Supporting Information

Plasma-Induced Large-Area N,Pt-Doping and Phase Engineering of MoS₂ Nanosheets for Alkaline Hydrogen Evolution

Yan Sun,^{+a} Yipeng Zang,^{+c} Wenzhi Tian,^a Xujiang Yu,^a Jizhen Qi,^d Liwei Chen,^{a,b,d} Xi Liu,^{*,b} and Huibin Qiu^{*,a}

^d CAS Centre for Excellence in Nanoscience Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, P. R. China

⁺ These authors contributed equally to this work

^a Department State Key Laboratory of Metal Matrix Composites, Frontiers Science Centre for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China E-mail: hbqiu@sjtu.edu.cn.

^{b.}In-situ Centre for Physical Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China Email: liuxi@sjtu.edu.cn.

^c State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China

Figure S1. (A) SEM and (B) TEM images of MoS₂ nanosheets synthesized directly on CCs through a hydrothermal method. The interlayer distance (0.64 nm) corresponds to the 2H phase of MoS₂. (C) SEM, (D) TEM and (E, F) HRTEM images of MoS₂ nanosheets treated in N₂ plasma for 2 h.

Figure S2. AFM height images and corresponding height profiles of (A) N-MoS₂ and (B) N,Pt-MoS₂ nanosheets. The samples were sonicated in ethanol and then the resulting dispersions were drop-casted on silicon wafers for AFM analysis.

Figure S3. XPS spectra of Mo 3d for (A) N-MoS₂ and (B) N,Pt-MoS₂ nanosheets before and after Ar^+ etching for 1 h under photon energy of 1486.6 eV.

Figure S4. (A and B) XPS spectra of (A) S 2p and (B) Pt 4f for MoS_2 , N-MoS₂, and N,Pt-MoS₂ nanosheets. (C and D) XPS spectra of N 1s for N-MoS₂ and N,Pt-MoS₂ nanosheets before and after Ar⁺ etching for 50 s under photon energies (1486.6 eV). (E and F) XPS spectra of N 1s for N-MoS₂ and N,Pt-MoS₂ nanosheets before and after Ar⁺ etching for 50 s and 1 h.

Figure S5. (A) Raman and (B) XPS spectrta of Mo 3d for N,Rh-MoS₂, N,Ru-MoS₂, and N,Pd-MoS₂ nanosheets.

- ,				
electrocatalyst	Electrolyte	Overpotential at	Tafel slop	Reference
		10 mA cm ⁻² (mV)	(mV dec ⁻¹)	
N,Pt-MoS ₂	1.0 M KOH	38	39	This work
1T-MoS ₂ /NiS ₂	1.0 M KOH	116	72	#1
Co-MoS ₂	1.0 M KOH	48	52	#2
N,Mn-MoS ₂	1.0 M KOH	66	50	#3
1T-MoS ₂ /CoS ₂	1.0 M KOH	71	60	#4
1T-MoS ₂	1.0 M KOH	250	67	#5
Fe-MoS ₂ /CoMo ₂ S ₄	1.0 M KOH	122	90	#6
MoS ₂ -NiS ₂ /N-graphen	1.0 M KOH	172	70	#7
Ru-MoS ₂	1.0 M KOH	41	114	#8
MoS ₂ /Co ₉ S ₈ /Ni ₃ S ₂ /Ni	1.0 M KOH	113	85	#9

Table S1. Electrochemical performances comparison of $N,Pt-MoS_2$ nanosheets with the ever-reported MoS_2 -based catalysts in alkaline condition.

Table S2. Electrochemical performances comparison of N,Pt-MoS₂ nanosheets and previously reported Pt-based catalysts.

Electrocatalyst	Electrolyte	Overpotential at 10	Tafel slop	Reference
		mA cm⁻² (mV)	(mV dec ⁻¹)	
N,Pt-MoS ₂	1.0 M KOH	38	39	This work
Pt/Fe₅Ni₄S ₈	1.0 M KOH	65	44	#10
PtNi-O/C	0.1 M KOH	40	79	#11
MoO _x /Pt	1.0 M KOH	-	54	#12
Ni-MOF@Pt	1.0 M KOH	102	88	#13
PtNi NWs/C	1.0 M KOH	40	-	#14
Pt/Ni(HCO ₃) ₂	1.0 M KOH	44	45	#15
Pt-MoS ₂	0.5 M H ₂ SO ₄	50	40	#16
Pt@PCM	0.5 M H ₂ SO ₄	105	63	#17
Pt SA/m-WO _{3-x}	0.5 M H ₂ SO ₄	38	45	#18
Pt-MoS ₂	0.1 M H ₂ SO ₄	~150	96	#19

Figure S6. Mass activity of Pt atoms of N,Pt-MoS₂ nanosheets in comparison with 20% Pt/C catalyst for HER.

