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A Radiation profiles
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Figure A.1: Average annual capacity factor of solar radiation in Spain over the period 2010-
2019 and seasons defined in the RTN model.
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Figure A.2: Hourly capacity factors across the year over the period 2010-2019 and seasons
defined in the RTN model.
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Figure A.3: Capacity factor profiles for the 18 NUTS regions of Spain and adjustment to the
temporal resolution of the RTN model.

B Demand profile

Fig. [B.I] shows the annual number of operations per airport in Spain. Total demand of jet
fuel was allocated to each airport according to the relative number of operations. For daily
consumption, it was assumed that 85% of the demand was evenly fulfilled across the morning,

noon, and afternoon periods while the remaining 15% was fulfilled during the night period.”?
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Figure B.1: Number of operations per airport in Spain included in the RTN model and profile
of the RTN model.



C Airports used to define the minimum regional demand of
jet fuel

Table 1: Airports used to define the minimum regional demand of Jet Fuel in the RTN model.**

Airport Operations  Passengers  Status

ADOLFO SUAREZ MADRID-BARAJAS 387,568 53,400,844  Included
BARCELONA-EL PRAT 323,535 47,284,346  Included

PALMA DE MALLORCA 208,788 27,970,656  Included - Balearic Islands
MALAGA-COSTA DEL SOL 137,178 18,626,581  Included

GRAN CANARIA 118,551 13,092,475  Excluded - Canary Islands
ALICANTE-ELCHE 95,323 13,713,063  Included

IBIZA 75,691 7,903,928 Included - Balearic Islands
TENERIFE SUR 69,846 11,248,882  Excluded - Canary Islands
VALENCIA 68,042 6,745,231 Included

TENERIFE NORTE 61,102 4,706,827 Excluded - Canary Islands
LANZAROTE 59,477 7,388,964 Excluded - Canary Islands
SEVILLA 48,661 5,108,817 Included

JEREZ DE LA FRONTERA 48,627 1,046,549 Included
FUERTEVENTURA 48,216 6,049,291 Excluded - Canary Islands
BILBAO 46,990 4,973,809 Included
MADRID-CUATRO VIENTOS 46,568 3,341 Included

SABADELL 41,261 4,544 Included

MENORCA 30,293 3,434,615 Included - Balearic Islands
SANTIAGO 21,519 2,645,362 Included

GIRONA 19,254 1,946,694 Included

LA PALMA 17,757 1,302,485 Excluded - Canary Islands
A CORUNA 16,075 1,141,389 Included

REUS 16,023 1,018,889 Included

ASTURIAS 13,005 1,407,217 Included

FGL GRANADA-JAEN 12,539 901,967 Included

VIGO 12,479 1,065,595 Included

SON BONET 12,258 2,159 Excluded

ALMERIA 12,219 1,007,446 Included

SEVE BALLESTEROS-SANTANDER 10,989 937,643 Included

SALAMANCA 10,110 15,030 Excluded

MURCIA-SAN JAVIER 8,616 1,196,587 Included

VITORIA 8,435 84,261 Excluded

ZARAGOZA 7,965 438,035 Excluded

MELILLA 7,957 324,366 Excluded
HUESCA-PIRINEOS 7,758 257 Excluded

CORDOBA 7,756 8,064 Excluded

SAN SEBASTIAN 6,925 281,859 Excluded

PAMPLONA 5,683 165,608 Excluded

VALLADOLID 5,100 227,259 Excluded

EL HIERRO 4,190 199,380 Excluded - Canary Islands
CEUTA /HELIPUERTO 2,521 17,821 Excluded

BURGOS 2,366 5,953 Excluded

LEON 2,236 44,254 Excluded

BADAJOZ 1,865 49,304 Excluded

LA GOMERA 1,854 48,711 Excluded - Canary Islands
LOGRONO 1,447 20,008 Excluded

ALGECIRAS /HELIPUERTO 1,376 10,570 Excluded

ALBACETE 430 1,380 Excluded




D Accounting of CO; emissions

Fig. shows a scheme for the accounting of CO, emissions in the RTN model.
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Figure D.1: Lifecycle CO, emissions considered in the production of jet fuel.

