Supporting information:

Metals in microplastics: determining which are

additive, adsorbed, and bioavailable

Charlotte Catrouillet^{a*}, Mélanie Davranche^a, Imane Khatib^a, Corentin Fauny^a, Aurélie Wahl^a, Julien Gigault^{a,b*}.

^aUniv. Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France ^bTAKUVIK CNRS/ULaval, UMI3376, Université Laval, Quebec City, QC, Canada

*Corresponding authors: julien.gigault@takuvik.ulaval.ca and charlotte.catrouillet@univrennes1.fr

Section S1: Materials and methods

Quantitative analyses were performed using a conventional external calibration procedure (7 external standard multi-element solutions were purchased from Inorganic Venture, USA). A 300 ppb mixed solution of rhodium and rhenium was injected with the sample in-line in the nebulizer. This solution was used as an internal standard for all measured samples, to correct any instrumental drift and matrix effects. Calibration curves were calculated based on the intensity ratios between the internal standard and the analysed elements. An SLRS-6 water standard was used to check the accuracy of the measurement procedure.

The matrix of reference materials (ERM-EC 680 and ERM-EC 681) is composed of polyethylene supplemented with various concentrations of inorganic additives including As, Cd, Cr, Pb and Zn. Concentrations were validated for As (-0.56 and 9.26% of error), Cd (-1.04 and 0.82%), Cr (-0.8 and 3.16% of error), Pb (10.19 and 3.54% of error) and Zn (-0.68 and - 7.75% of error).

Element	Isotope	Mode	<1000	< 100 ppb	< 10 ppb	<1 ppb	<0,5ppb	< 0,1 ppb
			ppb	ppb	ppb	ppb	ppb	ppb
Al	27	No Gas	3%	5%	5%	5%	5%	10%
V	51	He	3%	5%	5%	5% 5%		10%
Cr	52	He	3%	5%	5%	5% 5%		10%
Cr	53	He	3%	5%	5%	5%	5% 5%	
Mn	55	He		3%	3%	5%	5%	10%
Fe	56	He	3%	5%	5%	10%		
Fe	57	He	3%	5%	5%	10%		
Со	59	He		3%	3%	5%	5%	10%
Ni	60	He		3%	3%	5%	5%	10%
Ni	62	He		3%	3%	5%	5%	10%
Cu	65	He	3%	3%	3%	5%	5%	10%
Zn	66	No Gas		3%	3%	5%	5%	10%
Zn	66	He	3%	3%	3%	5%	5%	10%
As	75	He		3%	3%	5%	5%	10%
Cd	111	No Gas		3%	3%	5%	5%	10%
Ва	138	No Gas	3%	3%	3%	3%	5%	10%
Pb	208	No Gas			3%	3%	5%	10%

Table S1: Quantification limit of the ICP-MS.

Figure S1: Distribution of the microplastics' composition analyzed by FTIR.

Section S2: Identification of the elements nature

Due to their similar chemical behaviour, Fe and Mn concentrations in water are usually related by a linear relationship. Interestingly, Fe and Mn also show this linear relationship in all the coloured microplastics, except for the grey and black microplastics (Figure S1a). There are three factors that lead us to state that Fe and Mn are present as sorbent elements in all samples, except for the grey and black sample: (i) to our knowledge, Fe is used as an additive only as an inorganic pigment (Table S1 and 2), (ii) Mn is used only as an inorganic pigment for the grey colour (Table S1 and 2), and (iii) Fe and Mn concentrations are linearly linked. Similarly, a linear relationship is highlighted between Al and Mn concentrations, except for the orange microplastics (Figure S1b and c). Both microplastics samples (grey and black for Mn and orange for Al) could, therefore, be additives. Comparing the S values of Al, Mn and Fe (Figure S2a)), those two samples present high S values. We can thus identify elements as additives based on their S values.

Figure S2 : Linear relationship between (a) Fe and Mn and (b) AI and Mn concentrations with the orange microplastics and (c) without the orange microplastics. d) S values obtained from acidic leaching and digestion for AI, Fe, Zn, Ba, Cu, Pb, Cd, Mn, Ni, Cr, As and V elements; high S values indicate these are additives in microplastics.

Figure S3: Element concentrations measured in the acidic leachate after total acidic digestion. Red rectangles highlight the high differences in extraction concentrations.

Section S3: Tables

Table S2: Summary of elements that are used as pigments. Most of the data comes from the Internet site https://colourlex.com/pigments/pigments-colour/.

