Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2022

Supporting Information For

The low overpotential regime of acidic water oxidation part II: Trends in metal and oxygen stability numbers

Authors: Soren B. Scott^{1†}, Jakob E. Sørensen¹, Reshma R. Rao^{2†}, Choongman Moon^{1‡}, Jakob Kibsgaard¹, Yang Shao-Horn², and Ib Chorkendorff^{1*}

Contents:

- 1. Overview of isotope-labeling studies in the OER literature
- 2. Elaboration of lattice oxygen definition
- 3. More annotated EC-MS-ICPMS plots
- 4. Ir dissolution and lattice oxygen reactivity in CO oxidation
- 5. Additional LEIS results
- 6. ICP-MS calibration curves
- 7. Additional isotope tracking plots (database contents)

1. Overview of isotope-labeling studies in the OER literature

Table S1. Overview of isotope-labelling experiments to probe lattice oxygen evolution in OER electrocatalysis. Expanded from the compilation in ref. ^[1] *Table 3.1, where there is further discussion.*

Material	Sample	Sample	Electrolyte	Experiment &	Result	Citation
	Preparation	Labeling	_	Detection		
PtO _x	On Teflon DEMS	EC	Natural 0.5 M	LSV & DEMS	No excess ¹⁸ O	Willsau, 1985 ^[2]
	membrane	oxidation in	H_2SO_4 or 1.0		evolved	
	~ 1	98% H ₂ ¹⁸ O	MKOH		~	
Ru and RuO ₂	Sputtered on	Natural	0.5 M H2SO4	CVs & DEMS	Some excess	Wohlfahrt-
	Tetlon DEMS		$10.90\% H_2^{10}O$		¹⁶ O evolved	Mehrens,
II. In the second second	Thermol decomm	Natural	1 M UCIO4 in	CVa & DEMS	>1 ML avaaga	198/ ^[3]
Hydrous IrO _x	of HIrCl, on Ti	Natural	10% H ₂ ¹⁸ O		$^{16}\Omega$ evolved	^[4] (reproduced in
	of fine 16 on Th		10/0112 0		0 evolved	$R_{0V} = 2018^{[5]}$
Nanocrystalline	(co-)dep. on Ti	Natural	0.1 M HClO4	CVs & DEMS	Some excess	Macounova.
RuO_2 and	mesh and		in 98% H ₂ ¹⁸ O		¹⁸ O at high n	2009 ^[6]
$Ru_{0.9}Ni_{0.1}O_{2-\delta}$	annealed		2		81	
Molecular	Electrodep. CO ²⁺	~87% ¹⁸ O	Natural	CP & integral	7-15% of ¹⁸ O	Surendranath,
Cobaltate Clusters	in labeled	from synth.	phosphate	headspace	loading evolved	2010 ^[7]
	phosphate buf.		buffer			
AuO _x	Au oxidized at 2.0	~98 % ¹⁸ O	Natural 1 M	LSV & OLEMS	$\sim 1 \text{ ML}^{18}\text{O}_2$	DiazMorales,
D 0 (110)	$V in 98\% H_2^{18}O$	from synth.	HClO ₄		evolved	2013[8]
RuO_2 : p.c., (110),	Sputter dep. at	Oxidized in	Natural 0.1 M	CVs & OLEMS	Little to no	Stoerzinger,
(100), (101),	$400^{\circ}C$ (p.c.) or as	98% H ₂ ¹ °O	KOH or 0.1 M		excess ¹⁶ O	2017[9]
(111) Seriesl Co. O	received (s.c.)	Natural	H_2SO_4	CVa & DEMS	evolved	Amin 2017[10]
Spiner C0 ₃ O ₄	As-received	Naturai	10% H ₂ ¹⁸ O		¹⁶ O evolved	Amm, 2017.10
Spinel Co ₂ O ₄	As-received	Natural	0.5 M KOH in	CVs & DEMS	12% ML excess	Amin 2017 ^[10]
Spiner 00304		1 (attill	$10\% \text{ H}_2^{18}\text{O}$		¹⁶ O evolved	111111, 2017
LaCoO ₃	Solid-state	Oxidized in	Natural 0.1 M	CVs & OLEMS	Little to no	Grimaud,
	synthesis	98% H ₂ ¹⁸ O	КОН		excess ¹⁸ O	2017[11]
					evolved	
$La_{0.5}Sr_{0.5}CoO_{3-\delta}$,	Solid-state	Oxidized in	Natural 0.1 M	CVs & OLEMS	Some excess	Grimaud,
$Pr_{0.5}Ba_{0.5}CoO_{3-\delta}$	synthesis	$98\% H_2^{18}O$	КОН		¹⁸ O evolved	2017[11]
SrCoO _{3-δ,}						D 0010[5]
$N_{10.75}Fe_{0.25}O_xH_y$	Electrodep.	Natural	0.1 M KOH in	CVs & chip EC-	<< 0.1% lattice	Roy, 2018 ^[3]
111m 7 mm	Cluster course	(A) Naturali	$98\% H_2^{10}$ U	MS CVa & ahin EC	C evolution	Day 2019[5]
ViFeO H	den: (A) metallic:	(A) Natural;	(A) 0.1 M KOH in 08%	MS I FIS	C evolution	Koy, 2018 ¹⁰
nanoparticles	(B) $F C$ ox in	50% ¹⁸ O by	$H_{2}^{18}O$ (B and		0 evolution	
nanopurcieros	$H_2^{18}O^{-}(C)$ ox in	LEIS	C) Natural 0.1			
	$\sim 99\% {}^{18}O_2$		M KOH			
IrO ₂	Sputter dep. with	~ 99% ¹⁸ O	Natural 0.1 M	CP at 25	Little to no	Geiger, 2018 ^[12]
	99% ¹⁸ O ₂	from synth.	HClO ₄	mA/cm ² & SFC-	excess ¹⁸ O	
				OLEMS, SFC-	evolved	
				ICP-MS		
IrO _x ·yH ₂ O / IrO ₂	Sputter dep.	~97-99%	Natural 0.1 M	CP at 25	Some excess	Geiger, 2018 ^[12]
	$Ir^{18}O_2$, cycled in	¹⁸ O from	HClO ₄	mA/cm ² & SFC-	¹⁸ O evolved	
	9/% H ₂ ¹ O	synth.		ULEMS, SFC-		
IrO.	Sputter den with	~ 00% 180	Natural 0.1 M	ICT-IVIS	Little to po	Kasian 2010[13]
102	99% ¹⁸ O ₂	from synth	HClO	15 and 25	excess ¹⁸ O	Kasiaii, 2019.00
		inom synui.		$mA/cm^2 \& SFC-$	evolved	

