catalytic performance better than or comparable to IrO₂ is marked with red.

Material systems	η^{OER}	$\eta^{\scriptscriptstyle HER}$
$Sc@MoS_2$	1.72	-0.21
Ti@MoS ₂	1.69	-0.31
V@MoS ₂	1.63	-0.49
$Cr@MoS_2$	1.93	-1.16
$Mn@MoS_2$	0.79	-0.71
Fe@MoS ₂	0.83	-0.43
$Co@MoS_2$	1.59	-0.16
$Ni@MoS_2$	1.14	-0.56
$Cu@MoS_2$	1.74	-0.45
$Zn@MoS_2$	1.73	-0.24
MoS ₂	1.92	-2.02

Table S12. Theoretical overpotential for OER (η^{OER} , V vs RHE) on transition metal atom (TM) co-doped with six oxygen atoms in 2H phase MoS₂. The catalytic performance better than or comparable to IrO₂ is marked with red.

Material systems	$\eta^{\scriptscriptstyle OER}$
$ScO_6@MoS_2$	1.52
TiO ₆ @MoS ₂	0.96
$VO_6@MoS_2$	1.58
$CrO_6@MoS_2$	1.01
$MnO_6@MoS_2$	0.54
$FeO_6@MoS_2$	0.48
CoO_6 @MoS ₂	0.36
$NiO_6@MoS_2$	0.60
$CuO_6@MoS_2$	1.39
$ZnO_6@MoS_2$	1.85
MoS ₂	1.92

Table S13. The overpotential (η^{OER}) for oxygen evolution of experimental (measured at 1M KOH electrolyte and a current density of 10 mA/cm²) value and calculated value in this paper.

Catalyst	Current density (mA/cm ²)	Experimental $\eta^{OER}(V)$	DFT $\eta^{OER}(V)$	Refs
Ni@MoS ₂	10	0.365	1.14	8
MoS_2	10	0.403	1.92	9
Co@MoS ₂	10	0.294	1.59	9
Fe@MoS ₂	50	0.290	0.83	10
$Co@MoS_2$	10	0.260	1.59	11
MoS_2	10	0.420	1.92	11
Co@MoS ₂	10	0.270	1.59	12
MoS_2	10	0.392	1.92	12
IrO ₂	10	0.314	0.60	13
RuO ₂	10	0.210	0.47	11
IrO2	10	0.468	0.60	14
NiVIr-LDH	10	0.18		15
Ni _{0.75} V _{0.25} -LDH	10	0.31		16
Ni _{0.75} Fe _{0.25} -LDH	10	0.25		16
NiFeMn-LDH	10	0.262		17

Ni ₃ Fe _{0.5} V _{0.5} -LDH	10	0.20		18
NiFe-LDH	10	0.36		19
NiFe-LDH	10	0.329		20
TiNiFe-LDH	10	0.307		20
VNiFe-LDH	10	0.287		20
CrNiFe-LDH	10	0.295		20
MnNiFe-LDH	10	0.313		20
CoNiFe-LDH	10	0.290		20
CuNiFe-LDH	10	0.317		20
ZnNiFe-LDH	10	0.325		20
MgNiFe-LDH	10	0.372		20
AlNiFe-LDH	10	0.374		20
Ni@MoS ₂	10	1.08	1.14	21
Fe@MoS ₂	10	1.10	0.83	10

Table S14. O^2 -TM bond length changes on transition metal atom (TM) co-doped with six oxygen atoms in 2H phase MoS₂, Where B¹ represents the bond length of O²-TM, B² represents the bond length of O²-TM after adsorbed OH^{*}, B³ represents the bond length of O²-TM after adsorbed O^{*}, B⁴ represents the bond length of O²-TM after adsorbed OOH^{*}, B⁵ represents the bond length of O²-TM after desorbed.

