Supporting information

Realizing High Thermoelectric Performance in Non-nanostructured n-type PbTe

Baohai Jia, ^{ab} Yi Huang, ^a Yan Wang, ^a Yeshiyuan Zhou, ^a Xiaodie Zhao, ^c Suiting Ning, ^c Xiao Xu, ^a

Peijian Lin, ^a Zhiquan Chen,^c Binbin Jiang, ^{*a} Jiaqing He, ^{*ab}

^aShenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.

^bGuangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China.

^cHubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072, China.

1. Calculation of room-temperature Hall carrier mobility as a function of the carrier concentration

The Hall mobility can be expressed as:

$$\mu_{\rm H} = \frac{e\tau_0 F_{-\frac{1}{2}}(\eta)}{2m^* F_0(\eta)},$$
(1)

where e is a quantity of unity charge, m^{*} is the effective \hbar mass of the charge carriers. $F_n(\eta)$ is Fermi integral calculated from specific reduced chemical potential, $\eta = E_F/kT$. τ_0 is the relaxation time, which is related to the energy in the case of acoustic phonon scattering, and can be defined as

$$\tau_0 = \frac{\pi \hbar^4 C_{11}}{\sqrt{2} E_{def}^2 (m^* kT)^{3/2}},$$
(2)

in n-type PbTe, C_{11} =105.3 GPa and E_{def} =24 eV, the former is a combination of elastic constant and the latter denotes the deformation potential and describes the carrier scattering strength by acoustic phonons.

The parameter η is a specific reduced chemical potential, which can be deduced from the Hall chargecarrier concentration

$$n_{\rm H} = 4\pi \left(\frac{2{\rm m}^* {\rm kT}}{{\rm h}^2}\right)^{3/2} \frac{\frac{F_{-1}(\eta)}{2}}{r_{\rm H}},$$
(3)

where $r_{\rm H}$ is the Hall factor and defined as

$$r_{\rm H} = \frac{3}{2} F_1(\eta) \frac{1}{2} \frac{1}{2} F_0^2(\eta) \frac{1}{2} F_0^2(\eta)$$
(4)

2. The XRD, thermoelectric properties, and hall measurements of iodine doping PbTe

Figure S1. XRD patterns for samples of PbTe_{1-x}I_x ($x = 0 \sim 0.006$).

Figure S2. Temperature-dependent thermoelectric properties of $PbTe_{1-x}I_x$ (x =0 ~ 0.006), (a) electrical conductivity, (b) Seeebeck coefficient, (c) power factor, (d) total thermal conductivity, (e) lattice thermal conductivity, (f) *zT* value.

Figure S3. Hall measurements of $PbTe_{1-x}I_x$ ($x = 0 \sim 0.005$).

Figure S4. XRD patterns for samples of PbTe_{0.997-y}I_{0.003}S_y ($y = 0 \sim 0.02$).

Figure S5. (a) Room temperature carrier concentration dependent Hall carrier concentration of n-type PbTe in this work compared to those reported in the literature [1-3], (b) The band structure and the density of states of S doped n-type PbTe.

Table S1. The power factor, lattice thermal conductivity, *ZT* value, of n-type PbTe-based materials with different dopants

	Max PF	Min κ_l	Max ZT
	$(\mu Wm^{-1} K^{-2})$	$(Wm^{-1}K^{-1})$	<i>T</i> (K)
PbTe _{0.987} S _{0.01} I _{0.003} (This work)	28.7	0.47	1.73, 800
$Pb_{0.995}Sn_{0.005}Te_{0.847}Se_{0.15}I_{0.003}^{[39]}$	26	0.55	1.2, 673
]			
PbTe: Gd-4%Cu ₂ Te ^[34]		~0.4	1.7, 773
PST81-0.6Sb-2Cu ₂ Te ^[53]	17.5	~0.45	1.6, 823
(PbTe) _{0.93} (SnSe) _{0.07} ^[21]	23	0.45	1.4, 800
Pb _{0.98} Ga _{0.02} Te ^[31]	35	0.78	1.34, 773
PbTe _{0.998} I _{0.002} -3%Sb ^[32]	31	0.6	1.8, 773
PbTe-2%Cu ₂ Te ^[38]	32	~0.5	1.5, 723
PbTe-4%InSb [33]	22	~0.3	1.83, 773
Pb _{1.01} Te-0.4%I-3%Ge ^[40]	27	0.78	1.31, 723

Table S2. The conversion efficiency of devices made of different materials

hasia motorial	η (%), ΔT (K)				
Dasic material	Single module	Segmented module			
PbTe, this work	9.3, 560	12.2, 510			
PbTe [54]	8.9, 570	11.02, 570			
PbSe [13]	/	12.3, 510			
PbS [50]	8.07, 560	11.05, 583			
Half-Heusler [55]	/	12.41, 698			
skutterudite [57]	/	12.0, 541			
PbTe [S1]	8.5, 590	12, 590			
PbTe-TAGS [S2]	6, 410	/			
skutterudite [S3]	8.4, 577	/			
skutterudite [S4]	8.0, 550	/			

4. Intensity profile of the line and HAADF images of PbTe and PbTe $_{0.98}S_{0.02}$ after grinding in liquid nitrogen

Figure S6. Intensity profile of the line shown in Fig 3 (a).

