Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2021

Supplemental Data

TITLE:	Joint Effects of Antibiotics and Quorum Sensing Inhibitors	
	On Resistance Development in Bacteria	
AUTHORS:	Qing Ning, Dali Wang*, Jing You	
ADDRESS:	Guangdong Key Laboratory of Environmental Pollution and	
	Health, School of Environment, Jinan University,	
	Guangzhou 511443, China	
JOURNAL:	Environmental Science: Processes & Impacts	
NO. OF PAGES:	12	
FIGURES:	6	
TABLES:	5	

*Corresponding author.

Tel: 0086-20-3733-6629, Email: wdali2018@jnu.edu.cn

Fig. S1 Linear relationship between the optical density (OD) readings and CFU of *E. coli* in the present study. OD reading s were recorded a MultiskanTM FC Microplate Photometer (ThermoFisher Scientific, USA), while CFU was determined by serially diluting the bacterial suspensions in LB medium and plating them on LB agar plates.

	302
REF	TCGGGTGTACGTCTCGAACTTCGAAGCCTGCACGTTCACGGGTCAGACCGCCTGGGCCGAGTGCGGA
Control	TCGGGTGTACGTCTCGAACTTCGAAGCCTGCACGTTCACGGGTCAGACCGCCTGGGCCGAGTGCGAA
	401
REF	TACACGGACAGAGAGTTGATCAGACCGATGTTCGGACCTTCAGGGGGTTTCGATTGGACATACGC
TET/CHL	TACACGGACAGAGAGTTGATCAGACCGATGTTCGGACCTTCAAGGGTTTCGATTGGACATACGC
	397
REF	ACACGGACAGAGAGTTGATCAGACCGATGTTCGGACCTTCAGGGGGTTTCGATTGGACATACGCG
CIN	ACACGGACAGAGAGTTGATCAGACCGATGTTCGGACCTTCAGGGGGGTTCGATTGGACATACGCG
	947
REF	AATCTCAGACAGCGGGTTGTTCTGGTCCATAAACTGAGACAGCTGGCTG
NPO/TET+NPC	AATCTCAGACAGCGGGTTGTTCTGGTCCATAAACTCAGACAGCTGGCTG
	205
RFF	CGAACTTCGAAGCCTGCACGTTCACGGGTCAGACCGCCTGGGCCGAGTGCGGAGATACGACGTT
TET+CIN	CGAACTTCGAAGCCTGCACGTTCACGGGTCAGACCGCCTGGGCCGAGTGCGGAGATACCACGTT
DDD	302
REF	CGAACTTCGAAGCCTGCACGTTCACGGGTCAGACCGCCTGGGCCGAGTGCGGAGATACGACGTT
CHL+CIN	CGAACTTCGAAGCCTGCACGTTCACGGGTCAGACCGCCTGGGCCGAGTGCGTAGATACGACGTT
	257 248
REF	GCGTAATCTCAGACAGCGGGTTGTTCTGGTCCATAAACTGAGACAGCTGGCTG
CHL+NPO	GCGTAATCTCAGACAGCGGGTTGTTCTGGCCCATAAACAGAGACAGCTGGCTG

Fig. S2 Comparisons between DNA sequence of reference (1057 bp of β subunit in RpoB) and samples. The red letters and figures mean the base changes and mutation sites, respectively. REF: reference, TET: tetracycline, CHL: chloramphenicol, CIN: cinnamaldehyde, NPO: 4-Nitropyridine-N-oxide.

Fig. S3. Ramachandran plots of predicted RpoB mutants. (A) Wild type, (B) Q513E, (C) Q513L & D516G, (D) R529G, (E) S531F, (F) S531Y, (G) T563P (H) P564L

Fig. S4. Binding energies between the rifampicin molecule and the wild type and mutated RpoB.

Fig. S5 Diagrams of docking interactions of rifampicin with RpoB protein in wild type and predicted mutants. (A) Wild type, (B) Q513E, (C) Q513L & D516G, (D) R529G, (E) S531F, (F) S531Y, (G) T563P, (H) P564L

Fig. S6 The differences of docking poses of ligand between wild type and mutant RpoB, the ligand in yellow in all graphs represent the ligand pose after docking with wild type. (A) All poses docking with mutants and wild type, (B) Q513E, (C) Q513L & D516G, (D) R529G, (E) S531F, (F) S531Y, (G) T563P, (H) P564L.