Material systems	\mathbf{B}^1	\mathbf{B}^2	B ³	\mathbf{B}^4	B^5
$ScO_6@MoS_2$	2.20	3.62	3.76	3.62	2.21
$TiO_6@MoS_2$	2.09	3.39	3.53	3.32	2.08
VO ₆ @MoS ₂	2.02	2.16	3.41	3.25	3.05
$CrO_6@MoS_2$	1.99	3.28	3.41	3.14	1.99
$MnO_6@MoS_2$	2.06	3.18	3.52	3.11	2.49
FeO ₆ @MoS ₂	2.14	3.43	3.34	3.35	2.17
CoO_6 MoS ₂	2.18	3.40	3.43	3.24	2.82
NiO ₆ @MoS ₂	2.07	1.99	2.00	1.95	1.95
$CuO_6@MoS_2$	3.03	3.50	3.60	3.38	3.04
$ZnO_6@MoS_2$	3.12	3.72	3.76	3.54	3.13

Table S15. The atomic magnetic moment of on transition metal atom (TM) co-dopedwith six oxygen atoms in 2H phase MoS_2 before adsorption, including nearest neighbor

Material systems	Mo ¹	O^1	O^2	TM
$ScO_6@MoS_2$	0.00	0.00	0.00	0.00
$TiO_6@MoS_2$	0.00	0.00	0.00	0.00
$VO_6@MoS_2$	0.00	0.00	0.00	0.00
$CrO_6@MoS_2$	0.00	0.00	0.00	0.00
$MnO_6@MoS_2$	0.18	0.01	0.03	2.35
FeO ₆ @MoS ₂	0.19	0.04	0.04	3.13
CoO_6 MoS ₂	0.09	0.02	0.03	2.44
NiO ₆ @MoS ₂	0.06	0.06	0.06	1.07
CuO ₆ @MoS ₂	0.12	0.02	0.00	0.14
ZnO ₆ @MoS ₂	0.24	0.02	0.01	0.02

Mo atoms (Mo¹), O on the same side of OH adsorbent (O¹), O on the opposite side of OH^* adsorbent (O²) and transition metal atom (TM).

Table S16. The atomic magnetic moment of on transition metal atom (TM) co-doped with six oxygen atoms in 2H phase MoS_2 after desorption, including nearest neighbor Mo atoms (Mo¹), O on the same side of OH adsorbent (O¹), O on the opposite side of OH^{*} adsorbent (O²) and transition metal atom (TM).

Material systems	Mo ¹	O^1	O^2	TM
$ScO_6@MoS_2$	0.23	0.00	0.02	0.02
$TiO_6@MoS_2$	0.01	0.00	0.00	0.00
$VO_6@MoS_2$	0.00	0.00	0.00	0.00
$CrO_6@MoS_2$	0.09	0.02	0.01	1.70
$MnO_6@MoS_2$	0.16	0.01	0.01	2.99
FeO ₆ @MoS ₂	0.19	0.07	0.02	3.57
CoO_6 MoS ₂	0.12	0.07	0.01	2.39
NiO ₆ @MoS ₂	0.05	0.07	0.07	1.26
CuO ₆ @MoS ₂	0.08	0.07	0.02	0.05
$ZnO_6@MoS_2$	0.12	0.04	0.02	0.01

Table S17. The valence state of on transition metal atom (TM) co-doped with six oxygen atoms in 2H phase MoS₂ before adsorption, including nearest neighbor Mo

Material systems	Mo ¹	O^1	O^2	TM
ScO ₆ @MoS ₂	+4	-2	-2	+3
$TiO_6@MoS_2$	+4	-2	-2	+4
$VO_6@MoS_2$	+4	-2	-2	+5
CrO ₆ @MoS ₂	+4	-2	-2	+2
$MnO_6@MoS_2$	+4.18	-2	-2	+3.35
FeO ₆ @MoS ₂	+4.19	-2	-2	+3.13
CoO ₆ @MoS ₂	+4.09	-2	-2	+2.56
NiO ₆ @MoS ₂	+4.06	-2	-2	+2.07
CuO ₆ @MoS ₂	+4.12	-2	-2	+1
ZnO ₆ @MoS ₂	+4.24	-2	-2	+2

atoms (Mo¹), O on the same side of OH adsorbent (O¹), O on the opposite side of OH^* adsorbent (O²) and transition metal atom (TM).

