Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2022

Supporting information for

Mechanistic Insights of Cycling Stability of Ferrocene Catholytes in Aqueous Redox Flow Batteries

Jian Luo,^a Maowei Hu,^a Wenda Wu,^a Bing Yuan,^{a,b} T. Leo Liu^{a,*}

^a The Department of Chemistry and Biochemistry, Utah State University, Logan, UT ^b State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China *Corresponding Author: Leo.Liu@usu.edu

Contents

1.	Full-cell RFB Studies	3
2.	Supporting Data	4
	Scheme S1. Synthetic routes of the Cx-FcNCl compounds	4
	Figure S1. Conductivity of the C_x -FcNCl compounds in water solutions.	5
	Figure S2. Nicholson's treatment for evaluation of electron transfer rate constant k^0 from cyclic voltammetry (CV) data of C_x -FcNCl compounds.	5
	Figure S3. RDE studies of Cx-FcNCl compounds	6
	Figure S4. Charge/discharge capacity and CE of the C_1 -FcNCl half-cell AORFB during 13 testing days at 40 mA/cm ² .	6
	Figure S5. Charge/discharge capacity and CE of the C_2 -FcNCl half-cell AORFB during 13 testing days at 40 mA/cm ² .	7
	Figure S6. Charge/discharge capacity and CE of the C_3 -FcNCl half-cell AORFB during 13 testing days at 40 mA/cm ²	7
	Figure S7. ¹ H-NMR spectrum of C_1 -FcNCl after half-cell battery cycling for 13 days.	8
	Figure S8. ¹ H-NMR spectrum of C_2 -FcNCl after half-cell battery cycling for 13 days.	8
	Figure S9. ¹ H-NMR spectrum of C_3 -FcNCl after half-cell battery cycling for 13 days.	9
	Figure S10. Post-cell CV analysis of the C_x -FcNCl half-cell batteries	9
	Figure S11. Post-analysis of cycled electrode and membrane for C_I -FcNCl half-cell RFB 1	LO
	Figure S12. Post-analysis of cycled electrode and membrane for <i>C</i> ₂ -FcNCl and <i>C</i> ₃ -FcNCl half-cell RFB.	10
	Figure S13. Full-cell RFB studies of the C_1 -FcNCl/(NPr) ₂ VCl ₄ AORFB	1
	Figure S14. Full-cell RFB studies of the C ₂ -FcNCl/(NPr) ₂ VCl ₄ AORFB 1	۱2
	Figure S15. Full-cell RFB studies of the C ₃ -FcNCl/(NPr) ₂ VCl ₄ AORFB	13

Figure S16. ¹ H-NMR spectrum of <i>C</i> ₁ -FcNCl catholyte after 500 charge/discharge cycles of <i>C</i> ₁ -FcNCl/(NPr) ₂ VCl ₄ AORFB		
Figure S17. ¹ H-NMR spectrum of (NPr) ₂ VCl ₄ anolyte after 500 charge/discharge cycles of <i>C</i> ₁ - FcNCl /(NPr) ₂ VCl ₄ AORFB		
Figure S18. ¹ H-NMR spectrum of C_2 -FcNCl catholyte after 500 charge/discharge cycles of C_2 -FcNCl/(NPr) ₂ VCl ₄ AORFB. 15		
Figure S19. ¹ H-NMR spectrum of (NPr) ₂ VCl ₄ anolyte after 500 charge/discharge cycles of <i>C</i> ₂ - FcNCl /(NPr) ₂ VCl ₄ AORFB		
Figure S20. ¹ H-NMR spectrum of <i>C</i> ₃ -FcNCl catholyte after 500 charge/discharge cycles of <i>C</i> ₃ -FcNCl/(NPr) ₂ VCl ₄ AORFB		
Figure S21. ¹ H-NMR spectrum of (NPr) ₂ VCl ₄ anolyte after 500 charge/discharge cycles of <i>C</i> ₃ - FcNCl /(NPr) ₂ VCl ₄ AORFB		
Figure S22. Post CV analysis of the Cx-FcNCl/(NPr) ₂ VCl ₄ AORFBs		
Figure S23. UV-vis stability studies of 0.4 mM C ₁ -FcNCl catholyte in 24 days		
Figure S24. UV-vis stability studies of 0.4 mM C2-FcNCl catholyte in 24 days		
Figure S25. UV-vis stability studies of 0.4 mM C_3 -FcNCl catholyte in 24 days		
Figure S26. GC-MS spectrum of the gas phase sample in the cycled C ₁ -FcNCl half-cell RFB		
Figure S27. The charge/discharge cycling data of 0.50 M C_1 -FcNCl half-cell RFB at 40 mA/cm ² current density under different O ₂ content		
Figure S28. UV-vis stability studies of 0.4 mM C_1 -FcNCl catholyte under N ₂ and O ₂ in 10 days 22		
Figure S29. UV-vis stability studies of 0.4 mM C_2 -FcNCl catholyte under N ₂ and O ₂ in 10 days 23		
Figure S30. UV-vis stability studies of 0.4 mM C_3 -FcNCl catholyte under N ₂ and O ₂ in 10 days 24		
3. NMR Spectrum		
4. Reference		