Figure S7. CV curves at different various scan rates of (A)MoS₂, (B)N-MoS₂, and (C) N,Pt-MoS₂ nanosheets in 1.0 M KOH solution at the potential range of 0.223 to 0.423 V (*vs.* RHE).

Figure S8. (A) TEM images, (B) Raman spectra, XPS spectra of (C) Mo 3d and (D) Pt 4f for N,Pt-MoS₂ nanosheets after cycling 240 h.

Figure S9. Chronopotentiometry measurement of N,Pt-MoS₂ nanosheets at a current density of 10 mA cm⁻² in 1.0 M KOH aqueous solution for a continuous period of 1000 h.

Figure S10. (A) TEM, (B) HRTEM images, (C) Raman spectra, (D) XRD and XPS spectra of (E) Mo 3d and (F) Pt 4f for N,Pt-MoS₂ nanosheets after cycling 1000 h.

The N,Pt-MoS₂ nanosheets may have three possible lattice structures (Figure S11). Amongst, lattice I possessed the lowest formation energy (Table S3) and was consequently adopted for further calculation.

Figure S11. Three possible lattice structures of N,Pt-MoS₂ nanosheets.

Table S3. Formation energy of different lattice structures of N,Pt-MoS₂ nanosheets.

Structures I		II	III	
Formation energy (eV)	-582.01	-581.40	-581.67	

Figure S12. Optimized atomic configurations of top-view and side-view structures of (A) MoS₂, (B) N-MoS₂ and (C) N,Pt-MoS₂ nanosheets.

Figure S13. PDOS distribution of (A) MoS_2 , (B) N- MoS_2 , and (C) N,Pt- MoS_2 nanosheets.

Figure S14. PDOS distribution of S atoms in MoS_2 , N- MoS_2 , and N,Pt- MoS_2 nanosheets.

We compared water absorption on different sites of the N-MoS₂ nanosheets (Figure S15). Water absorption on S site near the N dopant revealed the most negative energy (I, Table S4) and was consequently adopted for further calculation.

Figure 15. Water adsorption on different sites of N-MoS₂ nanosheets.

Table S4. Energy of water adsorption on different sites of $N-MoS_2$ nanosheets.

Sites	I	Ш	Ш	IV
Water adsorption energy (eV)	-1.39	-0.98	-0.80	-1.30

In order to reveal the actual active sites, we compared the energies of water absorption and dissociation on a series of possible active sites of the N,Pt-MoS₂ nanosheets. Based on the atomic configurations of the N,Pt-MoS₂ nanosheets, six different sites for water absorption were considered (Figure S16). Amongst, water absorption on S site between N and Pt atoms (Figure S16I) possessed the most negative energy (Table S5) and was consequently adopted for further water absorption calculation. Meanwhile, since water dissociation is a rate-determine step for HER, we also compared the relative energy diagram along the reaction coordinate on different active sites of the N,Pt-MoS₂ nanosheets (Figure S18). Amongst, S site between N and Pt atoms (Figure S17I) also possessed lowest water dissociation energy (Table S6) and was therefore chosen S as the actual active sites.

Figure S16. Water adsorption on different sites of N,Pt-MoS₂ nanosheets.

Table S5. Energy of water adsorption on different sites of N,Pt-MoS₂ nanosheets.

Sites	I	П	Ш	IV	V	VI
Water adsorption energy (eV)	-1.71	-0.89	-1.43	-0.59	-1.04	-1.30

Figure S17. Water adsorption on different sites of N,Pt-MoS₂ nanosheets.

Figure S18. Relative energy diagram along the reaction coordinate on different sites of N,Pt-MoS₂ nanosheets in Figure S17.

 $\label{eq:second} \textbf{Table S6.} \ \text{Max energy barrier for water dissociation from different sites of $N,Pt-MoS_2$ nanosheets.}$

Sites	I	П		IV
Max water dissociation energy barrier (eV)	0.95	1.20	1.11	1.06

Figure S19. Optimized top-view and side-view structures of (A) MoS₂, (B) N-MoS₂, and (C) N,Pt-MoS₂ nanosheets with water adsorbed on the surface.

Figure S20. Top and side view of electron density difference with water molecules adsorbed on (A) MoS₂, (B) N-MoS₂, and (C) N,Pt-MoS₂ nanosheets.