Table S18. The valence state of on transition metal atom (TM) co-doped with six oxygen atoms in 2H phase MoS_2 after desorption, including nearest neighbor Mo atoms (Mo¹), O on the same side of OH adsorbent (O¹), O on the opposite side of OH^{*} adsorbent (O²) and transition metal atom (TM).

Material systems	Mo ¹	O^1	O^2	ТМ
$ScO_6@MoS_2$	+4.23	-2	-2	+3
TiO ₆ @MoS ₂	+4.01	-2	-2	+4
VO ₆ @MoS ₂	+4	-2	-2	+5
$CrO_6@MoS_2$	+4.09	-2	-2	+3.7
$MnO_6@MoS_2$	+4.16	-2	-2	+3.99
FeO ₆ @MoS ₂	+4.19	-2	-2	+3.57
$CoO_6@MoS_2$	+4.12	-2	-2	+2.61
$NiO_6@MoS_2$	+4.05	-2	-2	+2.26
$CuO_6@MoS_2$	+4.08	-2	-2	+1
$ZnO_6@MoS_2$	+4.12	-2	-2	+2

Table S19. The bader charge of transition metal atom (TM) co-doped with six oxygen atoms in 2H phase MoS₂, including nearest neighbor Mo atoms (Mo¹), other Mo atoms

Material systems	Mo^1	Mo ²	S^1	S^2	\mathbf{O}^0	TM
ScO ₆ @MoS ₂	4.87	5.02	6.49	6.48	6.92	9.17
TiO ₆ @MoS ₂	4.90	5.02	6.49	6.47	6.88	2.27
VO6@MoS2	4.85	5.01	6.50	6.48	6.86	3.41
CrO ₆ @MoS ₂	4.85	5.00	6.51	6.48	6.85	4.54
MnO ₆ @MoS ₂	4.88	5.01	6.50	6.47	6.85	5.67
FeO ₆ @MoS ₂	4.87	5.01	6.48	6.47	6.86	6.74
CoO6@MoS2	4.89	5.02	6.48	6.47	6.83	7.86
NiO ₆ @MoS ₂	4.84	5.01	6.50	6.47	6.84	9.09
CuO6@MoS2	4.80	5.02	6.53	6.47	6.86	10.10
$ZnO_6@MoS_2$	4.80	5.01	6.53	6.47	6.88	10.90

(Mo²), nearest neighbor S atoms (S¹), other S atoms (S²), O atom (O⁰) and transition metal atom (TM).

Table S20. The bader charge of OH^* absorbed on transition metal atom (TM) co-doped with six oxygen atoms in 2H phase MoS₂, including nearest neighbor Mo atoms (Mo¹), other Mo atoms (Mo²), nearest neighbor S atoms (S¹), other S atoms (S²), O on the same side of OH adsorbent (O¹), O on the opposite side of OH* adsorbent (O²), O in OH* adsorbent (O³), H in OH* adsorbent (H⁰) and transition metal atom (TM).

Material systems	Mo^1	Mo ²	\mathbf{S}^1	S^2	O^1	O^2	O^3	H^{0}	TM
ScO ₆ @MoS ₂	4.64	5.02	6.53	6.49	7.06	6.77	7.44	0.20	8.96
TiO ₆ @MoS ₂	4.67	5.01	6.54	6.49	6.98	6.78	7.16	0.21	2.18
VO6@MoS2	4.73	5.00	6.51	6.49	6.83	6.85	6.99	0.23	3.44
CrO6@MoS2	4.66	5.03	6.52	6.48	6.92	6.79	7.08	0.22	4.40
MnO ₆ @MoS ₂	4.65	5.02	6.53	6.49	6.93	6.78	6.98	0.36	5.54
FeO ₆ @MoS ₂	4.63	5.01	6.53	6.49	6.98	6.77	7.17	0.21	6.56
CoO6@MoS2	4.64	5.01	6.52	6.49	6.92	6.77	6.95	0.32	7.81
NiO ₆ @MoS ₂	4.63	5.02	6.53	6.48	6.77	6.90	7.18	0.00	8.99
CuO6@MoS2	4.61	5.03	6.52	6.48	6.88	6.77	7.25	0.00	10.12
$ZnO_6(a)MoS_2$	4.59	5.04	6.53	6.47	6.94	6.80	7.39	0.00	10.75

Table S21. Values used for the entropy and zero-point energy corrections in determining the free energy of reactants, products, and intermediate species adsorbed on catalysts. For the adsorbates, the ΔZPE values are averaged over all transition metal atom doped in 2H phase MoS₂ catalyst systems since they have rather close value.

