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1. Experimental Section

Material Synthesis: The Zn@In anode was prepared by the chemical substitution method, and the 
procedure was as follows: InCl3•4H2O (0.59 g) was dispersed in ultra-pure water (100 mL) at room 
temperature. Then, the Zn plate (100 μm, 10 cm x 10 cm) polished was immersed in the obtained 
solution for 5 minutes to obtain the Zn@In plate. After that, the obtained Zn@In plate was washed 
with ultra-pure water and ethanol, respectively. Finally, the Zn@In plate was cut into the suitable 
size discs (Φ10 mm and Φ14 mm) or strips (1 cm x 2 cm) as electrodes.
Materials Characterization: X-ray diffraction (XRD) patterns of different electrodes were collected by 
a Bruker D2 PHASER diffractometer using Cu Kα (λ = 1.541 Å) from 10o to 80o. Scanning electron 
microscopy (SEM) and corresponding EDS elemental mapping images were obtained from a scanning 
electron microscope (FEI Quanta650 FEG). The confocal laser scanning microscope (CLSM) images 
were collected by the Keyence VK-X200K microscope. The contact angle was measured by Kruss DSA 
100. The in-situ optical images were obtained on the optical microscope (OLYMPUS BX51) by using a 
homemade optical cell.
Cell assembling: The Zn||Zn symmetric cells were assembled using Zn plates with a diameter of 10 
mm or 14mm and thickness of 0.1 mm. The glass fiber separators (GF/A, Φ = 16 mm, Whatman) and 
2 M ZnSO4 was used as separator and electrolyte respectively. The Zn/MnO2 full cells were 
assembled similarly. MnO2 nanofibers were prepared by the way reported.[1] Active material (MnO2), 
Ketjen black, and binder (PTFE) were mixed at a weight ratio of 7:2:1 and formed slurry using 
isopropanol. Then the slurry was coated on a Ti plate (Φ10 mm) and dried at room temperature for 
12 h. After that, the obtained electrodes were the cathode of the Zn/MnO2 full cells. Meanwhile, 2 M 
ZnSO4 + 0.1 M MnSO4 were used as the electrolyte.
Electrochemical measurements: The CV data and linear sweep voltammetry (LSV) measurements 
were conducted on a CH Instruments electrochemical workstation (CHI 760e). Among them, LSV 
measurements were carried out in 1 M Na2SO4 at a sweep rate of 5 mV s−1 from −1.1 V to −2.1 V, 
where Zn plates (1 x 2 cm2) were used as the working electrode and the counter electrode at the 
same time and the saturated calomel electrode (SCE) was used as the reference electrode. 
Galvanostatic charge-discharge and chronopotentiometry tests were performed on a LAND system. 
Besides, the chronopotentiometry was achieved with Zn plate as the working electrode, counter 
electrode, and reference electrode at 1 mA cm−2 for 1 h in 2 M ZnSO4 aqueous electrolyte. The 
electrochemical impedance spectroscopy (EIS) data was recorded on the Solartron Electrochemical 
Interface SI 1287 and SI 1260.
Calculation methods: HER behavior on Zn (101) and In (101) surfaces were investigated by analyzing 
the free energy of hydrogen adsorption. The energies of all adsorption models were computed by 
Vienna Ab-initio Simulation Package (VASP). [2] Pseudopotentials and the projector-augmented wave 
methods were used to simulate the electron-ion interaction. [3, 4] All calculations were done with 
Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA) and the projected 
augmented wave (PAW) method based on periodically repeated slab models. [5, 6] 450eV and 
0.02eV/Å were set as the cut-off energies for plane waves and the convergence tolerance of force on 
each atom during structure relaxation, respectively.
The free energy of hydrogen adsorption at equilibrium is calculated as
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With

Where  refers to the energy of a free gas-phase H2 molecule;  and  are energies 

of a clean Zn (101) or In (101) slab and an H@Zn (101) or H@In (101) slab, respectively.  
represents the gap of the zero point energy for the adsorbed state and the gas phase. Given the 

vibrational entropy of H* in the adsorbed state is small, the adsorption entropy of 1/2 H2 is ΔSH ≈- 
1/2 S0

H2, where S0
H2 is the entropy of H2 in the gas phase under standard conditions. All the 

corrections are taken together in
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2. Supplementary Figures and Table

Fig. S1. Images of contact angles on different electrodes.