The values associated to the carbon intensity of solar panels were taken directly from the
Ecoinvent database.” The infrastructure represents a photovoltaic power plant with a capacity
of 570 kWp and a lifetime of 30 years. It consists of a multi-crystalline silicon panel, an open
ground mounting structure, an 500 kW inverter (15 y lifetime) and a 570kWp electric instal-
lation. The process includes all the components for the installation and the energy used for
mounting. Electricity production is 847.5 MWh per year and amortisation assumes an extrap-
olation of current generation capacities up to the end of life.* In the case of CSP, the plant
considered in the database has a capacity of 50 MW and lifetime of 30 years. The elements
considered include collector field area, thermal storage unit, heat transport fluid system and

power block unit.”



E Results

Table 2] presents the production costs and CO, emissions embedded for all the cases considered.

As observed, the unitary production cost of the fuel and CO, emissions present a slight reduction

as the demand increases. The reason behind this behaviour is that non-scalable technologies

(solar PV, AWE, and storage technologies) have the larger contribution toward the indicators

and their contributions remain at similar values across the scenarios. At larger production rates,

scalable technologies benefit from economies of scale and reduce production costs by a slow

margin.

Table 2: Technology constraints and performance indicators for different deployment level of

Jet Fuel
FT MtF
10%  50% 100% 10%  50% 100%
Capacity constraints
Solar PV (GWh per cell) 2 10 20 2 10 20
AWE (t/h per cell) 20 100 200 20 100 200
Network performance
Investment (€x10%/y) 4 209 417 5 260 520
Prod. costs (€/kggyel) 5.03 497 495 3.97 391 391
Emissions (Mtcozeq/y) 2 11 23 3 16 32
Emissions (kgcozeq/kgfuel) 2.7 2.7 2.7 2.4 2.4 2.4




E.1 Fischer-Tropsch

Fig. [E.T|shows the cost breakdown for the FT route for different demands and annual behaviour

of the technologies deployed. Fig. [E.2]displays the corresponding network for each scenario.
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Figure E.1: Costs breakdown and technologies profile at different levels of supply of jet fuel de-
mand for the FT route during the periods defined in the network. The resources (blue) and tech-
nologies (green) are shown in the left depicting the hourly behaviour at night, morning, noon,
and afternoon for the three different seasons considered (summer, winter, and mid-season). The
values shown in each square refer to the production rate in terms of the total capacity installed,
which is reported in the middle bar. The red squares report the number of cells within the total
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Figure E.2: Network performance

route.
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E.2 Methanol to fuels

Fig. [E.3| shows the cost breakdown for the MtF route for different demands and annual be-
haviour of the technologies deployed. Fig. [E.4] and [E.5|display the corresponding network for

each scenario.
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Figure E.3: Costs breakdown and technologies profile at different levels of supply of jet fuel de-
mand for the FT route during the periods defined in the network. The resources (blue) and tech-
nologies (green) are shown in the left depicting the hourly behaviour at night, morning, noon,
and afternoon for the three different seasons considered (summer, winter, and mid-season). The
values shown in each square refer to the production rate in terms of the total capacity installed,
which is reported in the middle bar. The red squares report the number of cells within the total
space that have installed the corresponding technology.
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Figure E.4: Network performance at different levels of supply of jet fuel demand for the MtF

route.
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F Energy import scenarios

F.1 Fischer-Tropsch
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Figure F.1: Annual investment breakdown to produce jet fuel via Fischer-Tropsch including
carbon tax and allowing electricity import from the grid and heat from natural gas.
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12