Species	TS (eV)(298K)	ZPE (eV)
H^{*}	0	0.17
O^*	0	0.07
OH^*	0	0.33
OOH^*	0	0.43
$H_2(g)$	0.41	0.27
$H_2O(g)$	0.58	0.57

Table S22. Adsorption free energies of OH^* , O^* , OOH^* (eV) and theoretical overpotential for OER (η^{OER} , V vs RHE) on transition metal atom co-doped with six oxygen atoms in 2H phase MoS₂. The catalytic performance better than or comparable to IrO₂ is marked with red.

Material systems	ΔG_{OH}^{*}	$\Delta {G_0}^*$	ΔG_{OOH}^{*}	η^{OER}
YO ₆ @MoS ₂	1.05	4.68	4.76	2.40
$ZrO_6@MoS_2$	2.17	4.45	4.99	1.05
$NbO_6@MoS_2$	2.06	2.62	5.59	1.73
$RuO_6@MoS_2$	1.79	3.58	4.63	0.56
$RhO_6@MoS_2$	1.64	3.56	4.31	0.69
$PdO_6@MoS_2$	2.58	4.64	5.13	1.35
$AgO_6@MoS_2$	2.57	4.65	5.25	1.34
$CdO_6@MoS_2$	1.33	4.22	4.35	1.65
IrO ₆ @MoS ₂	2.25	3.52	4.46	1.02
PtO ₆ @MoS ₂	2.06	3.86	5.12	0.83

Table S23. Adsorption free energies of OH^{*}, O^{*}, OOH^{*} (eV) and theoretical overpotential for OER (η^{OER} , V vs RHE) on transition metal atom co-doped with six

Species	$\Delta { m G_{OH}}^{*}$	$\Delta {G_0}^*$	$\Delta { m G_{OOH}}^{*}$	$\eta^{\scriptscriptstyle OER}$
$Sc@MoS_2$	1.21	1.68	4.63	1.72
Ti@MoS ₂	1.25	1.71	4.63	1.69
V@MoS ₂	1.19	1.70	4.56	1.63
Cr@MoS ₂	2.36	1.63	4.79	1.93
$Mn@MoS_2$	1.84	1.57	3.59	0.79
Fe@MoS ₂	1.62	1.50	3.56	0.83
$Co@MoS_2$	0.80	1.48	4.30	1.59
Ni@MoS ₂	0.35	1.47	3.84	1.14
$Cu@MoS_2$	0.64	1.15	4.12	1.74
$Zn@MoS_2$	0.89	1.39	4.35	1.73
MoS_2	2.65	1.77	4.92	1.92
$ScO_6@MoS_2$	1.19	3.94	4.38	1.52
TiO ₆ @MoS ₂	1.67	2.88	5.07	0.96
VO6@MoS2	2.76	2.23	5.04	1.58
$CrO_6@MoS_2$	2.24	2.51	4.41	1.01
$MnO_6@MoS_2$	1.34	2.43	4.20	0.54
FeO ₆ @MoS ₂	1.16	2.66	4.36	0.48
$CoO_6@MoS_2$	1.53	2.85	4.43	0.36
NiO ₆ @MoS ₂	1.83	3.37	4.70	0.60
CuO6@MoS2	2.14	4.75	5.19	1.39
$ZnO_6@MoS_2$	1.33	4.41	4.40	1.85

oxygen atoms and transition metal atom doped in 2H phase MoS₂, respectively. The catalytic performance better than or comparable to IrO₂ is marked with red.