Class	CAS/Name	Abbreviation	Structure
Antibiotics	56-75-7 Chloramphenicol	CHL	
	114-07-8 Erythromycin	ERY	
	59-01-8 Kanamycin	KAN	$H_{0}, \qquad \qquad$
	60-54-8 Tetracycline	TET	
QSIs	104-55-2 Cinnamaldehyde	CIN	0
	1124-33-0 4-Nitropyridine-N-oxide	NPO	-0-N+N+

Table S1. Information of the test chemicals, including their CAS number, structures and abbreviations in this work.

	Single exposure		Mixture exposure (QSIs in the mixtures were added at a fixed concentration.	
	Group	Antibiotic conc.	CIN conc.	NPO conc.
CHL	CHL1	0.006	42	1.0
	CHL2	0.06	42	1.0
	CHL3	0.3	42	1.0
	CHL4	0.6	42	1.0
ERY	ERY1	0.16	42	1.0
	ERY2	1.6	42	1.0
	ERY3	8	42	1.0
	ERY4	16	42	1.0
KAN	KAN1	0.01	42	1.0
	KAN2	0.1	42	1.0
	KAN3	0.5	42	1.0
	KAN4	1	42	1.0
TET	TET1	0.001	42	1.0
	TET2	0.01	42	1.0
	TET3	0.05	42	1.0
	TET4	0.1	42	1.0
CIN	CIN1	0.42		
	CIN2	4.2		
	CIN3	21		
	CIN4	42		
NPO	NPO1	0.01		
	NPO2	0.1		
	NPO3	0.5		
	NPO4	1.0		

Table S2. Experimental setup for bacterial resistance mutation screening. Conc. is the abbreviation for concentration. The unit for conc. is mg/L. CHL: chloramphenicol, ERY: erythromycin, KAN: kanamycin, TET: tetracycline; CIN: cinnamaldehyde, NPO: 4-Nitropyridine-N-oxide.

Genes	Primer sequ	Primer sequence (5'-3')		
168	Forward	GGACGCACGATAGAGAGTGG	141	
	Reverse	TTCGGTCCGCGATCCTAATG	141	
unmD	Forward	CTACGGTAATCCGGTGGAGC	1.4.2	
uvrD	Reverse	GTTGCAGGATATGCGGCTTG	145	
rnoS	Forward	TGTCCAGCAACGCTTTTTCG	190	
rpos	Reverse	AGCTGAACGTTTACCTGCGA	189	
recA	Forward	CTGCTACGCCTTCGCTATCA	221	
	Reverse	TCTACGGCGAACTGGTTGAC	231	
mutS	Forward	ACGGGCCTATACCCTGAACT	124	
	Reverse	CAGCGGGTTGGCGATAAATG		
lexA	Forward	TGACTTGCTGGCAGTGCATA	175	
	Reverse	GAAGCTCTGCTGACGAAGGT		
dinB	Forward	CGTTGTCACTGGATGAGGCT	278	
	Reverse	TTTTGCCGCTGAGACTTTGC	210	

Table S3. Detailed information of primers of tested genes in E. coli.

			PROCHECK: Most
Mutants	3D-profile Score	DOPE Score	Favored and Allowed
			Residues Percentage
S531F	559.63	-141,849	99.6%
P564L	558.21	-141,613	99.6%
T563P	559.58	-141,563	99.6%
Q513E	558.56	-141,563	99.6%
S531Y	559.28	-141,809	99.6%
Q513L & D516G	558.27	-141,718	99.7%
R529G	557.94	-141,445	99.6%

Table S4. The best models of predicted mutants using three different evaluation methods.

Mutant	$\Delta\Delta G$ (kcal/mol)	Prediction
Q513E	0.86	Destability
Q513L & D516G	0.51	Destability
R529G	1.55	Destability
S531F	0.52	Destability
S531Y	0.53	Destability
T563P	0.74	Destability
P564L	0.66	Destability

Table S5. Protein stability prediction of mutants by calculating unfolding Gibbs free energy changes ($\Delta\Delta G$, kcal/mol) using PremPS. The positive sign of $\Delta\Delta G$ value corresponds to destabilizing mutations.