1. Full-cell RFB Studies

Scheme S1. Catholyte (i) and anolyte (ii) half-cell reactions of the C3-FcNCl/(NPr)₂VCl₄ AORFB.

The half-cell RFB studies revealed the excellent stability of the C3-FcNCI catholyte in AORFB applications. Full-cell AORFB demonstration of the C3-FcNCl catholyte was performed by pairing with 1,1'-di(trimethylammonium-propyl) 4,4'-bipyridium tetrachloride, $(NPr)_2VCl_4$ (E_{1/2} = -0.38 V versus NHE, Scheme S1), which has been reported as a robust anolyte in viologen/ferrocene and viologen/TEMPO AORFBs.¹⁻³ The C₃-FcNCl/(NPr)₂VCl₄ combination enabled a 0.75 V battery. In the full-cell AORFB configuration, 0.50 M C_3 -FcNCl and 0.50 M (NPr)₂VCl₄ in a 1.00 M NH₄Cl supporting electrolyte were used as a catholyte and an anolyte, respectively. A piece of Selemion AMV anion-exchange membrane was used as a separator. The C3-FcNCl/(NPr)2VCl4 AORFB was cycled with cut-off voltages at 1.05 V and 0.10 V for charge and discharge processes, respectively. The current rate performance was investigated at current densities from 10 to 50 mA cm⁻². As shown in Figure S15A, stable capacity retention was obtained in 5 continuous charge/discharge cycles under each current density. Meanwhile, the C3-FcNCl/(NPr)2VCl4 AORFB showed excellent current rate performance, specifically, a small capacity decrease was observed with the current density increase from 10 mA cm⁻² (13.1 Ah L⁻¹, 98% capacity utilization) to 50 mA cm⁻² (12.4 Ah L⁻¹, 93% capacity utilization) (Figure S15A and S15B), which is benefitted from the high conductivity and fast electrochemical kinetics of the electrolytes. Figure S15C showed the battery efficiency data. Coulombic efficiency stayed nearly 100% at each current density. Upon increasing current density, the voltage efficiency and energy efficiency linearly decreased from 91% at 10 mA cm⁻² to 64% at 50 mA cm⁻². To measure the cycling stability of the C3-FcNCl/(NPr)₂VCl₄ AORFB, a long cycling test was performed at 40 mA cm⁻² for 500 cycles (ca. 340 hours). During the long-term cycling test, the battery maintained nearly 100% coulombic efficiency, capacity utilization of 95%, and an energy efficiency of 70%. As shown in Figure S15D, the C_3 -FcNCl/(NPr)₂VCl₄ AORFB delivered very stable cycling stability. Only 1.03% capacity fading was observed in 500 charge/discharge cycles, which is equivalent to 99.9979% per cycle or 99.927% per day capacity retention.