				OLEMS, SFC-		
				ICP-MS		
IrO _x ·yH ₂ O / IrO ₂	Sputter dep. Ir,	~97% ¹⁸ O	Natural 0.1 M	LSV, CP at (10,	~50, 90, and	Kasian, 2019 ^[13]
	cycled in 97%	from synth.	HClO ₄	15, 25) mA/cm ²	120 (~2, 3, 5)	
	H ₂ ¹⁸ O			& SFC-	pmol/cm ² /s	
				OLEMS, SFC-	excess ¹⁸ O	
				ICP-MS	evolved (Ir	
					dissolved)	
NiO _x H _v ,	Layered double	Oxidized in	Natural 0.1 M	CA at 1.65 V _{RHE}	Most ¹⁸ O	Lee, 2019 ^[14]
NiCoO _x H _v	hydride single-	97 % H ₂ ¹⁸ O	КОН	& Raman	exchanged for	
	sheet growth	_			¹⁶ O	
NiFeO _x H _v ,	Layered double	Oxidized in	Natural 0.1 M	CA at 1.65 V _{RHE}	Little to no	Lee, 2019 ^[14]
NiFeCoO _x H _v	hydride single-	97 % H ₂ ¹⁸ O	КОН	& Raman	exchange of ¹⁸ O	
	sheet growth					
IrO ₂	Sputter dep. with	~ 99% ¹⁸ O	Natural 0.1 M	CP at 1 mA/cm ²	3.5% ML of ¹⁸ O	Schweinar,
	99% ¹⁸ O ₂	from synth.	HClO ₄	& on-line ICP-	exchanged for	2020 ^[15]
				MS, ATP	$^{16}\text{O} > 0.2-0.3\%$	
					ML Ir dissolved	
IrO ₂	Sputter dep. with	~ 99% ¹⁸ O	Natural 1.0 M	CP at 0.25	0.07 (0.3)	Scott, 2021 ^[16]
	99% ¹⁸ O ₂	from synth.	HClO ₄	mA/cm ² & chip	pmol/cm ² /s	
				EC-MS	excess 18 O in O ₂	
					(CO ₂)	
IrO _x / Ir	Sputter dep. Ir	~ 97% ¹⁸ O	Natural 1.0 M	CP at 0.25	0.3 (3.0)	Scott, 2021 ^[16]
	metal oxidized in	from synth.	HClO ₄	mA/cm ² & chip	pmol/cm ² /s	
	97 % H ₂ ¹⁸ O			EC-MS	excess 18 O in O ₂	
					(CO ₂)	
IrO _x ·yH ₂ O / IrO ₂	Sputter dep.	~ 97-99%	Natural 1.0 M	CP at 0.25	2.3 (16)	Scott, 2021 ^[16]
	Ir ¹⁸ O ₂ , cycled in	¹⁸ O from	HClO ₄	mA/cm ² & chip	pmol/cm ² /s	
	97% H ₂ ¹⁸ O	synth.		EC-MS	excess ¹⁸ O in O ₂	
					(CO ₂)	
PtO _x / Pt	Pt metal oxidized	$\sim 97\% \ {}^{18}\text{O}$	Natural 1.0 M	CP at 0.25	0.4 (~0.3)	Scott, 2021 ^[16]
	in 97 % H ₂ ¹⁸ O	from synth.	HClO ₄	mA/cm ² & chip	pmol/cm ² /s	
				EC-MS	excess ¹⁸ O in O ₂	
					(CO ₂)	
RuO _x and IrO _x	Sputter dep. with	$\sim 90\% \ {}^{18}\text{O}$	Natural 0.1 M	CP at (0.05,		This work
	99% ¹⁸ O ₂	on surface	HClO ₄	0.15, 0.5)		
		by LEIS.		mA/cm2 & chip		
				EC-MS, LEIS,		
				ICP-MS		