Figure S21. Zoom-in relative energy diagram along the reaction coordinate of N-MoS₂, Pt-MoS₂, and N,Pt-MoS₂ nanosheets.

Table S7. Integration areas of overlap part between S orbital and water molecule below Fermi level.

Sample	Area (number of states)		
MoS ₂	1.13		
N-MoS ₂	1.08		
N,Pt-MoS ₂	0.91		

References

- 1 X. Chen, Z. Wang, Y. Wei, X. Zhang, Q. Zhang, L. Gu, L. Zhang, N. Yang and R. Yu, *Angew. Chem. Int. Ed.*, 2019, 58, 17621-17624.
- 2 Q. Xiong, Y. Wang, P. F. Liu, L. R. Zheng, G. Wang, H. G. Yang, P. K. Wong, H. Zhang and H. Zhao, *Adv. Mater.*, 2018, **29**, 1801450.
- 3 T. Sun, J. Wang, X. Chi, Y. Lin, Z. Chen, X. Ling, C. Qiu, Y. Xu, L. Song, W. Chen and C. Su, ACS Catal., 2018, 8, 7585-7592.
- 4 Y. Feng, T. Zhang, J. Zhang, H. Fan, C. He and J. Song, *Small*, 2020, **16**, 2002850.
- 5 S. Park, C. Kim, S. O. Park, N. K. Oh, U. Kim, J. Lee, J. Seo, Y. Yang, H. Y. Lim, S. K. Kwak, G. Kim and H. Park, *Adv. Mater.*, 2020, **32**, 2001889.
- 6 Y. Guo, J. Tang, J. Henzie, B. Jiang, W. Xia, T. Chen, Y. Bando, Y. M. Kang, M. S. A. Hossain, Y. Sugahara and Y. Yamauchi, ACS Nano, 2020, 14, 4141-4152.
- 7 P. Kuang, M. He, H. Zou, J. Yu and K. Fan, Appl. Catal. B- Environ., 2019, 254, 15-25.
- 8 D. Wang, Q. Li, C. Han, Z. Xing and X. Yang, Appl. Catal. B- Environ., 2019, 249, 91-97.
- 9 Y. Yang, H. Yao, Z. Yu, S. M. Islam, H. He, M. Yuan, Y. Yue, K. Xu, W. Hao, G. Sun, H. Li, S. Ma, P. Zapol and M. G. Kanatzidis, *J. Am. Chem. Soc.*, 2019, **141**, 10417-10430.
- 10 C. Zhang, Y. Cui, Y. Yang, L. Lu, S. Yu, Z. Meng, Y. Wu, Y. Li, Y. Wang, H. Tian and W. Zheng, *Adv. Funct. Mater.*, 2021, **31**, 2105372.
- 11 Z. Zhao, H. Liu, W. Gao, W. Xue, Z. Liu, J. Huang, X. Pan and Y. Huang, J. Am. Chem. Soc., 2018, 140, 9046-9050.
- 12 X. Yu, E. C. Dos Santos, J. White, G. Salazar-Alvarez, L. G. Pettersson, A. Cornell and M. Johnsson, *Small*, 2021, 2104288.
- 13 K. Rui, G. Zhao, M. Lao, P. Cui, X. Zheng, X. Zheng, J. Zhu, W. Huang, S. X. Dou and W. Sun, *Nano Lett.*, 2019, **19**, 8447-8453.
- 14 P. Wang, K. Jiang, G. Wang, J. Yao and X. Huang, Angew. Chem. Int. Ed., 2016, 128, 13051-13055.
- 15 M. Lao, K. Rui, G. Zhao, P. Cui, X. Zheng, S. X. Dou and W. Sun, Angew. Chem. Int. Ed., 2019, 131, 5486-5491.
- 16 X. Huang, Z. Zeng, S. Bao, M. Wang, X. Qi, Z. Fan and H. Zhang, Nat. Commun., 2013, 4, 1-8.
- 17 H. Zhang, P. An, W. Zhou, B. Y. Guan, P. Zhang, J. Dong and X. W. D. Lou, Sci. Adv., 2018, 4, 6657.
- 18 J. Park, S. Lee, H. E. Kim, A. Cho, S. Kim, Y. Ye, J. W. Han, H. Lee, J. H. Jang and J. Lee, *Angew. Chem. Int. Ed.*, 2019, **58**, 16038-16042.
- 19 J. Deng, H. Li, J. Xiao, Y. Tu, D. Deng, H. Yang, H. Tian, J. Li, P. Ren and X. Bao, *Energy Environ. Sci.*, 2015, **8**, 1594-1601.