Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Boosting Water Decomposition by Sulfur Vacancy for Efficient CO₂ Photoreduction

Shikang Yin^a, Xiaoxue Zhao^a, Enhui Jiang^a, Yan Yan^{a,*}, Peng Zhou^{b,*}, Pengwei Huo^{a,*}

^aInstitute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China,

^bDepartment of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA.

Supplementary Methods

Materials

Tin chloride pentahydrate (SnCl₄•5H₂O), L-cysteine (C₃H₇NO₂), sodium dodecyl benzenesulfonate (SDBS), ethanol (C₂H₅OH) and ethylene glycol (C₂H₆O₂) were all purchased from Sinopharm Chemical Reagent Co., Ltd. Heavy oxygen water (Saen Chemical Technology Co., Ltd., 99% atom purity). ¹³CO₂ (99%) gas was obtained from Sigma-Aldrich Company Ltd. All reagents used in the synthesis were analytically pure and had not been further purified.

Preparation of pristine SnS₂ atomic thin layer

Atomic-layered SnS_2 was synthesized through a modified protocol based on the report literature. In a typical synthetic procedure, $SnCl_4 \cdot 5H_2O$ (0.25 mmol), L-cysteine (2.5 mmol) and SDBS (0.8 mmol) were dissolved in deionized water (25 mL), stirred for 20 min, forming a homogeneous solution. The resulting solution was then transferred to a 50 mL autoclave and kept in 160 °C for 12 h. When the autoclave was cooled to room temperature, the final product was collected, washed with deionized water and ethanol for several times, and then freeze-dried in vacuum for further uses.

Preparation of Vs-SnS₂

 V_s -SnS₂ catalysts were prepared by bombarding the pristine SnS₂ atomic thin layer sample through Ar plasma sputtering. The pristine SnS₂ powder was first put into a quartz reactor and treated with dielectric barrier discharge plasma. After the reactor was evacuated, Ar gas was used as the reaction gas to maintain a certain flow rate. Plasma bombard was performed at room temperature with 100 W input power. Treated for 1 min, 3 min, 5min and 7 min, respectively, resulting samples were labeled as V_s -SnS₂ with different S-vacancy concentrations.

CO₂ Photoreduction experiments

 CO_2 photoreduction was carried out in a sealed self-made 300 mL stainless-steel reactor with a 300 W Xenon lamp (1000 mW·cm⁻²) as the white light source. In a typical procedure, 5 mg catalyst was dispersed in 5 ml of deionized water. The resulting mixture was dropped on quartz glass, and then dried at 60 °C. The dried catalyst was placed in the stainless-steel reactor with 2 mL H₂O. CO_2 was then introduced into the reactor for 20 min to completely remove air. During the reaction, Xenon lamp illuminated the catalyst sample through the quartz window (22.1 cm²). Gas products were detected by a gas chromatography (GC-7920, China) equipped with hydrogen flame ionization detector (FID).

Characterizations

Crystalline structures of catalysts were examined on an X-ray diffraction machine (XRD model MAC Science,

Japan). Elemental orbit information was investigated using X-ray photoelectron spectroscopy (XPS, PHI 5300, PerkinElmer). The scanning electron microscopy (SEM) images were characterized on a field emission scanning electron microscope (FE-SEM, JSM-7001F, Japan). High-resolution transmission electron microscopy (HRTEM), corresponding selected area electron diffraction (SAED) spectra, and scanning transmission electron microscopy with spherical aberration corrector (AC-STEM) were carried out on a JEM-2010 transmission electron microscope (Japan). The texture and thickness of samples were measured by atomic force microscopy (AFM, MFP-3D, America). The ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS) was carried out on a Shimadzu UV-3600 spectrometer. The S-vacancy concentration of samples was quantified by the inductively coupled plasma optical emission spectrometry (ICP-OES, 720, Agilent).

In-situ DRIFTS experiments

In-situ diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) experiments were conducted on a Nicolet iS10 (Thermo) machine. In a typical procedure, catalyst sample was sealed in the reaction chamber with a quartz window. CO_2 and H_2O were carried into the reaction chamber by N_2 flow until equilibrium. After taking the equilibrium system before reaction as the blank background, IR signals were collected *in-situ* during the incident irradiation of a 450 nm LED lamb (3W) through the quartz glass window.