For comparison, C_I -FcNCl and C_2 -FcNCl catholytes were also paired with the (NPr)₂VCl₄ anolyte for full-cell battery tests under the same conditions (Figure S13 and S14). Due to the higher redox potential of C_I -FcNCl (0.61 V, vs NHE) and C_2 -FcNCl (0.44 V) than that of C_3 -FcNCl (0.37 V), higher battery voltages were obtained for the C_I -FcNCl/(NPr)₂VCl₄ (0.99 V) and C_2 -FcNCl/(NPr)₂VCl₄ (0.82 V) AORFB. The current rate performance of C_I -FcNCl/(NPr)₂VCl₄ and C_2 -FcNCl/(NPr)₂VCl₄ AORFBs was not as good as that of C_3 -FcNCl/(NPr)₂VCl₄ AORFB. Specifically, when the current density increased from 10 mA·cm⁻² to 50 mA·cm⁻², more significant capacity utilization decrease was observed for C_I -FcNCl/(NPr)₂VCl₄ (from 97% to 85%) and C_2 -FcNCl/(NPr)₂VCl₄ (from 98% to 90%) AORFB than that of C_3 -FcNCl/(NPr)₂VCl₄ AORFB (from 98% to 93%). Meanwhile, the energy efficiency decrease of C_1 -FcNCl/(NPr)₂VCl₄ (from 91% at 10 mA cm⁻² to 59% at 50 mA cm⁻²) and C_2 -FcNCl/(NPr)₂VCl₄ (from 90% at 10 mA cm⁻² to 54% at 50 mA cm⁻²) AORFBs was also more seriously than that of C₃-FcNCl/(NPr)₂VCl₄ AORFB (from 91% at 10 mA cm⁻² to 64% at 50 mA cm⁻²). Similar as the half-cell test result, C_{I-} FcNCl/(NPr)₂VCl₄ AORFB displayed slight capacity fading in 5 continuous cycles at low current densities (10 and 20 mA cm⁻²) (Figure S13). For the long-term cycling tests of the full-cell C_1 -FcNCl/(NPr)₂VCl₄ AORFB AORFBs, showed much poorer stability than C_2 -FcNCl/(NPr)₂VCl₄ and C₃-FcNCl/(NPr)₂VCl₄ AORFBs. In 500 charge/discharge cycles at 40 mA·cm⁻², 13.53% capacity fading was observed for the C_1 -FcNCl/(NPr)₂VCl₄ AORFB, however, only 2.57% and 1.03% capacity fading was observed for the C_2 -FcNCl/(NPr)₂VCl₄ and C_3 -FcNCl/(NPr)₂VCl₄ AORFBs, respectively. The capacity retention was equivalent to 99.9729% per cycle or 98.969% per day for C_1 -FcNCl/(NPr)₂VCl₄ AORFB, 99.9949% per cycle or 99.816% per day for C_2 -FcNCl/(NPr)₂VCl₄ AORFB and 99.9979% per cycle or 99.927% per day for C_3 -FcNCI/(NPr)₂VCl₄ AORFB.

No active material degradation and cross-over were observed in post-cycling ¹H-NMR and CV analysis for the C_2 -FcNCl/(NPr)₂VCl₄ and C_3 -FcNCl/(NPr)₂VCl₄ AORFBs after 500 charge/discharge cycles (Figures S18 – S22), which further verified the improved stability of the C_2 -FcNCl/(NPr)₂VCl₄ and C_3 -FcNCl/(NPr)₂VCl₄ AORFBs. However, a new peak at $\delta = 2.55$ ppm was observed in the ¹H-NMR spectrum of the cycled C_1 -FcNCl catholyte (Figure S16), which indicates the chemical degradation of C_1 -FcNCl during charge/discharge cycling. The degradation of C_1 -FcNCl catholyte was further confirmed by CV post-cycling analysis. As shown in Figure S22, there was an apparent current decrease for the cycled C_1 -FcNCl catholyte, however, the CV curve of cycled (NPr)₂VCl₄ anolyte was almost overlapped with the original anolyte. It indicates that the capacity fading of C_1 -FcNCl/(NPr)₂VCl₄ AORFB is mainly due to the decomposition of the C_1 -FcNCl catholyte.

2. Supporting Data

Scheme S1. Synthetic routes of the Cx-FcNCl compounds.