Figure S1. Categorization system of oxygen atoms, described below. The rendering in (b) is from Rao et al, 2017.

- An oxygen atom in a water + metal oxide electrocatalytic OER system can be mapped according to the following characteristics:
 - Coordinated: covalently or ionically bound to a metal atom or covalently bound group of atoms which is bound to a metal atom.
 - Oxide: doubly coordinated, i.e. two formal bonds with metal atoms.
 - Bulk: Inaccessible to the water molecules of the electrolyte
 - Trackable: in the metal oxide which stays in the metal oxide when it is in electrolyte without an applied potential. In other words, oxygen that can retain an isotopic label without reduction of the metal oxide or OER.
 - We further propose the following definitions based on these terms (Figure S1)
 - o Bulk lattice oxygen: Oxygen atoms which are coordinated, trackable, and bulk
 - Surface lattice oxygen: Oxygen atoms which are coordinated and trackable but not bulk
 - Adsorbed oxygen: Oxygen atoms which are coordinated but not trackable
- Based on the above definitions, and the fact that dissolution of a metal atom can reduce the coordination environment of neighboring oxygen atoms, we reason that:
 - Proof of surface lattice oxygen evolution requires $n_0 > n_{diss}$
 - \circ Proof of bulk lattice oxygen evolution requires $n_O > n_{diss}$ and $n_O > n_{ML}$
- Thus, isotope labeling studies must be quantitative to be useful. We can map out all prior studies according to these conditions (main-text Figure 1).