Table S24. The bader charge of transition metal atom (TM) co-doped with six oxygen atoms in 2H phase MoS₂, and the bader charge of transition metal atom (TM) doped in 2H phase MoS₂, including nearest neighbor Mo atoms (Mo¹), other Mo atoms (Mo²), nearest neighbor S atoms (S¹), other S atoms (S²), O atom (O⁰) and transition metal atom (TM).

Material systems	Mo ¹	Mo ²	\mathbf{S}^1	S^2	O^0	TM
Sc@MoS ₂	5.01	5.04	6.59	6.48	/	9.51
Ti@MoS ₂	5.02	5.05	6.57	6.47	/	2.70
V@MoS ₂	5.03	5.05	6.53	6.47	/	3.86

Cr@MoS ₂	5.00	5.06	6.49	6.47	/	5.11
$Mn@MoS_2$	4.97	5.00	6.47	6.50	/	6.26
Fe@MoS ₂	4.97	4.96	6.46	6.52	/	7.33
$Co@MoS_2$	5.01	5.05	6.38	6.48	/	8.53
Ni@MoS ₂	4.95	5.01	6.45	6.49	/	9.46
Cu@MoS ₂	4.99	4.97	6.44	6.51	/	10.43
$Zn@MoS_2$	4.96	5.01	6.52	6.49	/	11.19
MoS_2	5.04	5.05	6.48	6.47	/	5.07
$ScO_6@MoS_2$	4.87	5.02	6.49	6.48	6.92	9.17
TiO ₆ @MoS ₂	4.90	5.02	6.49	6.47	6.88	2.27
VO6@MoS2	4.85	5.01	6.50	6.48	6.86	3.41
$CrO_6@MoS_2$	4.85	5.00	6.51	6.48	6.85	4.54
MnO ₆ @MoS ₂	4.88	5.01	6.50	6.47	6.85	5.67
FeO6@MoS2	4.87	5.01	6.48	6.47	6.86	6.74
CoO ₆ @MoS ₂	4.89	5.02	6.48	6.47	6.83	7.86
NiO6@MoS2	4.84	5.01	6.50	6.47	6.84	9.09
CuO ₆ @MoS ₂	4.80	5.02	6.53	6.47	6.86	10.10
ZnO ₆ @MoS ₂	4.80	5.01	6.53	6.47	6.88	10.90

Table S25. The bond length of transition metal atom (TM) co-doped with six oxygen atoms in 2H phase MoS₂, and the bond length of transition metal atom (TM) doped in 2H phase MoS₂, including nearest neighbor Mo atoms (Mo), nearest neighbor S atoms (S), O atom (O) and transition metal atom (TM).

Material systems	Mo-S	Mo-O	TM-O	TM-S
Sc@MoS ₂	2.40	/	/	2.52
$Ti@MoS_2$	2.40	/	/	2.43
V@MoS ₂	2.41	/	/	2.36
Cr@MoS ₂	2.41	/	/	2.32
$Mn@MoS_2$	2.42	/	/	2.30
Fe@MoS ₂	2.42	/	/	2.30
Co@MoS ₂	2.42	/	/	2.29
Ni@MoS ₂	2.40	/	/	2.42
Cu@MoS ₂	2.42	/	/	2.43
$Zn@MoS_2$	2.40	/	/	2.51
MoS_2	2.41	/	/	/
$ScO_6@MoS_2$	2.42	2.04	2.21	/
TiO ₆ @MoS ₂	2.43	2.06	2.09	/
VO6@MoS2	2.44	2.07	2.01	/

CrO ₆ @MoS ₂	2.44	2.08	1.99	/
MnO ₆ @MoS ₂	2.43	2.06	1.99	/
FeO ₆ @MoS ₂	2.43	2.03	2.17	/
CoO_6 $@MoS_2$	2.43	2.03	2.16	/
NiO6@MoS2	2.42	2.03	1.97	/
$CuO_6@MoS_2$	2.42	2.04	1.98	/
$ZnO_6@MoS_2$	2.42	2.08	1.95	/

Table S26. The adsorption energy of CO, OH and OH+H on 3d-TMO₆@MoS₂.