Photo-electrochemical measurements

The corresponding electrode was prepared as follows: 0.03 g of the prepared photocatalyst was dispersed in 3.0 ml of ethanol and 0.03 ml of oleic acid, and then 0.01 g of polyvinylpyrrolidone (PVP) was added. The above mixture was spin-coated on a 1×1 cm² fluorine-doped tin oxide glass electrode, and then dried at room temperature. The measurement system includes a standard three-electrode quartz cells with 0.5 M Na₂SO₄ electrolyte solution, a Pt wire and a saturated calomel electrode (SCE) were used as the counter electrode and the reference electrodes, respectively. Electrochemical impedance spectroscopy was performed in a mixture solution (0.1 M potassium chloride, 0.005 M potassium ferricyanide and 0.005 M potassium ferrocyanide) with a frequency range from 0.1 Hz to 100 kHz at 0.5 V. The amplitude of applied sine wave potential in each case was 5 mV which was carried out using the Chen Hua electrochemical workstation, and all electrochemical signals were recorded by a CHI660 B electrochemical analyzer (Chen Hua Instruments, Shanghai, China).

Computational Methods

The OER process of SnS_2 were investigated by the Vienna Ab-initio Simulation Package (VASP) with the revised Perdew-Burke-Ernzerhof (RPBE) of the generalized gradient approximation (GGA). PAW pseudo-potential was used to describe the interaction between ionic and valence electrons. A 3×4 {001} supercell

containing one S-Sn-S layer was used to simulate SnS₂ surface. The cutoff energy of 1×10^{-4} eV and energy convergence of 400 eV were used in the geometry optimization. The S vacancy was built by removing one surface S atom. The reported standard hydrogen electrode (SHE) model (Nørskov J K, Rossmeisl J, Logadottir A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 2004; 108: 17886-17892) was adopted in the calculations of Gibbs free energy changes (Δ G) of all reaction steps, which was used to evaluate the reaction barrier. The chemical potential of a proton-electron pair, μ (H⁺) + μ (e⁻), is equal to the half of the chemical potential of one gaseous hydrogen, $1/2\mu$ (H₂), at U = 0 V vs SHE at pH = 0.

Supplementary Figures

Figure S1. (a, b) SEM image of pristine SnS₂; (c, d) AFM image and the line-sweep profile for pristine SnS₂.

Figure S2. (a) The integrated EPR spectra of pristine SnS_2 and the V_S -SnS₂ with different S-vacancy concentrations; (b) the linear fitting between ICP quantified S-vacancy and EPR quantified S-vacancy according to Table S1.

Figure S3. (a, b) AFM image and a thickness of between 1 nm and 2 nm for $V_{\rm S}$ -SnS₂ (23.07%), (c, d) TEM image of $V_{\rm S}$ -SnS₂ (23.07%); (e, f) corresponding Sn, S element mapping of $V_{\rm S}$ -SnS₂ (23.07%), respectively.

Figure S4. The N₂ adsorption-desorption isotherm measurements of the pristine SnS_2 and V_S-SnS_2 with different S-vacancy concentrations. Inset shows the BET surface area of different samples.

Figure S5. XRD patterns of the pristine SnS_2 and V_S -SnS₂ with different S-vacancy concentrations.

Fig. S6. (a, b) The UV-vis DRS spectrum and plots of $(ahv)^{1/2}$ versus of the pristine SnS₂ and different $V_{\rm S}$ -SnS₂ catalyst, respectively; (c) Valence band spectra of the pristine SnS₂ and $V_{\rm S}$ -SnS₂ (23.07%); (d, e, f, g, h) Mott-Schottky plots of the pristine SnS₂ and $V_{\rm S}$ -SnS₂ with different S-vacancy concentrations; (i) Band alignment of the pristine SnS₂ and $V_{\rm S}$ -SnS₂ (23.07%).

Fig. S7. The CO and H₂ evolution production for a complete reaction run in 5 hrs using the $V_{\rm S}$ -SnS₂(23.07%).

Figure S8. (a, b, c, d) Compared CO evolution performances of the pristine SnS_2 and V_S-SnS_2 with different S-vacancy concentrations, representing CO₂ photoreduction efficiencies. Error bar represents the standard deviation from three independent experiments.