3. More annotated EC-MS-ICPMS plots

Figure S2. Isotope-tracking plots for OER at 0.5 mA/cm² for four samples: (a) s-25°C Ru¹⁸O₂ i.e. RuO₂ sputter-deposited in plasma containing ¹⁸O₂ (the same data as Figure 1b), (b) RuO_x/Ru i.e. a metallic Ru film electrochemically oxidized in labeled electrolyte (c) s-25°C Ir¹⁸O₂ and (d) Ir¹⁸O_x.yH₂O, a hydrous amorphous film formed by potential cycling of s-25°C Ir¹⁸O₂ in labeled electrolyte. The top panel of each plot shows the average metal dissolution rate between sampling times, as measured by ICP-MS. Vertical blue lines indicate electrolyte sampling times (electrolyte was only sampled at the end for Ru¹⁸O_x/Ru). The middle panel shows in-situ mass spectrometry data on two axes scaled by the natural ¹⁶O¹⁸O/¹⁶O₂ ratio of 0.4%, such that an isotope signal is seen when the red 16018O trace (plotted on the left y-axis) lies above the black ¹⁶O₂ trace (right y-axis). The bottom panel shows electrochemical current and potential (reference electrode contact was lost towards the end for RT-Ir¹⁸O₂, but the applied current was not affected). Integral values for dissolution and lattice oxygen evolution and average values for steady potential are indicated.

4. Ir dissolution and lattice oxygen reactivity in CO oxidation

Figure S3. Dissolution (top panels) and lattice oxygen reactivity (middle panels) during a CO oxidation experiment (electrochemical data in bottom panel) on s-25°C IrO₂. The electrolyte is saturated with CO through the chip from ~1600 s until ~3800 s. The ¹⁸O-containing isotopes C¹⁶O¹⁸O (m/z=46) and ¹⁶O¹⁸O (m/z=32) are plotted against the left y-axis while ¹⁶O₂ (m/z=32) and C¹⁶O₂ (m/z=44) are plotted against the right y-axis. Like Figure 2, the axes are scaled according to the natural isotopic ratio so that any increase of the purple trace (C¹⁶O¹⁸O) above the brown trace (C¹⁶O₂), like any increase of the red trace (¹⁶O¹⁸O) above the black trace (¹⁶O₂) is a sign of lattice oxygen incorporation in the respective electrochemical product. See Figure S3 for the raw data.

As a highly interesting side note, we wish to briefly comment on a reaction that we believe shows "True lattice oxygen evolution" as defined in Figure 1, but which is excluded from that figure because the lattice oxygen is evolved in CO_2 rather than in O_2 . In reference ^[16], we showed that lattice oxygen can, under the right conditions, react with carbon monoxide (CO) in electrochemical CO oxidation. Since the reaction reduces the sample, it could also be called an electrochemically assisted reduction of the metal oxide with carbon monoxide. In that work, we showed that several monolayers of ${}^{18}O$ from an IrO₂ sample could be evolved in CO₂. However, we did not measure metal dissolution.

Figure S3 shows the results of a CO oxidation experiment with a labeled Ir¹⁸O₂ sample in unlabeled electrolyte. (The same experiment was not successful for Ru¹⁸O_x, which showed no oxidation of CO under these conditions.) The mass spectrometry signals for isotopically labeled and unlabeled electrochemical products are plotted on left and right y-axes, respectively, which are scaled according to the natural ratio of ¹⁸O¹⁶O to ¹⁶O₂, which is also the natural ratio of $C^{18}O^{16}O$ to $C^{16}O_2$, such that trackable oxygen in the CO_2 manifests itself as the purple trace ($C^{18}O^{16}O$) rising above the brown trace ($C^{16}O_2$). Starting from the left, the Ir¹⁸O₂ sample is subject to 20 minutes of OER in He-saturated electrolyte (note that $n_{diss} < n_O <<1$ ML) before CO is introduced at ~2200 s. Then the sample is scanned to 0 V_{RHE} as is necessary to "activate" the surface for CO oxidation and back up to $0.8 V_{RHE}$ before settling on 0.75 V_{RHE} . The CO₂ signal contains a strong isotopic signal, much stronger than had been observed during OER. Some dissolution is also observed, likely due to the cathodic scan in the same electrolyte sampling interval, as a cathodic scan is known to corrode IrO₂. However, trackable oxygen evolution in CO_2 exceeds metal dissolution by at least a factor 3. Together with our previous work, this establishes that for CO reaction with Ir¹⁸O₂, we can have $n_O > n_{diss}$ and $n_O > 1$ ML.