Storage Electricity

Region with H; salt caverns
Total annual jet fuel consumption
6470 kton

Storage Hydrogen Storage Jet fuel

s ol
o e
Pontguedra Pontsiedra e
Yok S R @/
. Zononn o
. Segou 4 .
Salamanca
= A S Taragors
X . ‘ 2 ety .
on &/ Coséon
cseeres 0 P S
= "' h
ooz ). CutaaRea ‘
Badajoz Badaj Albacete 3 ra
¥ seanc sunes
¥ ootearc stanas : ) e 4
Fcoaoni |, foanadE% | pen” A
Huewa o Murcia)
sevile =
Sevile = Vel Y

cagii Region with H; salt caverns IRegion ith H; salt cavems

Total annual jet fuel consumption:
Total annual jet fuel consumption 6470 Kton
0 kton

Figure F.3: Location of storage facilities in the FT route allowing external electricity and heat.

Figure F.4: Transportation map of resources in the FT route allowing external heat and electric-
ity. Blue: Pipe transport; Red: Truck transport.

F.2 Methanol to fuels
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Figure F.5: Annual investment breakdown to produce jet fuel via MtF including carbon tax and
allowing electricity import from the grid and heat from natural gas.
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Figure F.6: Annual network performance to produce jet fuel via MtF with import of electricity
from the grid, heat from natural gas, and a carbon tax.
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Figure F.7: Location of storage facilities in the MtF route allowing external electricity and heat.



Figure E.8: Transportation map of resources in the MtF route allowing external heat and elec-
tricity. Blue: Pipe transport; Red: Truck transport.

F.3 Importing energy constraining emissions

Electricity is assumed to have a cost of 80 €/ MWh during the day and 30 €/MWh during
the night, releasing 360 kgcoz.(/MWh. However, the cost of electricity and its emissions are
expected to vary in the coming decades as the electricity mix decarbonises. According to the
EU reference scenario 20169, emissions from the energy sector are expected to decrease from 80
to 95% by 2050. In order to analyse the potential integration of the network with the electricity
grid, we now modify the cost and CO, emissions of the electricity being imported according to
Table . The cost reported is assumed to be the ‘day’ cost while the ‘night’ cost is reduced by
63%, as in the previous scenarios. Here, we also consider the technological improvements in PV
and AWE. As reported in the Jet Fuel Network section, the import of electricity results in fuels
with a higher lifecycle carbon footprint than those obtained from oil refineries. Given that the
main objective of the RTN model is to generate low-emissions fuels, in this sensitivity analysis

we constrain the CO, emissions of the liquid fuel to be equal or lower to those of the oil-based
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scenario (3.60 kgcooeq/kgsue). Therefore, the main objective of the analysis is to identify the
maximum amount of electricity that can be imported from the grid without resulting in a fuel
with worst carbon footprint. The RTN model is optimised in terms of the total cost including a

carbon tax of 54 €/tco,. Heat import from natural gas is also allowed.

Table 3: Capital costs forecast for electricity, PV, CSP and AWE

Year 2015 2020 2030 2050
PV cost (€/kWh) 1300 810 684 360
PV emissions (kgcozeq/kWh) 67.8 62 44 8
CSP cost (€/kWh) 7027 5765 3915 2882
CSP emissions (kgcozeq/kWh) 46.7 42.7 36.8 25.0
Elec cost (€/MWh) 80 100 100 100
Elec emissions (kgcozeq/kWh) 0.42 0.36 0.17 0.05
AWE cost (€/kWh) 1200 1000 750 500