Figure S1. Conductivities of the C_x -FcNCl compounds in aqueous solutions. (A) Relationship between the concentration and ion conductivity of the C_x -FcNCl solutions. (B) Liner relationships between ion conductivity and concentration of C_x -FcNCl solutions from 10.0 mM to 200.0 mM.

Figure S2. Nicholson's treatment for evaluation of the electron transfer rate constants k^0 from the cyclic voltammetry (CV) data of C_x -FcNCl compounds. CV curves of 4.0 mM C_1 -FcNCl (A), C_2 -FcNCl (B), and C_3 -FcNCl (C) in 0.50 M NH₄Cl water solution at the scan rates of 5 – 500 mV·s⁻¹ at room temperature; (D) Plot of *i* vs. $v^{1/2}$ with scan rate range 20 – 100 mV·s⁻¹;(E) Plots of scan rate v vs. the peak-to-peak separation (ΔE_p); and (F) Plot of Ψ vs. $v^{-1/2}$.

Figure S3. RDE studies of C_x -FcNCl compounds in a 0.50 M NH₄Cl supporting electrolyte. (A) 1.0 mM C_1 -FcNCl; (B) C_2 -FcNCl; (C) C_3 -FcNCl; and (D) Plot of *i vs.* $\omega^{1/2}$.

Figure S4. Charge/discharge capacity and CE of the C_I -FcNCl half-cell AORFB for 585 cycles (13 testing days) at 40 mA cm⁻².

Figure S5. Charge/discharge capacity and CE of the C_2 -FcNCl half-cell AORFB for 527 cycles (13 testing days) at 40 mA cm⁻².

Figure S6. Charge/discharge capacity and CE of the C_3 -FcNCl half-cell AORFB for 508 cycles (13 testing days) at 40 mA cm⁻².

Figure S7. ¹H-NMR spectrum of C_I -FcNCl after the half-cell battery cycling.

Figure S8. ¹H-NMR spectrum of C_2 -FcNCl after the half-cell battery cycling.

Figure S9. ¹H-NMR spectrum of C_3 -FcNCl after the half-cell battery cycling.

Figure S10. Post-cycling CV analysis of the C_x -FcNCl half-cell batteries. (A) C_1 -FcNCl, (B) C_2 -FcNCl, and (C) C_3 -FcNCl.

Figure S11. Post-analysis of cycled electrode and membrane for C_I -FcNCl half-cell RFB. (A) Pictures of separator and electrode; and (B) EDS spectrum of the cycled carbon felt.

Notes for Figure S11 (B): In the EDS, 2.02 : 1 (54.1 : 26.8) weight ratio between Fe and O elementals was found. It is between 1.16 : 1 of Fe(OH)₃ and 2.33 : 1 of Fe₂O₃, which is due to the partial dehydration of Fe(OH)₃ during the EDS sample preparation (80 °C 2 h under vacuum). 15.7 % of C is from the carbon felt background.

Figure S12. Post-cycling analysis of the cycled electrode and membrane for C_2 -FcNCl and C_3 -FcNCl half-cell RFB. Pictures of separator and electrode for cycled C_2 -FcNCl (A) and C_3 -FcNCl (B) half-cell RFBs.

Figure S13. Full-cell RFB studies of the C_I -FcNCl/(NPr)₂VCl₄ AORFB. (A) Charge /discharge capacity versus cycling number from 10 to 50 mA·cm⁻². (B) Representative charge and discharge profiles under different current densities. (C) Coulombic efficiency (CE), energy efficiency (EE), and voltage efficiency (VE) under each current density. (D) Extended 500 cycles testing data at 40 mA·cm⁻². Condition: catholyte, 0.50 M C_I -FcNCl in 1.00 M NH₄Cl; anolyte, 0.50 M (NPr)₂VCl₄ in 1.00 M NH₄Cl; Selemion AMV anion-exchange membrane; pH was adjusted to 7.0 using diluted NH₃•H₂O or HCl; 25 °C.