The reaction of CO reaction with $Ir^{18}O_2$ is also interesting because, together with the OER results, it sheds light on which states of oxygen on the surface of iridium oxides can promote lattice oxygen reactivity. Specifically, trackable oxygen can enter reactive surface states at the potential of CO oxidation, 0.7-0.8 V_{RHE}, even if it is relatively unreactive in surface states at the high potentials needed for oxygen evolution >1.23 V_{RHE}. These potential ranges fit with *OH being oxygen-activating species, because *OH is expected to be on the surface at 0.7-0.8 V_{RHE} but not at OER potentials where the dominant state is expected to be *O (ref. ^[17]). This is the last piece of the puzzle needed to assemble a combined mechanistic picture of water oxidation, metal dissolution, and trackable oxygen evolution.

Figure S4 (a-b) LEIS results for all samples. (a) Fitting results for individual spectra (b) Sample types grouped, marker and error bar are mean and standard deviation. (c-d) additional fitted sample spectra. Note that sputter deposition at higher temperature results in higher ${}^{16}O/{}^{18}O$ ratios in the as-prepared samples, likely due to contaminant O_2 degassing from the sputter deposition chamber. (e-f) limiting of other labeling procedures. (e) Thermal labeling: oxidizing a Ru film in 1802 creates an 18-O label (green), but exposure to air adds a 16-O label indicating the oxidation was incomplete. (f) Electrochemical labeling: cycling an RuOx film in 18-O incorporates >50% 18-O into the surface (blue), but the label is likewise "skin-deep", and is removed by sputtering away ~1 ML with argon (red).

6. ICP-MS calibration curves

Figure S5 Calibration curves for ICP-MS detection of (a) Ir and (b) Ru. The top x-axes represents the amount of metal originally in a sample from the EC-MS setup, and is scaled to the bottom x-axis according to the equation below. The dashed black line is the mean number of counts in blank measurements, and the dotted black line is that mean plus three times the standard deviation of the number of counts in the blank measurement. The detection limit, dened as where the latter intercepts the calibration curve, is indicated with a green vertical line.

For ICP-MS collection, the electrolyte in the cell is sucked out with a syringe while new electrolyte flows in from an electrolyte delivery tower. The old electrolyte stored in an Eppendorf tube and the syringe is re-inserted. This results in electrolyte samples of ~0.5 ml in Eppendorf tubes. For study with ICP-MS, the raw samples are first diluted to a standard volume of 1 ml with 2% HNO₃, 0.1 ml of this is then diluted to 10 ml with 2% HNO₃, which is the ICP-MS sample. The concentration of this ICP-MS sample is then as if all of the metal dissolved during the experiment were diluted in 100 ml. The amount of metal n^i (typically stated in pmol) can then be determined from its mass concentration c_m^i in the ICP-MS sample (typically stated in µg per l which is numerically equivalent to ppb) by

$$n^i = 100 \,[\mathrm{ml}] \frac{c_m^i}{M^i} \,,$$

where M^i is the molar mass of element *i*.

To determine c_m^i from the raw signal (in counts) requires calibration. A dilution series (typically 0.1, 1, 10, and 100 µg/l) is prepared from a standard stock solution. These are measured together with the samples and intervening measurements a blank solution (2% HNO₃ in water with no metals). The calibration curve is made by drawing a line of best fit through the counts vs concentrations of this dilution series on a log-log plot (the slope of this line should be 1).

7. Additional isotope tracking plots (database contents)

See https://github.com/ixdat/LowOverpotentialRegime

Figure S6. Ru¹⁸O₂ sputter deposited at RT

Figure S7. Ru¹⁸O₂ sputter deposited at 400 C

Figure S8. $Ru^{18}O_2$ cycled in $H_2^{18}O$

Figure S9. Ir¹⁸O₂ sputter deposited at RT

Figure S10. Ir¹⁸O₂ sputter deposited at 400 C

Sputtered at RT

Figure S11. $Ir^{18}O_2$ cycled in $H_2^{18}O$

Figure S12. Electrochemically labelled Ru foam

Figure S13 Electrochemically grown 180 oxide layers

Figure S14. Ru¹⁶O₂ control (one of many controls)