Fig. shows the results for the production of jet fuel according to the cases presented
in Table [3] Fig. a)-b), we present the production cost and emissions per kg of fuel along
with the amount of electricity being imported from the grid. In Fig. c)-d), we show the
installed capacities of PV, AWE, and storage of electricity and hydrogen. Both routes present
again a similar behaviour. In the case of 2015, the production of 1 MWh of electricity via PV
and accounting for electricity storage is 285 €/MWh, while that of electricity from the grid
including the carbon tax is 102 € and 53 € for the day and night periods, respectively. In
consequence, the model imports as much electricity as possible (4% in FT and 10% in MtF)
until the limit of CO, emissions is reached. By 2020, the cost per MWh of electricity from the
network has reached 86 €/MWh, while that of electricity is now 120 and 57 €/MWh for the
day and night periods. Since the electricity mix is still cheaper than the system PV-Storage, and
its emissions are lower, a larger amount of electricity is imported (6% in FT and 15% in MtF).
By 2030, electricity from the grid is still cheaper, allowing a further import as its emissions

are expected to continue decreasing. The FT process shows an import of 28% reaching the 3.6
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kgco2eq/kgrel and a cost of 2.85 €/kgpe. In the MtF process, 53% of electricity is imported
releasing 1.6 kgcooeq/Kgrer at a cost of 1.71 €/kgpe;. Both routes show a reduction of installed
capacities of PV, AWE around 20% while storage reduces by approximately 75%. Finally, by
2050, the technological improvements of PV and AWE allow for a further reduction in costs and
CO, emissions while a maximum level of electricity import. In this scenario, the FT process
reaches productions costs of 1.9 €/kgs. and emissions of 2.14 kgcoreq/kgrer While the MtF

process reaches 1.7 €/kgge and 1.59 kgcozeq/Kgfuel-
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Figure F.9: Results for the sensitivity analysis over electricity price and CO, emissions for the
production of jet fuel. a-b): total cost per ton of fuel (left axis) and electricity import allowed
to maintain a maximum of 3.60 kgcoeq/kgruer (right axis). c-d): change in installed capacity of
technologies in the network.
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G Sensitivity analysis

G.1 Future costs of Solar electricity (PV and CSP) and AWE
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Figure G.1: Fuel cost and emissions according to forecast performance of PV, CSP and AWE.

G.2 Varying minimum operating load of AWE
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Figure G.2: Cost breakdown for the production of jet fuel at different minimum loads of AWE
over time. Minimum AWE operating load: AWE 30: 30%, AWE 20: 20%, AWE 10: 10%,
AWE 0: 0%, AWE 0 High H,: 0% and H, storage cost of 1200 €/kgys,.
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H Sustainable aviation fuels

H.1 Beyond solar Efuels

Table 4: Parameters used to calculate the cost and emissions of Sustainable Aviation Fuels

Concept 2020 2050
Electrolyser (€/kW) 500-1200 400-1000
Electricity consumption (kWh/kgyy) 50-85
Electricity cost

Solar PV (€/MWh) 60-200 10-50
Wind (/feuro/MWh) 45-120 20-70
Capacity factor Solar PV 0.2
Capacity factor Wind 0.5
Electricity CO; emissions

Solar PV (kgco2eq/MWh) 40-75 5-20
Wind (kgcozeq/MWh) 8-20 4-8
Conventional jet fuel cost 0.43-0.75
2014 - 2019 (€/kg) 0.8

BECCS costs of CO; avoided are reported in the range 15-250 €/tcop

H.2 Air flight ticket concepts

According to Airlines for America,” ‘The vast majority of the Cost Index is derived from quar-
terly financial and operational information collected by DOT (principally Form 41 reports), and
historical data may be restated as warranted. Neither the Cost Index nor its components are sea-
sonally adjusted because 1) users may find seasonal fluctuations of great interest and 2) leaving
the data unfettered allows users to impose adjustments of their own choosing. Consequently,
quarter-to-quarter movements in certain indices may be driven in part by the seasonality of the
variables used to compute them’.

Labour. Wages, employee benefits (e.g., annuity payments, educational, medical, recre-
ational and retirement programs) and payroll taxes (e.g., FICA, state and federal unemployment
insurance). General management, flight personnel, maintenance labour, and aircraft and traffic

handling personnel are all included in the calculation of labour costs.
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Table 5: Airlines for America U.S. Passenger Airline Cost Index (PACI): 4Q 2019.