Figure S14. Full-cell RFB studies of the C_2 -FcNCl/(NPr)₂VCl₄ AORFB. (A) Charge /discharge capacity versus cycling number from 10 to 50 mA·cm⁻². (B) Representative charge and discharge profiles under different current densities. (C) Coulombic efficiency (CE), energy efficiency (EE), and voltage efficiency (VE) under each current density. (D) Extended 500 cycles testing data at 40 mA·cm⁻². Condition: catholyte, 0.50 M C_2 -FcNCl in 1.00 M NH₄Cl; anolyte, 0.50 M (NPr)₂VCl₄ in 1.00 M NH₄Cl; Selemion AMV anion-exchange membrane; pH was adjusted to 7.0 using diluted NH₃•H₂O or HCl; 25 °C.

Figure S15. Full-cell RFB studies of the C_3 -FcNCl/(NPr)₂VCl₄ AORFB. (A) Charge/discharge capacity versus cycling number at 10 – 50 mA·cm⁻² current densities. (B) Representative charge and discharge profiles of the C_3 -FcNCl/(NPr)₂VCl₄ AORFB under different current densities. (C) Coulombic efficiency (CE), energy efficiency (EE), and voltage efficiency (VE) of the C_3 -FcNCl/(NPr)₂VCl₄ AORFB under each current density. (D) Extended 500 cycles testing data of the C_3 -FcNCl/(NPr)₂VCl₄ AORFB at 40 mA·cm⁻², (inset) representative charge and discharge profiles of selected cycles. Condition: catholyte, 0.50 M C_3 -FcNCl in 1.00 M NH₄Cl; anolyte, 0.50 M (NPr)₂VCl₄ in 1.00 M NH₄Cl; Selemion AMV anion-exchange membrane; pH was adjusted to 7.0 using diluted NH₃•H₂O or HCl; 25 °C.

Figure S16. ¹H-NMR spectrum of the C_I -FcNCl catholyte after 500 charge/discharge cycles of C_I -FcNCl/(NPr)₂VCl₄ AORFB.

Figure S17. ¹H-NMR spectrum of the $(NPr)_2VCl_4$ anolyte after 500 charge/discharge cycles of C_1 -FcNCl/(NPr)_2VCl_4 AORFB.

Figure S18. ¹H-NMR spectrum of the C_2 -FcNCl catholyte after 500 charge/discharge cycles of C_2 -FcNCl/(NPr)₂VCl₄ AORFB.

Figure S19. ¹H-NMR spectrum of the $(NPr)_2VCl_4$ anolyte after 500 charge/discharge cycles of C_2 -FcNCl/(NPr)_2VCl_4 AORFB.

Figure S20. ¹H-NMR spectrum of the C_3 -FcNCl catholyte after 500 charge/discharge cycles of C_3 -FcNCl/(NPr)₂VCl₄ AORFB.

Figure S21. ¹H-NMR spectrum of the $(NPr)_2VCl_4$ anolyte after 500 charge/discharge cycles of C_3 -FcNCl/(NPr)_2VCl_4 AORFB.

Figure S22. Post-cycling CV analysis of the C_x -FcNCl/(NPr)₂VCl₄ AORFBs. (A) C_1 -FcNCl/(NPr)₂VCl₄; (B) C_2 -FcNCl/(NPr)₂VCl; and (C) C_3 -FcNCl/(NPr)₂VCl₄ after 500 charge/discharge cycles.

Figure S23. UV-Vis stability studies of 0.4 mM C_I -FcNCl catholyte in water for 24 days. (A) Discharged state $[C_I$ -FcN]⁺ under dark; (B) Discharged state $[C_I$ -FcN]⁺ under ambient light exposure; and (C) Charged state $[C_I$ -FcN]²⁺ under ambient light exposure.

Figure S24. UV-Vis stability studies of 0.4 mM C_2 -FcNCl catholyte in 24 days. (A) Discharged state $[C_2$ -FcN]⁺ under dark; (B) Discharged state $[C_2$ -FcN]⁺ under ambient light exposure; and (C) Charged state $[C_2$ -FcN]²⁺ under ambient light exposure.