Figure S7. HAADF images of PbTe and $PbTe_{0.98}S_{0.02}$ after grinding in liquid nitrogen

m different parts	in different parts of the same sample.							
PbTe -	Elements	# 1	# 2	# 3	#4	# 5	# 6	Averag
								e
	Pb	49.141	49.938	49.633	49.327	49.403	49.129	49.4285
	Te	50.859	50.062	50.367	50.673	50.597	50.871	50.5715
	Pb	49.973	49.784	49.894	49.731	50.035	49.646	49.8438
$PbTe_{0.98}S_{0.02}$	Te	49.297	49.767	49.434	49.692	49.344	49.824	49.5596
	S	0.73	0.449	0.672	0.577	0.622	0.53	0.5965

Table S3. The actual composition of PbTe and $PbTe_{0.98}S_{0.02}$ characterized by EPMA, the data are obtained from different parts of the same sample.

Figure S8. The formation energy of Pb vacancy (V_{Pb}), Te vacancy (V_{Te}) and antisite (Pb_{Te}) under different S content in Pb-rich and Te-rich PbTe.

5. The XRD and thermoelectric properties of $PbTe_{1-y}S_y$

Figure S9. XRD patterns for samples of PbTe_{1-y}S_y ($y = 0 \sim 0.02$).

Figure S10. Temperature-dependent thermoelectric properties of $PbTe_{1-y}S_y$ ($y = 0 \sim 0.02$), (a) electrical conductivity, (b) Seeebeck coefficient, (c) power factor, (d) total thermal conductivity, (e) lattice thermal conductivity, (f) zT value.

6. The XRD, low magnified TEM image of the PbTe_{0.997}I_{0.003}-2%Pb and thermoelectric properties of PbTe_{0.997}I_{0.03}-z%Pb

Figure S11. (a) XRD patterns for samples of PbTe_{0.997}S_{0.003}-*z*%Pb ($z = 0 \sim 0.03$), (b) and (c) The low magnified TEM image of the PbTe_{0.997}I_{0.003}-2%Sb sample and element mapping, which shows that there is Pb precipitation with a size of 5mm in the material.

Figure S12. Temperature-dependent thermoelectric properties of $PbTe_{0.997}I_{0.003}$ -z%Pb ($z=0 \sim 0.03$), (a) electrical conductivity, (b) Seeebeck coefficient, (c) power factor, (d) total thermal conductivity, (e) lattice thermal conductivity, (f) zT value.

Table S4 The carrier concentrations, electrical conductivities, Seebeck coefficients, carrier mobilitys, totalthermal conductivities, lattice thermal conductivities and zT values of PbTe_{0.987}S_{0.01}I_{0.003} and PbTe_{0.997}I_{0.003}-1%Pb.

Sample	$n_{\rm e} \times 10^{19}$	σ	S	μ	$\kappa_{\rm tot}/\kappa_{\rm lat}$	zT
	(cm^{-3})	(Scm^{-1})	(µV K ⁻¹)	$(cm^2V^{-1}s^{-1})$	$(Wm^{-1}K^{-1})$	
$PbTe_{0.987}S_{0.01}I_{0.003}$	4.88	3399	-82.10	435	1.05/0.498	1.73
PbTe _{0.997} I _{0.003} -1%Pb	5.49	3767	-77.55	428	1.20/0.53	1.51

7. The complete results of single and segmented module

Figure S13. The measurements of single-stage thermoelectric module, (a) voltage, (b) output power, (c) heat flow, and (d) conversion efficient.

Figure S14. The measurements of segmented thermoelectric module, (a) voltage, (b) output power, (c) heat flow, and (d) conversion efficient.

References

- [S1] P. Jood, M. Ohta, A. Yamamoto and M. G. Kanatzidis, Joule, 2018, 2, 1339–1355.
- [S2] A. Singh, S. Bhattacharya, C. Thinaharan, D. K. Aswal, S. K. Gupta, J. V. Yakhmi and K. Bhanumurthy,J. Phys. D: Appl. Phys., 2009, 42, 015502.
- [S3] P. Zong, R. Hanus, M. Dylla, Y. S. Tang, J. C. Liao, Q. H. Zhang, G. J. Snyder and L. D. Chen, Energy Environ. Sci., 2017, 10, 183–191.
- [S4] J. Q. Guo, T. Ochi, S. Suzuki, M. Kikuchi, Y. Yamaguchi and S. Ito, J. Electron. Mater., 2012, 41, 1036– 1042