Material systems	ΔE_{OH}	ΔE_{OH+H}	ΔE_{CO}
$ScO_6@MoS_2$	-2.36	0.64	0.30
$TiO_6@MoS_2$	-1.89	2.11	0.30
VO_6 @MoS ₂	-0.80	1.30	0.30
$CrO_6@MoS_2$	-1.32	1.65	0.30
$MnO_6@MoS_2$	-2.21	0.92	0.30
FeO ₆ @MoS ₂	-2.40	0.49	0.29
$CoO_6@MoS_2$	-2.03	0.84	0.29
NiO ₆ @MoS ₂	-1.28	0.96	-0.01
CuO ₆ @MoS ₂	-1.42	-0.49	0.28
$ZnO_6@MoS_2$	-2.23	-0.85	0.28

Table S27. Adsorption free energies of OH^* , O^* , OOH^* (eV) and theoretical overpotential for OER (η^{OER} , V vs RHE) on transition metal atom co-doped with six oxygen atoms in 2H phase MoS₂ with different defect structures (S-vacancy, Mo-vacancy, S-edge, Mo-edge). The catalytic performance better than or comparable to IrO₂ is marked with red.

Material systems	ΔG_{OH}^{*}	$\Delta {G_0}^*$	ΔG_{OOH}^{*}	η^{OER}
MoS_2	2.65	1.77	4.92	1.92
S-vacancy@MoS ₂	-0.17	-1.56	1.50	2.19
S-edge@MoS ₂	0.33	1.19	3.54	1.12
Mo-vacancy @MoS ₂	1.14	1.58	3.18	0.51
Mo-edge @MoS ₂	-2.28	-2.57	-4.06	7.75
CuO ₆ -S-vacancy@MoS ₂	-1.96	-1.82	0.84	2.85

CuO ₆ -S-edge@MoS ₂	-1.10	-0.58	2.27	1.62
CuO ₆ -Mo-vacancy @MoS ₂	0.47	1.61	3.98	1.14
CuO ₆ -Mo-edge @MoS ₂	-2.09	-2.15	1.21	2.48
FeO ₆ -S-vacancy@MoS ₂	-2.03	-2.01	0.87	2.82
FeO ₆ -S-edge@MoS ₂	0.68	1.56	3.94	1.16
FeO ₆ -Mo-vacancy @MoS ₂	0.99	1.61	4.07	1.22
FeO ₆ -Mo-edge @MoS ₂	-1.63	-1.76	1.53	2.16

Table S28. OH^* adsorption free energies of tetra-coordinated structure (TMO₃-OH) and hexa-coordinated structure (TMO₆-OH) of TM (TM=Co and Fe) co-doped six oxygen atoms in 2H phase MoS₂ during OER reaction. The more thermodynamically stable coordination structure is marked with red.

Material systems	$\Delta E(TMO_3-OH)$	$\Delta E(TMO_6-OH)$
$ScO_6@MoS_2$	1.19	2.80
$TiO_6@MoS_2$	1.67	2.68
VO ₆ @MoS ₂	2.76	2.81
$CrO_6@MoS_2$	2.24	2.84
$MnO_6@MoS_2$	1.34	2.20
FeO ₆ @MoS ₂	1.16	2.68
CoO_6 MoS ₂	1.53	2.43
NiO ₆ @MoS ₂	1.83	2.34
$CuO_6@MoS_2$	2.14	2.64
$ZnO_6@MoS_2$	1.33	2.45