Figure S25. UV-vis stability studies of 0.4 mM C_3 -FcNCl catholyte in 24 days. (A) Discharged state $[C_3$ -FcN]⁺ under dark; (B) Discharged state $[C_3$ -FcN]⁺ under ambient light exposure; and (C) Charged state $[C_3$ -FcN]²⁺ under ambient light exposure.

Figure S26. GC-MS spectrum of the gas phase sample in the cycled *C*₁-FcNCl half-cell RFB.

Figure S27. The charge/discharge cycling data of 0.50 M C_1 -FcNCl half-cell RFB at 40 mA · cm⁻² current density under different O₂ levels.

Figure S28. UV-Vis stability studies of 0.4 mM C_I -FcNCl catholyte under N₂ and O₂ in 10 days. (A) Discharged state $[C_I$ -FcN]⁺ under dark in N₂ atmosphere; (B) Discharged state $[C_I$ -FcN]⁺ under dark in O₂ atmosphere; (C) Charged state $[C_I$ -FcN]²⁺ under dark in N₂ atmosphere; (D) Charged state $[C_I$ -FcN]²⁺ under dark in O₂ atmosphere.

Notes for Figure S28: In Figure 28B, the absorption at 625 nm showed no change during 10 days, which indicates the discharged state $[C_1$ -FcN]⁺ is not O₂ sensitive. In Figure 28C and 28D, the absorption decayed 18.6% under N₂ atmosphere and 24.3% under O₂, respectively, which indicates that O₂ can slightly accelerate the decomposition of charged state $[C_1$ -FcN]²⁺.

Figure S29. UV-Vis stability studies of 0.4 mM C_2 -FcNCl catholyte under N₂ and O₂ in 10 days. (A) Discharged state $[C_2$ -FcN]⁺ under dark in N₂ atmosphere; (B) Discharged state $[C_2$ -FcN]⁺ under dark in O₂ atmosphere; (C) Charged state $[C_2$ -FcN]²⁺ under dark in N₂ atmosphere; (D) Charged state $[C_2$ -FcN]²⁺ under dark in O₂ atmosphere.

Notes for Figure S29: In Figure 29B, an absorption peak at 630 nm showed up in 10 days, which means the discharged state $[C_2$ -FcN]⁺ is partially oxidized by O₂. In Figure 29C and 29D, the absorption decayed 13.7% under N₂ atmosphere and 13.3% under O₂, respectively, which indicates that charged state $[C_2$ -FcN]²⁺ is not O₂ sensitive.

Figure S30. UV-vis stability studies of 0.4 mM C_3 -FcNCl catholyte under N₂ and O₂ in 10 days. (A) Discharged state $[C_3$ -FcN]⁺ under dark in N₂ atmosphere; (B) Discharged state $[C_3$ -FcN]⁺ under dark in O₂ atmosphere; (C) Charged state $[C_3$ -FcN]²⁺ under dark in N₂ atmosphere; (D) Charged state $[C_3$ -FcN]²⁺ under dark in O₂ atmosphere.

Notes for Figure S30: In Figure 30B, an absorption peak at 630 nm showed an increase in 10 days, which means the discharged state $[C_3$ -FcN]⁺ is partially oxidized by O₂.

4. References:

(1) DeBruler, C.; Hu, B.; Moss, J.; Liu, X.; Luo, J.; Sun, Y.; Liu, T. L. Designer Two-Electron Storage Viologen Anolyte Materials for Neutral Aqueous Organic Redox Flow Batteries. *Chem* **2017**, *3*, 961-978.

(2) Hu, B.; Tang, Y.; Luo, J.; Grove, G.; Guo, Y.; Liu, T. L. Improved radical stability of viologen analytes in aqueous organic redox flow batteries. *Chemical Communications* **2018**, *54*, 6871-6874.

(3) Beh, E. S.; De Porcellinis, D.; Gracia, R. L.; Xia, K. T.; Gordon, R. G.; Aziz, M. J. A Neutral pH Aqueous Organic–Organometallic Redox Flow Battery with Extremely High Capacity Retention. *ACS Energy Letters* **2017**, *2*, 639-644.