Figure S9. Cyclic CO evolution profiles of the champion $V_{\rm S}$ -SnS₂ (23.07%) catalyst in 20 hrs.

Without H_2O Without catalysts Without CO_2

Figure S10. Control experiments in N₂ (without CO₂) or without photocatalysts or without H₂O for V_S-SnS₂ (23.07%) catalyst.

Figure S11. (a) Mass spectrum (m/z =29) analyses of ¹³CO when relacing CO₂ with ¹³CO₂ in the overall CO₂ photoreduction on the champion $V_{\rm S}$ -SnS₂ (23.07%) catalyst. (b) Mass spectrum (m/z =36) analyses of ¹⁸O₂ when replacing H₂O with H₂¹⁸O in the overall CO₂ photoreduction on the champion $V_{\rm S}$ -SnS₂ (23.07%) catalyst.

Figure S12. The comparison of O_2 production in overall CO_2 photoreduction on the pristine SnS_2 and V_S - SnS_2 (23.07%).

Figure S13. The kinetic profiles of 2339 cm⁻¹ (red) and 2269 cm⁻¹ (blue) correspond to 2303 cm⁻¹ (black) and 2380 cm⁻¹ (pink) from light-on to light-off, respectively, representing the reaction kinetics of CO_2 and corresponding intermediates.

Figure S14. The photocurrent response of transient and electrochemical impedance spectroscopy for the pristine SnS_2 and $Vs-SnS_2$ with different S-vacancy concentrations.

Fig. S15. (a, b) The comparison of CO and CH_4 evolution production for a complete reaction run in 5 hrs using the pristine SnS_2 and V_S -SnS₂ (23.07%), in which triethanolamine acts as a hole trap.

Figure S16. A 3×4 (001) supercell containing one S-Sn-S layer structural model for the $V_{\rm S}$ -SnS₂, the distance between two adjacent $V_{\rm S}$ sites in $V_{\rm S}^0$ -SnS₂, $V_{\rm S}^1$ -SnS₂ and $V_{\rm S}^2$ -SnS₂ are 9.40 Å, 3.14 Å and 6.27 Å, respectively (the dashed circle indexes the removed S atom position); Gibbs free energy maps of the OER process simulated on the surface of the $V_{\rm S}$ -SnS₂ with different $V_{\rm S}$ sites distance (where * represents the intermediate state).

Supplementary Tables

Sample	Plasma treatment time (min)	ICP measured	EPR quantitative	S/Sn atomic ratio	BET surface area	Band gap (Kubelka-Munk function)
pristine SnS ₂	0	0	0.01235	2.00	78.126	2.46
	1	0.13452	0.11951	1.82	80.024	2.44
Vs-SnS ₂	3	0.24674	0.23073	1.57	81.518	2.37
	5	0.38522	0.40384	1.33	82.367	2.35
	7	0.49326	0.49326	1.17	80.531	2.32

Table S1. ICP-OES characterization of pristine SnS_2 and the V_S -SnS₂.

EPR quantification data was obtained by the ICP characterization data proportional to the integrated absolute peak area of EPR spectra.

Table S2. AQEs of photoreduction CO_2 over V_S -SnS₂ under different wavelengths.

Wavelength (nm)	400	420	450	500	550
CO evolution (µmol)	0.108	0.598	2.278	1.427	0.124
Light intensity (mW·cm ⁻²)	6.34	3.06	8.70	9.54	11.02
Irradiation area (cm ²)	22.1	22.1	22.1	22.1	22.1
Irradiation time (h)	5	5	5	5	5
AQE (%)	0.013	0.028	0.035	0.018	0.007

Reaction condition: 1 mg/ml V_{s} -SnS₂ solution dropwise to the quartz glass, and dry in an oven at 60 °C, 2 mL distilled water. All reaction was carried out at room temperature.

When λ =400 nm:

The number of incident photons:

$$N = \frac{E\lambda}{hc} = \frac{6.34 \times 22.1 \times 10^{-3} \times 5 \times 3600 \times 400 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^8} = 5.05 \times 10^{21}$$

AQE:

$$AQE = \frac{2 \times the number of evolved CO molecules}{N} \times 100\% = \frac{2 \times 6.02 \times 10^{23} \times 100\%}{5.05 \times 100\%}$$