References

- Y. Zhou, J. Zhang, E. Song, J. Lin, J. Zhou, K. Suenaga, W. Zhou, Z. Liu, J. Liu, J. Lou and H. J. Fan, *Nat. Commun.*, 2020, **11**, 2253.
- 2. Y. Zhou, W. Hao, X. Zhao, J. Zhou, H. Yu, B. Lin, Z. Liu, S. J. Pennycook, S. Li and H. J. Fan, *Adv. Mater.*, 2021, 2100537.
- 3. Y. Wang, R. Zhang, X. Zhao, Y. Min and C. Liu, *ISIJ International*, 2020, **60**, 220-225.
- D. Scarano, A. Zecchina, S. Bordiga, F. Geobaldo, G. Spoto, G. Petrini, G. Leofanti, M. Padovan and G. Tozzola, *Journal of the Chemical Society, Faraday Transactions*, 1993, 89, 4123-4130.
- 5. K. Hedenstedt, J. Bäckström and E. Ahlberg, *J. Electrochem. Soc.*, 2017, **164**, H621-H627.
- 6. T. Baruah, R. R. Zope and M. R. Pederson, *Physical Review A*, 2004, **69**.
- 7. X. Pang, H. Bai, H. Zhao, W. Fan and W. Shi, *ACS Catalysis*, 2022, **12**, 1545-1557.
- 8. Y. Wang, W. M. Sun, X. F. Ling, X. K. Shi, L. L. Li, Y. D. Deng, C. H. An and X. P. Han, *Chem. Eur. J.*, DOI: 10.1002/chem.201904238, 8.
- 9. Z. Y. Zhao, F. L. Li, Q. Shao, X. Q. Huang and J. P. Lang, *Adv. Mater. Interfaces*, 2019, **6**, 9.
- B. S. Tang, Z. G. Yu, H. L. Seng, N. D. Zhang, X. X. Liu, Y. W. Zhang, W. F. Yang and H. Gong, *Nanoscale*, 2018, **10**, 20113-20119.
- 11. Q. Z. Xiong, Y. Wang, P. F. Liu, L. R. Zheng, G. Z. Wang, H. G. Yang, P. K. Wong, H. M. Zhang and H. J. Zhao, *Adv. Mater.*, 2018, **30**, 7.
- 12. Q. Xiong, X. Zhang, H. J. Wang, G. Q. Liu, G. Z. Wang, H. M. Zhang and H. J. Zhao, *Chem. Commun.*, 2018, **54**, 3859-3862.
- 13. H. Lee, J. Y. Kim, S. Lee, J. A. Hong, N. Kim, J. Baik and Y. J. Hwang, *Sci Rep*, 2018, **8**, 8.
- R. P. Forslund, W. G. Hardin, X. Rong, A. M. Abakumov, D. Filimonov, C. T. Alexander, J. T. Mefford, H. Iyer, A. M. Kolpak, K. P. Johnston and K. J. Stevenson, *Nat. Commun.*, 2018, 9, 11.
- 15. D. W. Wang, Q. Li, C. Han, Q. Q. Lu, Z. C. Xing and X. R. Yang, *Nat. Commun.*, 2019, **10**, 12.
- K. Fan, H. Chen, Y. F. Ji, H. Huang, P. M. Claesson, Q. Daniel, B. Philippe, H. Rensmo, F. S. Li, Y. Luo and L. C. Sun, *Nat. Commun.*, 2016, 7, 9.
- 17. Z. Y. Lu, L. Qian, Y. Tian, Y. P. Li, X. M. Sun and X. Duan, *Chem. Commun.*, 2016, **52**, 908-911.
- J. Jiang, F. F. Sun, S. Zhou, W. Hu, H. Zhang, J. C. Dong, Z. Jiang, J. J. Zhao, J. F. Li, W. S. Yan and M. Wang, *Nat. Commun.*, 2018, 9, 12.
- S. Jaskaniec, C. Hobbs, A. Seral-Ascaso, J. Coelho, M. P. Browne, D. Tyndall, T. Sasaki and V. Nicolosi, *Sci Rep*, 2018, 8, 8.
- 20. L. Zhou, C. Zhang, Y. Q. Zhang, Z. H. Li and M. F. Shao, *Adv. Funct. Mater.*, DOI: 10.1002/adfm.202009743, 9.
- 21. Y. Wang, W. M. Sun, X. F. Ling, X. K. Shi, L. L. Li, Y. D. Deng, C. H. An and X. P. Han, *Chem. Eur. J.*, 2020, **26**, 4097-4103.