Fig. S2. a) XRD pattern of Zn@In. b) Phase diagrams of Zn with indium. [7] 
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Fig. S3. XRD patterns of commercial Zn foil, bare Zn and Zn@In after plating.
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Fig. S4. SEM images of Zn deposits evolution at different growth states along with different 
deposition capacities at a current density of 2 mA cm−2 on Zn@In anode.
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Fig. S5. Optical microscope images of the a) bare Zn and b) Zn@In after plating at a current density of 
2 mA cm−2 for 1 h at different magnifications.

Fig. S6. SEM images of bare Zn a) after plating; and b) after stripping at the selected current density.
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Fig. S7. Top-view SEM and corresponding EDS elemental mapping images of Zn@In.

Fig. S8. Cross-section SEM images of a) bare Zn and b) Zn@In anode.
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Fig. S9. CLSM optical images for bare Zn after 30 cycles.

Fig. S10. The voltage hysteresis profiles of a) bare Zn and b) Zn@In at selected current density.

Fig. S11. Long-term galvanostatic cycling performance of Zn||Zn symmetric cells at a) 1 mA cm−2 for 
1 mAh cm−2; and b) 2 mA cm−2 for 1 mAh cm−2; c)the corresponding voltage hysteresis profiles of bare 
Zn and Zn@In at the current density of 2 mA cm−2.
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Fig. S12. a) SEM images and b) XRD patterns of the prepared MnO2.

Fig. S13. Optical images and corresponding SEM images of a) bare Zn and b) Zn@In after 300 cycles.
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Table S1 Comparison in voltage hysteresis and cycling life between our Zn@In electrode and 
previously reported Zn metal electrodes on Zn symmetric cells.

Sample Electrolytes
Current density

areal capacity

Voltage 

hysteresis at 1st 

cycle

Cycling 

life 
Reference

Zn@In 2 M ZnSO4

1 mA cm−2 

0.5 mAh cm−2 ;
1 mA cm−2 

1mAh cm−2 

18 mV
9400 h;
2000 h

This work

Nano-CaCO3-coated 

Zn

3 M ZnSO4

+ 0.1 M MnSO4

1 mA cm−2  
0.1 mAh cm−2 

70 mV 80 h
Adv. Energy Mater. 

2018, 8, 1801090.

MXene-coated Zn 2 M ZnSO4
1 mA cm−2 

1 mAh cm−2 
100 mV 150 h

Angew. Chem. Int. Ed. 

2020, 60, 2861.

502-coated Zn 2 M ZnSO4
0.5 mA cm−2 

0.25 mAh cm−2 
50 mV 800 h

Energy Storage Mater. 

2021, 36, 132.

Indium hydroxide 

sulfate-coated Zn
3 M ZnSO4

1 mA cm−2 

0.5 mAh cm−2 
40 mV 700 h

J. Am. Chem. Soc. 

2021, 143, 3143.

Montmorillonite-

coated Zn
2 M ZnSO4

1 mA cm−2 

0.25 mAh cm−2 
45 mV 1000 h

Adv. Energy Mater. 

2021, 11, 2100186.

Nafion-Zn-X-coated 

Zn
2 M ZnSO4

1 mA cm−2  

0.5 mAh cm−2 
~30 mV 1000 h

Angew. Chem. Int. Ed. 

2020, 59, 16594.

NaTi2(PO4)3-coated 

Zn
2 M ZnSO4

1 mA cm−2 

1 mAh cm−2 
~45 mV 260 h

Adv. Funct. Mater. 

2020, 30, 2004885.

F-TiO2-coated Zn 0.5 M Zn(CH3COO)2
1 mA cm−2 

1 mAh cm−2 
20 mV 460 h

Nat. Commun. 2020, 

11, 3961.

Zn|In 2 M ZnSO4
1 mA cm−2 

1 mAh cm−2 
120 mV 500 h

Small 2020, 16, 

2001736.

C-coated Zn 2 M ZnSO4
1 mA cm−2 

1 mAh cm−2 
100 mV 400 h

Adv. Energy Mater. 

2020, 10, 1904215.

ZnF2-coated Zn 2 M ZnSO4
1 mA cm−2 

1 mAh cm−2 
~30 mV 800 h

Adv. Mater. 2021, 33, 

2007406.

COF-coated Zn 2 M ZnSO4
1 mA cm−2 

1 mAh cm−2
36 mV 420 h

Adv. Mater. 2021, 33, 

2101726.
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