Concept 9% OpEx
Fuel 17.7
Labour 32.9
Aircraft rent and ownership 6.7
non-aircraft rent and ownership 4.5
Professional services 8.6
Food and beverage 1.8
Landing fees 1.9
Maintenance material 1.4
Aircraft insurance 0.1
non-aircraft insurance 0.2
Passenger commission 0.8
Communication 0.8
Adbvertising and promotion 0.7
Utilities and office supplies 0.7
Transport related 12.8
Employee business 2.0
Other 6.5
TOTAL 100
Airport taxes +20%
Profit +15%

Fuel. Cost of aviation fuel used in flight operations, excluding taxes, transportation, storage
and into-plane expenses.

Aircraft Rents and Ownership. The cost of aircraft rentals, depreciation and amortization
of flight equipment, including airframes and parts, aircraft engine and parts, capital leases and
other flight equipment. Non-Aircraft Rents Ownership. Principally, the total cost of airport
terminal rents. Non-aircraft rents and ownership also includes the cost of hangars, ground
service/support equipment (GSE), storage and distribution equipment, and communication and
meteorological equipment.

Professional Services. The cost of legal fees and expenses (e.g., attorney fees, retainer fees,
witness expenses, legal forms, litigation costs), professional and technical fees and expenses

(e.g., engineering and appraisal fees, consultants, market and traffic surveys, laboratory costs),
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as well as general services purchased outside (e.g., aircraft and general interchange service
charges).

Food and Beverage. The cost of purchasing beverages and food, commissary supplies and
outside catering charges. Landing Fees. The cost of fees paid by the airlines to airports for
runway and airport maintenance.

Maintenance Material. The cost of maintaining and purchasing materials for airframes,
aircraft engines, ground property and equipment (excluding labor costs). Also includes the
costs of maintaining a shop and servicing supplies (e.g., automotive, electrical, plumbing, sheet
metal, small tools, glass and glass products, cleaning compounds).

Aircraft Insurance. The cost of flight equipment insurance, sometimes referred to as hull
insurance. Non-Aircraft Insurance. The cost of insurance unrelated to the hull itself. This
category is broken down by two categories: general insurance (i.e., buildings and contents,
materials and supplies, third party liability, passenger baggage and personal property) and traffic
liability insurance (i.e., passenger baggage and personal property, cargo liability and provisions
for self-insurance).

Passenger Commissions. The costs paid to passenger travel agencies for services.

Communication. The total cost of equipment and intercommunication rental and installation
charges, telephone and teletype equipment, telegraph and cable message charges and navigation
facility charges.

Advertising and Promotion. Includes the cost of producing tariffs, schedules, timetables and
other promotional and publicity expenses (e.g., television, radio, entertainment, photography,
graphics).

Utilities and Office Supplies. The cost of light, heat, power and water, stationary, printing
(e.g., labels, small signs, ticket stock, paper products, company manuals), shipping and mailing

supplies and other office supplies as well as cleaning compounds, safety, electrical, engineering,
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drafting, blue prints and photographic supplies.

Transport-Related Expenses. As defined by DOT, transport-related expenses are expenses
incurred for providing air transportation facilities associated with the performance of service
which emanate from and are incidental to air transportation services performed by the carrier.

Employee Business Expenses. Includes expenses incurred for travel, lodging, meals, en-
tertainment, membership fees/dues in professional or social clubs and associations. These ex-
penses are incurred by officers, executives, directors, and other personnel.

Other Operating Expenses. Includes the cost of miscellaneous expenses such as outside
flight equipment, excess of losses over insurance recoveries, interrupted trips expense, corporate
and fiscal expenses, uncollectible accounts, clearance customs and duties.

Interest. The total interest paid on long term debt, capital and other interest expenses. In-
cluded in this worksheet is the cost associated with average book debt outstanding and estimated

off-balance sheet debt.
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