Colour	Name of the pigment	Composition				
		YIn _{1-x} Mn _x O ₃				
	Han Blue	BaCuSi ₂ O ₆				
	Egyptian blue	CaCuSi ₄ O ₁₀				
	Blue Verditer	2CuCO ₃ ·Cu(OH) ₂				
	Manganese Blue	BaMnO₄·BaSO₄				
Blue	Vivianite	$Fe_3(PO_4)_2 \cdot 8H_2O$				
	Cerulean Blue	CoSnO₃				
	Prussian Blue	Fe ₄ [Fe(CN) ₆] ₃ ·xH ₂ O				
	Smalt	contain Co				
	Azurite	2CuCO ₃ ·Cu(OH) ₂				
	Cobalt Blue	CoAl ₂ O ₄				
	Ultramarine	$Na_7Al_6Si_6O_{24}S_3$				
	Pompeiian Red	Iron oxide + clay and quartz				
	Chrome Red	PbO PbCrO ₄				
	Cadmium Red	Cd(S,Se)				
Red	Red Lead	Pb ₃ O ₄				
	Red Ochre	Hematite (Iron oxide)				
	Vermilion	HgS				
	Realgar	As ₄ S ₄				
	Raw Sienna	Iron oxide + small amounts of Mn				
	Bismuth Vanadate	oxides				
	Yellow	BiVO ₄				
	Zinc Yellow	$K_2O 4ZnCrO_4(H_2O)_3$				
	Lemon Yellow	BaCrO₄				
Yellow	Cobalt Yellow	K ₃ [Co(NO ₂) ₆]				
	Naples Yellow	$Pb_3(SbO_4)_2$				
	Cadmium Yellow	CdS				
	Yellow Ochre	Iron oxides				
	Orpiment	As_2S_3				
	Chrome Yellow	PbCrO ₄				
	Lead-Tin Yellow	Pb ₂ SnO ₄				
	Phthalocyanine Green					
	Cobalt Titanate Green	$C_{02}TU_4$				
Green	Green Earth	$K[(AI,Fe'''),(Fe'',NIG](AISI_3,SI_4)U_{10}(OH)_2$				
	Malachite	$CuCO_3 \cdot Cu(OH)_2$				
	Viridian	$Cr_2O_3.2 H_2O_2$				
	Emerald Green	$3 \text{ Cu}(\text{ASO}_2)_2 \text{ Cu}(\text{CH}_3 \text{COO})_2$				
	Antimony Orango	1110000000000000000000000000000000000				
		$2 3 0_2 3_3 3 0_2 0_3$				
Orango	Chromo Orango					
Oralige	Orange Ochre	ron ovides				
	Realger	$\Delta s S \Delta s S or \Delta s S$				
	Spinel black	$MnFe_{0}\Omega$				
Grey and Black	Manganese Black	Manganese and Iron ovides				
	Titanium Diovide White					
	Calcite					
White	Zinc White	7nO				
	Lead White	2 PhCO ₂ ·Ph(OH) ₂				

Table S3 : Additive information from Hahladakis et al., 2018.

Element	Use
AI	 Special effects (such as fluorescence). Flame retardant
Zn	 Inorganic pigments Fillers Flame retardant as zinc borate
As	- Biocides
Fe	- Inorganic pigments
Mn	- Inorganic pigments (cadmium-manganese based possible)
Cu	 Special effect (such as fluorescence)
Cr	- Inorganic pigments
Ва	- Fillers
Pb	 Stabilisers, Antioxidants and UV stabilisers Heat stabilisers Inorganic pigments Special effect (such as fluorescence)
Cd	 Stabilisers, Antioxidants and UV stabilisers Heat stabilisers Inorganic pigments
Са	- Fillers

Table S4: Summary of the results obtained by El Hadri (2020) from microplastics collected at the same sampling site measured by LC-ICP-MS. Two behaviours were identified in the samples: additive (Add) and sorbed (Sor)

Colour	Orange	White	Yellow	Blue	Beige	Green	Grey
Cd	Add	Add/Sor	Add/Sor	Sor	Add	Add	Sor
As	Sor	Sor	Sor	Sor	Sor	Sor	Sor
Zn	Sor	Sor	Add	Add	Add	Add	Sor
Pb	S	Sor	S	Sor	Sor	Add	Add

Table S5: Element concentrations measured after acid leaching and the lowest observed effect concentration (LOEC) determined for each element in this study. LOEC data is from the Internet database: https://cfpub.epa.gov/ecotox/

		Fe	Cu	Zn	As	Cd	Pb
Blue	[mg (kg pl.) ⁻¹]	0.87	0.09	0.51	0.25	0.05	0.18
Green	[mg (kg pl.)⁻¹]	1.02	0.06	0.56	0.24	0.10	0.27
Orange	[mg (kg pl.)⁻¹]	1.94	0.06	0.57	0.24	0.33	0.04
Red	[mg (kg pl.)⁻¹]	0.22	0.04	0.32	0.37	0.42	0.00
Yellow	[mg (kg pl.)⁻¹]	0.52	0.04	0.38	0.12	0.29	0.04
Grey and Black	[mg (kg pl.)⁻¹]	3.29	0.08	7.41	0.68	0.03	0.15
White	[mg (kg pl.)⁻¹]	0.38	0.07	0.43	0.57	0.10	0.00
LOEC min	[mg (kg food)⁻¹]	560	0.28	100	28	0.07	7.20
LOEC max	[mg (kg food)⁻¹]	560	1780	5926	732	615	802.92